
diagonal stiffness tensor components

normal shear

i, j . . . symmetry directions

Ciiii = ρ v2
L|i Cijij = ρ v2

T |i,j

young‘s moduli

Ei = ρ v2
E|i

Quasi-static mechanical testing is the most common experimental technique 
to determine elastic stiffness of materials. problems arise in case of anisotropic  
materials, with small specimens, and with porous materials, where the determination 
of material stiffness can be strongly biased by inelastic deformations occurring in the  
material samples. 
Wood is modelled as an elastic, anisotropic natural composite material with ortho-
rombic symmetry, where the symmetry planes are defined by the 3 principal material 
directions - longitudinal (l), transversal (t), radial (r). ultrasonic wave propagation 
allows for the direct measurement of all orthotropic elastic stiffness tensor com-
ponents on one specimen by applying only negligibly small stresses to the material. 
here normal and shear stiffnesses (i.e. the diagonal terms) of spruce are reported.

DETERMINATION OF ORTHOTROPIC ELASTIC 
STIFFNESS OF WOOD BY ULTRASONIC WAVES

w
av
el
en

gt
h
λ

w
av
el
en

gt
h
λ

pr
es
su
re

pr
es
su
re

un
st
ra
in
ed

co
ns
tr
ai
ne

d

co
ns
tr
ai
ne

d

te
ns
io
n

pa
rt
ic
le

p
ol
ar
iz
at
io
n
di
re
ct
io
n
p i

w
av
e
pr
op

ag
at
io
n
di
re
ct
io
n
n
i

Christoph Kohlhauser, Karin Hofstetter, Christian Hellmich, Josef Eberhardsteiner
Vienna university of technology, Vienna, austria
institute for mechanics of materials and structures

[1] Zaoui, A.: continuum micromechanics: survey. Journal of Engineering Mechanics, 128(8), 808, 2002.
[2] Helbig, K.: Foundations of Anisotropy for Exploration Seismics. handbook of geophysical exploration,  
 22, pergamon, elsevier science ltd., oxford, united Kingdom, 1994.
[3] Carcione, J.M.: Wave fields in real media: wave propagation in anisotropic, anelastic and porous media.  
 Handbook of Geophysical Exploration, 31, Pergamon, Elsevier Science Ltd., Oxford, United Kingdom, 2001.
[4] Kolsky, H.: Stress Waves in Solids. oxford university press, london, united Kingdom, 1953.
[5] Hearmon, R.F.S.: the elastic constants of anisotropic materials. Reviews of Modern Physics, 18(3), 409, 1946. 
[6] Bucur, V. and Archer, R.R.: elastic constants for wood by an ultrasonic method. Wood Science and  
 Technology, 18, 255-265, 1984.

RV E

d

d

RV E

= λ

in continuum (micro)mechanics [1], elastic properties are related to a material volume (also called 
representative volume element rVe), which must be considerably larger than the inhomogeneities 
inside this material volume. measurement of stiffness properties requires homogeneous stress 
and strain states in the rVe, so that the characteristic length of the rVe needs to be much smaller 
than the scale of the characteristic loading of the medium, i.e. the wavelength.

definition of material properties

d � �RV E

ultrasonic waves propagate in any solid and are the result of the transfer of a disturbance from 
one particle (i.e. material volume) to its neighbors. the corresponding strain rate related to  
these material volumes is sufficiently low as to be considered as quasi-static, and the resulting stresses 
are small enough such that linear elasticity is valid.

longitudinal (l)
or compression
or dilatational

wave 
with velocity vl|i

transversal (t)
or shear

or equivoluminal
wave 

with velocity vt|i,j

extensional (e)
or bar
wave 

with velocity ve|i

the velocity of the ultrasonic puls, i.e. the group velocity (=velocity of the wave packet), is measured. this velocity 
is only equal to the phase velocity in isotropic materials and in symmetry planes of anisotropic materials.

equilibrium amplitude unbounded media - bulk waves bounded media

OVERVIEW AND LITERATURE

HOW ARE ULTRASONIC WAVES gENERATED?

HOW ARE WAVES AND STIFFNESS RELATED? HOW DO WAVES PROPAgATE?

HOW TO DEFINE A MATERIAL?

