SAMPLE GEOMETRY DEPENDENCIES IN MEASUREMENTS OF ULTRASONIC WAVE VELOCITY

Christoph Kohlhauser, Christian Hellmich, Josef Eberhardsteiner

Vienna University of Technology, Vienna, Austria Institute for Mechanics of Materials and Structures

INSTITUT FÜR MECHANIK DER 📕 🛾 VERKSTOFFE UND STRUKTUREN INSTITUTE FOR MECHANICS OF MATERIALS AND STRUCTURES

OVERVIEW AND LITERATURE

MATERIAL

Measuring the velocity of an ultrasonic wave and deducing the material stiffness from it requires basic knowledge of wave propagation in solids.

The theory applied to describe the relation between wave propagation and material stiffness is based on the concept of a plane elastic wave propagating in an infinite medium (this wave is called bulk wave). While the former assumption of a plane wave is justified for most experimental situations, this is not true for the latter assumption, which does not hold for specimens of all sizes and forms. In an infinite (non-dispersive) medium, the measured (bulk) velocity is independent of the frequency of the wave, and depends exclusively on the mass density and stiffness of the investigated material. However, in finite samples, the ultrasonic wave velocity depends on geometrical parameters, including the frequency-governed wavelength.

How is Aluminum structured?

PURE ALUMINUM (SINGLE CRYSTAL)

• crystal structure: face centered cubic

Which specimens where used?

II cuboid-shaped specimens made from aluminum alloy 5083 with a height of 30 mm and different cross-sectional dimensions (a=1, 2, 5, 10, 15, 20, 30, 40, 50, 75, 100 mm) were used.

[1] **Buckingham, E.:** On physically similar systems: illustrations of the use of dimensional equations. Physical Review, 4, 345, 1914.

[2] **Carcione, J.M.:** Wave fields in real media: wave propagation in anisotropic, anelastic and porous media. Handbook of Geophysical Exploration, 31, Pergamon, Elsevier Science Ltd., Oxford, United Kingdom, 2001. [3] Redwood, M.: Ultrasonic Waveguides – A physical approach. Ultrasonics, 1(2), 99, 1963.

- highest possible packed structure
- unit cell: lattice constant a=0.40494 nm
- cubic symmetry
- 3 elastic constants

ALUMINUM ALLOY (POLYCRYSTAL)

• grain structure (small crystalls)

MHz

10 20

2.3

- isotropic orientation, distribution homogenization yields →
- isotropic symmetry
- 2 elastic constants

ALUMINUM ALLOY 5083 - COMPOSITION

• highly resistant in extreme environments (sea water, chemicals) • highest strength (due to magnesium) of non-heat treatable alloys

$\rho ~[{ m g/cm^3}]$	Al [%]	Mg $[\%]$	Mn [%]	Si [%]	Fe [%]	Zn [%]	Ti [%]	Cr [%]	Cu [%]
2.656	balance	4.0 - 4.9	0.4 - 1.0	0.4	0.4	0.25	0.15	0.05 - 0.25	0.1

ULTRASOUND

How are ultrasonic waves generated?

PULSER	OSCILLOSCOPE	GROUP VELOCITY WAVELENGTH		
Emits electrical square-pulse	Displays received signal (bandwidth	ℓ_s v		
(100 - 400 Volt)	600 MHz 10 Gigasamples/s)	$v = \frac{1}{t_{a}}$ $\lambda = \frac{1}{f}$		
$\left(\begin{array}{c} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right) $	$\Delta = 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2$			
Sets zero trigger for oscilloscope.	Access to time of flight t_s [µs].			
SENDING TRANSDUCER	RECEIVER	PIEZOELECTRIC ELEMENTS		
Piezoelectric element transforms	Amplifies signal (bandwidth 0.1 - 35	 Tailored for certain frequency 		
electrical into mechanical signal.	MHz, voltage gain up to 59 dB).	[MHz] (the higher the frequency,		
	the smaller the elements)			
SPECIMEN	RECEIVING TRANSDUCER	• Depending on cut and orientati-		
Defines travel distance ℓ_s [mm].	Piezoelectric element transforms	on a L- or T-wave is transmitted		
Signal is attenuated and dispersed	machanical into alactrical signal			

DIMENSIONAL ANALYSIS

What is the aim of dimensional analysis?

The aim of dimensional analysis [1] is to extract relevant parameters of a given physical problem, i.e. the functional relation between one physical quantity (the dependent variable) and several other physical quantities (the independent variables), through the study of the dimensions of the all involved quantities, while making sure that the functional relationship does not depend on the units of measurements.

$A, T \dots$ abstract	SYSTEMS OF UNITS
tiv numbers,	L(ength) M(mass) T(ime)
ribe transforma-	
factors between	DIMENSION OF PHYSICAL QUANITY
ems of units.	$[Q_i] = L^{\alpha_i} M^{\beta_i} T^{\gamma_i}$

How are wave and stiffness related?

Combination of the conservation law of linear momentum, of the generalized Hooke's law, of the linearized strain tensor, and of the general plane wave solution for the displacements inside an infinite solid medium yields the elasticity tensor components as functions of the material mass density and the wave propagation velocity [2].

 λ ... wavelength

ELASTIC CONSTANTS

How are the elastic constants determined?

ULTRASONIC TESTS			
pulser-receiver	auxiliary testing device		

QUASI-STATIC TENSILE TESTS specimen

RESULTS

 $\rho \dots$ mass density

Longitudinal ultrasonic waves of 7 different frequencies (0.1-20 MHz) were sent through the aluminum specimens, leading to 77 data-points covering a range of 3 orders of magnitude of the two remaining independent variables of the dimensionless functional relation of the physical problem. In specimens with smaller cross-sectional dimension a 'Young's modulus mode' [3] occurs at lower frequencies (bar wave propagation velocity):

• I specimen: cube a=100 mm (infinite medium) • tests at all frequencies: 0.1 - 20 MHz; L-, T-waves • measured: density, v_{μ} (7 values), v_{τ} (6 values)

RELATIONSHIPS TENSOR COMP EN	GINEERING CONSTANTS
$\frac{C_{1111}}{E} = \frac{1-\nu}{(1+\nu)(1-2\nu)}$	$\frac{C_{1212}}{E} = \frac{1}{2(1+\nu)}$

[GPa] ([ν]=[-])	C_{1111}	C_{1212}	E	u
mean	108.1	27.4	72.8	0.331
std. dev. $[\%]$	0.28	0.35	-	-

- 2 specimens: cross-section 30/10 mm
- load-controlled tensile tests (up to 75 MPa)
- measured: lateral and longitudinal strains

YOUNG'S MODUI	POISSON'S RATIO			
$E = \frac{\Delta\sigma}{\Delta\varepsilon_{\ell}}$	$\nu = \frac{\Delta \varepsilon_q}{\Delta \varepsilon_\ell}$			
[GPa] ([ν]=[-])	C_{1111}	C_{1212}	E	ν

$[\mathbf{a}] ([\nu] - [-])$	\cup_{1111}	\cup_{1212}		ν
specimen 1	103.2	27.6	72.7	0.318
specimen 2	102.4	27.6	72.5	0.316

BAR WAVE VELOCITY

What are the limits for bulk wave propagation?

