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Mechanical loadcase: Disuse (microgravity) Biochemical loadcases: Osteoporosis without and with drug intervention 

Results of Numerical Simulations 

The process by which bone renews itself is termed bone remodeling [1], with 
bone-resorbing osteoclasts and bone-forming osteoblasts as key players. Bone 
remodeling is governed by a number of biochemical factors and by the prevailing 
mechanical loading applied onto the skeleton [2].  

Anticipating the temporal progress of bone remodeling based on experimental 
observations alone is difficult (if not impossible), owing to complex interactions 
between cells, biochemical factors, and mechanical loading [2].  

In order to contribute to resolving this issue, a mathematical model [3,4] is 
presented, integrating the concepts of  
•  systems biology, considering biochemical regulation of bone remodeling, and  
•  multiscale bone mechanics, for quantification of the bone straining. 
The proposed model is applied for studying the composition evolution of a piece of 
cortical bone, while the latter is subjected to specific mechanical load cases, 
bone pathologies, and drug intervention.  

images of long bone [5] 
representative volume element (RVE) of 
cortical bone microstructure (L >> l >> d [6]) 
main mechanisms involved in bone remodeling 
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þ The predicted bone loss rate 
(black graph, 0.42%/month) agrees 
well with clinical data [11]. 

þ Bone loss varies strongly between 
species, calling for species-specific 
model calibration (grey graph). 

þ Very efficient simulations. 

¨ Extension to “true” multiscale 
systems biology approach. 

¨ Model reduction. 
¨ Mechanoregulation according 

to experimental evidence. 

Mechanical loading prescribed in 
terms of the stress tensor of 
cortical bone: 

1. Simulation of postmenopausal osteoporosis (PMO) 

2. Additional consideration of denosumab administration 
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Simulation results

Clinical study, Bonnet & Ferrari (2010)
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Simulation results 
Results from clinical study [14] 

þ Onset of simulated PMO initiates a catabolic 
bone remodeling regime. 

þ Simulation results show adequate bone 
turnover kinetics. 

þ The related porosity increase agrees well 
with clinical data. 

PMO modeled by considering the disease-related 
increase of RANKL/OPG-ratio and reduction of 
the mechanoresponsiveness [12,13]: 

þ  In simulations, PMO shows long-term deceleration, without significant bone 
gain, and reasonable agreement with clinical biomarker measurements [15]. 

¨ Clinically observed bone gain [16] must be caused by mineralization effects [17].  
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Bone cell population model: 

•   
•   
•   
o   
o   

Populations of cells considered in terms of molar concentrations [7] 
Biochemical regulation: RANK-RANKL-OPG system and TGFβ [8] 
Mechanical regulation: Increase of mechanical loading leads to 

increase of osteoblast precursor proliferation [9] 
decrease of RANKL-production and thus downregulation of 
osteoclast differentiation [10] 

general model structure: 

leads to a system of three ordinary differential equations 

Microelastic bone model: 

Mechanical stimulus: bone matrix 
strain energy density 

The strain tensor of the extra-
vascular bone matrix follows 
from a micromechanical model of 
the bone stiffness [6]:  

bone matrix stiffness tensor (known from 
ultrasonics tests) 

bone matrix strain concentration tensor 
[6,9] 

macroscopic stiffness tensor [6,9] 

macroscopic stress tensor (prescribed) 

= 
 

= 
 

= 

= 
Model for drug intervention of osteoporosis: 
•   
 
•   
•      

PK model of the anti-catabolic drug denosumab gives its 
concentration following specific administration regimes [4] 
Model calibration against experimental data for different drug doses [10] 
Consideration in bone cell population model through competitive binding with RANKL 

[7] Lemaire et al. (2004), J Theor Biol, Vol. 229: p293-309.    
[8] Pivonka et al. (2008), Bone, Vol. 43: p249-263. 
[9] Hellmich et al. (2008), Ann Biomed Eng, Vol. 36, p108-122. 

[10] Bekker et al. (2004), J Bone Miner Res, Vol. 19: p1059-1066.  
[11] Vico and Alexandre (1992), J Bone Miner Res, Vol. 7: p445-447. 
[12] Manolagas (2000), Endocr Rev , Vol. 21: p115-137.    

Abm

C
cort

⌃
cort

cbm

"
bm

= A
bm

:
⇥
(C

cort

)�1 : ⌃
cort

⇤

 bm =
1

2
"bm : cbm : "bm

change of concentration of cell i (Ci) over time t 

differentiation rate and concentration 
of cell i-1 (preceding developmental stage) 

activation and repression functions related to 
biochemical or mechanical stimuli j, k, l, or m 

proliferation, differentiation, and apoptosis rates of cell i 
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these tensors are functions of the bone composition, 
governed by the osteoclast and osteoblast concentrations:  

COUPLING TO THE SYSTEMS BIOLOGY MODEL 


