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Motivation

Investigation of micro- and nanomechanical characteristics of HYDROXYAPATITE GRANULES for regenerative medicine

Porous hydroxyapatite (HA) globules [I] have
proven as a successful tissue engineering strategy
to handle bone defects in vivo, as was shown in
studies on human mandibles (see Figure 1). These
granules need to provide enough porous space
for bone ingrowth, while maintaining sufficient
mechanical competence (stiffness and strength),
in this highly load-bearing organ. This double-
challenge motivates to scrutinize deeper into the
micro- and nanomechanical characteristics of
such globules, as to identify possible optimization
routes [2].

Fig. |: (a) Hydroxyapatite granules used in oral surgery as bone-filling material; (b) Scanning electron micrograph
(SEM) image of the porous globule; (c) SEM image showing nanoporous polycrystals building up the granule

Methods — pCT, polycrystal micromechanics, Finite Element Analysis
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Considering the average rule for X-ray
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Results

model of globule

Voxel-specific elasticity

Probability density functions of the
finite element-specific elastic material
properties, namely Young’s modulus and
Poisson’s ratio, over all finite elements:

Maximum principal stresses

Results of Finite
Element simulation,
with (element-
specific)
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Effect of heterogeneity and cracks

Neglection of heterogeneity of nanopores (and corresponding
voxel-specific elastic properties) leads to a stiffness overestimation
of about 5% [comparison of pole forces in models |) and 2)]; while
the neglection of crack morphology results in a stiffness
overestimation by a factor of around 80 [comparison of pole forces

(c)] and
0.04 homogeneous [(d)- in models 1), 2),and (3)].
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