
Quasi-static mechanical testing is the most common experimental technique 
to determine elastic stiffness of materials. Problems arise in case of anisotropic  
materials, with small specimens and with porous materials, where the determination 
of material stiffness can be strongly biased by inelastic deformations occurring in the  
material samples. 
In order to determine all elastic stiffness tensor components, several  
specimens need to be manufactured, and even then the measurement of 
Poission‘s ratios is a highly delicate task. Ultrasonic wave propagation allows for 
the direct measurement of all elastic tensor components on one specimen by  
applying only negligibly small stresses to the material.

DETERMINATION OF MATERIAL ELASTICITY 
BY ULTRASONIC WAVES
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In continuum (micro)mechanics [1], elastic properties are related to a material volume (also 
called representative volume element RVE), which must be considerably larger than the inhomo-
geneities inside this material volume, and it must be subjected to homogeneous stress and strain 
states. Hence, the characteristic length of the RVE needs to be much smaller than the scale of the  
characteristic loading of the medium, i.e. the wavelength.

Definition of material properties

d � �RV E

Ultrasonic waves propagate in any solid and are the result of the transfer of a disturbance from 
one particle (i.e. material volume) to its neighbors. The corresponding strain rate related to  
zthese material volumes is sufficiently low as to be considered as quasi-static and the resulting stresses 
are small enough such that linear elasticity is valid.

longitudinal (L)
or compression
or dilatational

wave 
with velocity vL

transversal (T)
or shear

or equivoluminal
wave 

with velocity vT

extensional (E)
or bar
wave 

with velocity vE

The velocity of the ultrasonic puls, i.e. the group velocity (=velocity of the wave packet), is measured. This velocity 
is only equal to the phase velocity in isotropic materials and in symmetry planes of anisotropic materials.

equilibrium amplitude unbounded media - bulk waves bounded media

Overview and literature

How are ultrasonic waves generated?

How are waves and stiffness related? How do waves propagate?

How to define a material?

results

Application of Differential calculus

�RV E � L

separation of scales

d � �RV E � L
load = 
wave

bounded finite elastic medium (e.g. bar)

7 materials with different microstructures und porosities (pore sizes range from 20 to 500 μm) were tested. 
Depending on the geometry of the specimen, bulk wave or extensional wave propagation occured. In the case 
of bulk wave propagation, pulses with equal wavelength, i.e. different frequencies for longitudinal and transversal 
waves, were combined.

The ratio of wavelength to the characteristic length a [mm] of the sample surface where the transducer is applied 
determines whether a quasi-infinite medium (i.e. ultrasonic beam is laterally constrained) or a finite medium (i.e. 
beam propagates in 1-D media) is characterized [2,3,4].

receiving transducer

Piezoelectric element transforms 
mechanical into electrical signal.

sending transducer

Piezoelectric element transforms 
electrical into mechanical signal.

receiver

Amplifies signal (bandwidth 0.1 - 35 
MHz, voltage gain up to 59 dB).

group velocity

λ =
v

f
v =

�s

ts

oscilloscope
Lecroy WaveRunner 62Xi

pulser-receiver
Panametrics PR5077

specimen and
transducer

auxiliary
testing 
device

13 ultrasonic longitudinal transducer (0.1 - 20 MHz)
11 ultrasonic transversal transducer (0.5 - 20 MHz)

Tailored for certain frequency f •	
[MHz] (the higher frequency, the 
smaller the elements)
Depending on cut and orientati-•	
on a L- or T-wave is transmitted

piezoelectric elements

wavelength

transmission through method

d . . . inhomogeneity [mm] L . . . characteristic length of structure or load [mm]
�RV E . . . characteristic length of RVE [mm] λ . . . wavelength [mm]

In non-symmetry planes quasi-longitu-
dinal (QL) and quasi-transversal (QT) 
waves propagate.

pulser

Emits electrical square-pulse  
(100 - 400 Volt).
Sets zero trigger for oscilloscope.

specimen

Defines travel distance     [mm].
Signal is attenuated and dispersed.
Coupling medium: honey.

�s

oscilloscope

Displays received signal (bandwidth 
600 MHz, 10 Gigasamples/s).
Access to time of flight     [μs].ts

Cijkl . . . stiffness tensor [GPa]
σij . . . stress tensor [GPa]
ui . . . deformation vector [mm]
u0 . . . amplitude [mm]

(max. deformation)
k . . . wavenumber [1/mm]
f . . . frequency [MHz]
t . . . time [µs]

δij . . . Kronecker delta

hooke‘s law

σxx = E εxx

equation of motion

∂xσxx = ρ ∂2
ttux

strain

εxx = ∂xux

1-D equation(
E − ρ v2

p

)
ux = 0

1-D wave equation

ux(x, t) = a exp(i k (x − vp t))

young‘s modulus

E = ρ v2
E

a � λ

relationships between phase velocities

v2
L

v2
E

=
1 − ν

(1 + ν) (1 − 2 ν)
=

C1111

E
v2

T =
E

ρ

1
2 (1 + ν)

=
C1212

ρ
v2

E =
E

ρ

prepared by Fraunhofer Institute for Manufacturing
Technology and Applied Materials Research.

prepared by Politecnico di Torino, Department for
Materials Science and Chemical Engineering, Italy .

porosity

Φ = 100
ρs − ρ

ρs

dense titanium

glass-ceramic scaffold

porous titanium
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equation of motion

∂jσij = ρ ∂2
ttui

generalized hooke‘s law

σij = Cijkl εkl

linearized strain tensor

εij = (∂jui + ∂iuj)/2

kelvin-christoffel equation(
Γik − ρ v2

p δik

)
pk = 0

isotropic stiffness tensor components

C1212 = ρ v2
TC1111 = ρ v2

L

lame‘s constants

λ = ρ (v2
L − 2 v2

T ) µ = G = ρ v2
T

young‘s modulus poisson‘s ratio

E = ρ v2
T

3 v2
L − 4 v2

T

v2
L − v2

T

ν =
v2

L/2 − v2
T

v2
L − v2

T

definition of phase velocity

vp = ω/k = λ f

or
a � �RV E

a > 2 λ

kelvin-christoffel matrix

Γik = Cijkl nj nl

wavevector

kj = k · nj = 2 π/λ · nj

plane wave equation

ui(xi, t) = u0 pi exp(i (kj xj − ω t))

wavelength for material characterization

λ � �RV E � d

qL- and Qt-waves if

pi ni �= 1 pi ni �= 0 pi ni = 1
pi ni = 1

pi ni = 0

unbounded infinite elastic medium

3 eigenvalues, 3 eigenvectors

choose Cijkl, ni ⇒ (ρ v2
p)n, (pi)n

isotropic stiffness tensor

Cijkl = λ δij δkl + µ (δik δjl + δil δjk)

direction of

ni . . . propagation, wavefront normal
pi . . . polarization, particle vibration

velocity of a [km/s]

vL . . . longitudinal bulk wave
vT . . . transversal bulk wave
vE . . . extensional wave in a bar

requirement for

ρ . . . apparent mass density [g/cm3]

ρs . . . mass density of solid phase [g/cm3]


