



# **INTEGRATION OF SYSTEMS BIOLOGY AND MULTISCALE BONE MECHANICS FOR COMPUTATIONAL SIMULATION OF THE CORTICAL BONE REMODELING PROGRESS IN HEALTH AND DISEASE**

S. Scheiner<sup>1</sup>, P. Pivonka<sup>2</sup>, D.W. Smith<sup>3</sup>, C.R. Dunstan<sup>4</sup>, C. Hellmich<sup>1</sup>

<sup>1</sup> Institute for Mechanics of Materials and Structures, Vienna University of Technology, Austria <sup>2</sup> Australian Institute for Musculoskeletal Science, University of Melbourne, Australia

<sup>3</sup> Faculty of Engineering, Computing and Mathematics, University of Western Australia, Australia <sup>4</sup> School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Australia

### Introduction

The process by which bone renews itself is termed **bone remodeling** [1], with bone-resorbing osteoclasts and bone-forming osteoblasts as key players. Bone remodeling is governed by a number of **biochemical factors** and by the **prevailing** mechanical loading applied onto the skeleton [2].

Anticipating the temporal progress of bone remodeling based on experimental observations alone is difficult (if not impossible), owing to complex interactions between cells, biochemical factors, and mechanical loading [2].

In order to contribute to resolving this issue, a mathematical model [3,4] is presented, integrating the concepts of

- systems biology, considering biochemical regulation of bone remodeling, and
- multiscale bone mechanics, for quantification of the bone straining.

The proposed model is applied for studying the composition evolution of a piece of cortical bone, while the latter is subjected to specific mechanical load cases, bone pathologies, and drug intervention.

### **Materials and Methods**

Length scales of interest

#### Mathematical models



images of long bone [5]

representative volume element (RVE) of cortical bone microstructure (L >> I >> d [6])

**III:** main mechanisms involved in bone remodeling

#### **Bone cell population model:**

- Populations of cells considered in terms of molar concentrations [7]
- Biochemical regulation: **RANK-RANKL-OPG system and TGF**β [8]
- Mechanical regulation: Increase of mechanical loading leads to
  - increase of osteoblast precursor proliferation [9] 0
  - decrease of RANKL-production and thus downregulation of 0 osteoclast differentiation [10]
- $\rightarrow$  general model structure:

change of concentration of cell  $i(C_i)$  over time t

 $\frac{\mathrm{d}C_i}{\mathrm{d}t} = D_{i-1}C_{i-1}\pi^j_{\mathrm{act/rep}} + C_i(P_i\pi^k_{\mathrm{act/rep}} - D_i\pi^l_{\mathrm{act/rep}} - A_i\pi^m_{\mathrm{act/rep}})$ 

differentiation rate and concentration of cell *i*-1 (preceding developmental stage)

proliferation, differentiation, and apoptosis rates of cell i

activation and repression functions related to

biochemical or mechanical stimuli j, k, l, or m

→ leads to a system of three ordinary differential equations

#### **Model for drug intervention of osteoporosis:**

- PK model of the anti-catabolic drug denosumab gives its concentration following specific administration regimes [4]
- Model calibration against experimental data for different drug doses [10]
- Consideration in bone cell population model through competitive binding with RANKL

#### **Microelastic bone model:**

Mechanical stimulus: bone matrix strain energy density

$$\Psi_{\rm bm} = rac{1}{2} \boldsymbol{\varepsilon}_{
m bm} : \boldsymbol{\varepsilon}_{
m bm} : \boldsymbol{\varepsilon}_{
m bm}$$

The strain tensor of the extravascular bone matrix follows from a micromechanical model of the bone stiffness [6]:

$$\boldsymbol{\varepsilon}_{\mathrm{bm}} = \mathbb{A}_{\mathrm{bm}} : \left[ (\mathbb{C}_{\mathrm{cort}})^{-1} : \boldsymbol{\Sigma}_{\mathrm{cort}} 
ight]$$

