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The dimensioning of injection heads for the extrusion of rubber
profiles is exclusively based on empiric knowledge of the non-
linear flow behaviour of elastomers. The swelling of the extrudate
when emerging from a capillary is typical for viscoelastic fluids,
such as polymers and rubber blends, respectively. Therefore, the
experimental investigation and numerical treatment of this swelling
behaviour is of high interest. This was one of the motivations for
starting a research project in the field of rubber blend technologies.
The knowledge of die swell phenomenon is important for
manufacturing rubber profiles. Thus, the final goal of this project
is the numerical prognosis concerning injection heads and tools
for the extrusion of rubber. So far, several rubber blends, containing
mainly EPDM and carbon black in different compositions, have
been investigated. These are used for window sealings, pipeline
constructions and various parts of cars.

A torsion rheometer or Rubber Process
Analyzer (RPA) is used for the determination
of the dynamic properties of unvulcanised
rubber blends.  A certain shear strain is
applied by oscillating the lower stamp. The
upper stamp is conntected with a measuring
tool which records the applied torsional
moment.

Due to the viscoelastic properties this
complex turning moment S* has not the
same phase as the applied strain. By means
of a Fourier transformation S* is split into an
elastic component S´ and    a viscsous one
S´´. With a form factor the so-called storage
modulus G´ and the loss modulus G´´ are
determined. More details are collected in
Dick et al. [1].

The result of one RPA experiment is therefore
the storage modulus G´ and the loss modulus
G´´ for a certain angular frequency ω. With
one experiment normally more than one
angular frequency is investigated. In this
context r denotes the investigated duty point
and s the number of investigated duty points.
With G´ and  G´´ the complex modulus G*
and the phase angle δ are determined:

Figure 1 shows the results of one  RPA
experiment at a temperature of 100 °C. Both
the storage and loss modulus increase
montone with increasing angular frequency.

For the determination of viscoelastic material
parameters two diagrams are well suited :
In Figure 2 the so-called Cole-Cole diagram
is shown. It plots the loss modulus G´´ versus
the storage modulus G´. In Figure 3 the so-
called Black diagram is shown. It plots the
phase angle δ versus the complex shear
modulus G*. Both diagrams show a
temperature independence of the elastic
properties. The obtained characteristics are
similar for other rubber blends.
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For numerical simulations of injection heads the determination of the viscoelastic properties of the rubber blends is required.
Therefore experiments with a rubber process analyzer were carried out. For the comparison of the experimental data and
the rheological model governing equations for both, storage modulus and loss modulus, subjected to the corresponding
material parameters are required. These equations are based on a relation between creep and stress relaxation which can
be found by means of Laplace and Fourier transformation according to Findley et al. [2].
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1.) Maxwell model

2.) Wiechert model

3.) Huet model
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The Maxwell model is not applicable for the investigated rubber blends. This model leads to
a semi circle in the Cole-Cole diagram, in the Black diagram a phase angle of 90 ° is obtained.
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The Wiechert model can be described as a generalised Maxwell model. It achieves a better
agreement as the Maxwell model. Disadvantage of this model is the large number of parameters.

The Huet model yields the best agreement for all investigated rubber blends. For a small
complex modulus values of phase angles < 90 ° are obtained, in spite of using two parameters.
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