RESULTS

application of differential calculus

�RV E � L

separation of scales

d � �RV E � L
load = 
WaVe

bounded finite elastic medium (e.g. bar)

3 cuboid-shaped specimens were cut along the symmetry plane of the material, oriented in the longitudinal, radial, 
and transversal direction, respectively. Waves (0.5, 1.0 mhz) were sent through the heights of these specimens.

the ratio of wavelength to the characteristic length a [mm] of the sample surface where the transducer is applied 
determines whether a quasi-infinite medium (i.e. ultrasonic beam is laterally constrained) or a finite medium (i.e. 
beam propagates in 1-D media) is characterized [2,3,4].

receiVing transducer

piezoelectric element transforms 
mechanical into electrical signal.

sending transducer

piezoelectric element transforms 
electrical into mechanical signal.

receiVer

Amplifies signal (bandwidth 0.1 - 35 
mhz, voltage gain up to 59 db).

group Velocity

λ =
v

f
v =

�s

ts

oscilloscope
lecroy Waverunner 62Xi

pulser-receiver
panametrics pr5077

auxiliary
testing 
device

13 ultrasonic longitudinal transducer (0.1 - 20 MHz)
11 ultrasonic transversal transducer (0.5 - 20 mhz)

specimen and
transducer

tailored for certain frequency f •	
[mhz] (the higher the frequency, 
the smaller the elements)
depending on cut and orientati-•	
on a l- or t-wave is transmitted

piezoelectric elements

WaVelength

transmission through method

d . . . inhomogeneity [mm] L . . . characteristic length of structure or load [mm]
�RV E . . . characteristic length of RVE [mm] λ . . . wavelength [mm]

in non-symmetry planes quasi-longitu-
dinal (Ql) and quasi-transversal (Qt) 
waves propagate.

pulser

emits electrical square-pulse  
(100 - 400 Volt).
sets zero trigger for oscilloscope.

specimen

Defines travel distance     [mm].
signal is attenuated and dispersed.
coupling medium: honey.

�s

oscilloscope

displays received signal (bandwidth 
600 mhz, 10 gigasamples/s).
Access to time of flight     [μs].ts

hooKe‘s laW

σxx = E εxx

eQuation of motion

∂xσxx = ρ ∂2
ttux

strain

εxx = ∂xux

1-d eQuation(
E − ρ v2

p

)
ux = 0

1-d WaVe eQuation

ux(x, t) = a exp(i k (x − vp t))

a � λ

eQuation of motion

∂jσij = ρ ∂2
ttui

generalized hooKe‘s laW

σij = Cijkl εkl

linearized strain tensor

εij = (∂jui + ∂iuj)/2

KelVin-christoffel eQuation(
Γik − ρ v2

p δik

)
pk = 0

definition of phase Velocity

vp = ω/k = λ f

KelVin-christoffel matriX

Γik = Cijkl nj nl

WaVeVector

kj = k · nj = 2 π/λ · nj

plane WaVe eQuation

ui(xi, t) = u0 pi exp(i (kj xj − ω t))

WaVelength for material characterization

λ � �RV E � d

Ql- and Qt-WaVes if

pi ni �= 1 pi ni �= 0 pi ni = 1
pi ni = 1

pi ni = 0

unbounded infinite elastic medium

3 EiGEnvALUES, 3 EiGEnvEctOrS

choose Cijkl, ni ⇒ (ρ v2
p)n, (pi)n

direction of

ni . . . propagation, wavefront normal
pi . . . polarization, particle vibration

reQuirement for

porosity

Φ = 100
ρs − ρ

ρs
≈ 70%

ρ . . . apparent mass density: 0.41 – 0.44 g/cm3

ρs . . . mass density of solid phase: ≈ 1.4 g/cm3 (cell wall)

inVersion of orthotropic stiffness tensor

C−1
ijkl = Dijkl

9 independent engineering constants

3 Ei, 3 Gij , 3 νij

or
a � �RV E

a > 2 λ

orthotropic stiffness tensor

Cijkl = f (3 Ciiii, 3 Cijij , 3 Ciijj)

Velocity of a [Km/s]

vL|i . . . longitudinal bulk wave
vT |i,j . . . transversal bulk wave
vE|i . . . extensional wave in a bar

Cijkl . . . stiffness tensor [GPa]
Dijkl . . . compliance tensor [GPa]

σij . . . stress tensor [GPa]
Gij . . . shear moduli [GPa]
νij . . . Poisson’s ratios [-]
ui . . . deformation vector [mm]
u0 . . . amplitude (max. def.)
k . . . wavenumber [1/mm]
ω . . . angular frequency [MHz]
f . . . frequency [MHz]
t . . . time [µ]

δij . . . Kronecker delta

defintion of Velocity indices

vi . . . i = propagation and polarization direction
vi,j . . . i = propagation, j = polarization direction

spruce: normal and shear stiffness tensor components

Cllll Crrrr Ctttt Crtrt Cltlt Clrlr

inhomogeneity

d = 30 µm
avg. wood cell diameter

material Volume

�RV E ≥ 0.15 mm
(� λ = 1 − 10 mm)

λ

RVE softwood
specimen

d RV E  λ

RV E = 300 µm

RV E

d

symmetry of transVersal WaVe

vi,j ≈ vj,i . . . wood: not perfect orthotropic
. . . up to 30% difference