 $c_{bm}$  = bone matrix stiffness tensor (known from ultrasonics tests)

- bone matrix strain concentration tensor [6,9]
- macroscopic stiffness tensor [6,9]
- $\Sigma_{\rm cort}$  = macroscopic stress tensor (prescribed)

these tensors are functions of the bone composition, governed by the osteoclast and osteoblast concentrations: **COUPLING TO THE SYSTEMS BIOLOGY MODEL** 

# **Results of Numerical Simulations**

**Mechanical loadcase: Disuse (microgravity)** 

Mechanical loading prescribed in terms of the stress tensor of cortical bone:

 $\Sigma_{cort} = \begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \Sigma_{33} \end{vmatrix} \quad \begin{array}{c} \text{normal: } \Sigma_{33} = -30 \text{ MPa} \\ \text{disuse: } \Sigma_{33} = -25 \text{ MPa} \end{vmatrix}$ 

✓ The predicted **bone loss rate** 

**Biochemical loadcases: Osteoporosis without and with drug intervention** 

**I. Simulation of postmenopausal osteoporosis (PMO)** 

PMO modeled by considering the disease-related increase of RANKL/OPG-ratio and reduction of the mechanoresponsiveness [12,13]:





(black graph, 0.42%/month) agrees well with clinical data [1]. Bone loss varies strongly between species, calling for **species-specific** model calibration (grey graph). **Very efficient** simulations.

Extension to "true" multiscale systems biology approach. □ **Model reduction**.

□ **Mechanoregulation according** 

to experimental evidence.

✓ Onset of simulated PMO initiates a catabolic bone remodeling regime.

Simulation results show adequate bone turnover kinetics.

✓ The related **porosity increase** agrees well with clinical data.

### 2. Additional consideration of denosumab administration

☑ In simulations, PMO shows long-term deceleration, without significant bone gain, and reasonable agreement with clinical biomarker measurements [15].

Clinically observed bone gain [16] <u>must be caused by mineralization effects</u> [17].

## **References and Acknowledgments**

[1] Martin et al. (1998), Skeletal Tissue Mechanics, Springer Verlag. [2] Robling et al. (2006), Annu Rev Biomed Eng, Vol. 8: p455-498. [3] Scheiner et al. (2013), Comput Method Appl M, Vol. 254: p181-196. [4] Scheiner et al. (2013), Int J Numer Meth Bio, Article in Press. [5] Weiner and Wagner (1998), Annu Rev Mater Sci, Vol. 28: p271-298. [6] Zaoui (2002), J Eng Mech-ASCE, Vol. 128: p808-816.

[7] Lemaire et al. (2004), *Theor Biol*, Vol. 229: p293-309. [8] Pivonka et al. (2008), Bone, Vol. 43: p249-263. [9] Hellmich et al. (2008), Ann Biomed Eng, Vol. 36, p108-122. [10] Bekker et al. (2004), J Bone Miner Res, Vol. 19: p1059-1066. [11] Vico and Alexandre (1992), J Bone Miner Res, Vol. 7: p445-447. [12] Manolagas (2000), Endocr Rev, Vol. 21: p115-137.

[13] Tomkinson et al. (1998), / Bone Miner Res, Vol. 13: p1243-1250. [14] Bonnet and Ferrari (2010), IBMS BoneKey, Vol. 7: p235-248. [15] Lewiecki (2010), Maturitas, Vol. 66: p182-186. [16] Bone et al. (2008), *J Clin Endocr Metab*, Vol. 93, p2149-2157. [17] Stepan et al. (2003), Endocr Regul, Vol. 37: 225-238.

Financial support by the European Research Council (ERC), through the project MULTISCALE POROMICROMECHANICS OF BONE MATERIALS, WITH LINKS TO BIOLOGY AND MEDICINE FP7-257023), and by the Australian Research Council (ARC), through the project MULTISCALE MODELING OF TRANS-PORT THROUGH DEFORMABLE POROUS MATERIALS (DP-0988427), is gratefully acknowledged.

