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Introduction

Due to its excellent bioactivity, 4555 Bioglass® is being highly considered in tissue engineering scaffold development. In order to enhance vascularization promoting tissue
growth, these scaffolds typically exhibit a highly interconnected porous structure with a porosity between 80 and 90% (see Fig. |). Often, Bioglass®-based scaffolds of such a
high porosity exhibit insufficient stiffness. In order to increase it scaffolds fabricated by the foam replica method, were coated with collagen, gelatin, polycaprolactone (PCL),
alginate, and poly(L-lactic acid) (PLLA) [, 2]. The resulting stiffness gain was quantified by means of ultrasonic measurements [3, 4, 5, 6].

Imaging and ultrasonic measurements

d - characteristic size of microheterogeneities

loe — characteristic length of the RVE
(representative volume element)

D - sample diameter

h — sample height

A - wavelength of the transmitted signal

If scale separation condition [9]
d << g << A
is fulfilled...

and sample geometry together with the wave
length yield transmission of a bulk wave [4]
F,(D/h,h/2) = Axlog(D/h)+ Bxlog(h/A)+1>0
with A=1.426 and B=0.530

then sample stiffness is given as [5]

scaff 2
Ci1117 = p-v

with
0 - sample mass density
v — velocity of the transmitted acoustic wave

RECEIVER

\Q\ 4 ;

-t et .
WD HV |Spot|Sig| Mag ————————————— WD HV [Spot| Mag |Sig
10.6 mm|20.0 kV| 3.5 | SE | 5000x 9.8 mm 20.0 kV| 2.0 [1500x| SE

Results

Both PCL and collagen coatings increase the overall scaffold’s stiffness (Cflcil{f), as comparing to uncoated scaffolds, by 58%

and 38%, respectively; while no remarkable stiffness increase was recorded for the other coatings. To reveal the influence of

the coatings’ stiffnesses (E_,) on the overall scaffolds’ stiffnesses (i.e. the micromechanical interactions patterns between

Bioglass® and different coatings) a dimensionless relation between coating volume fraction and the ratio of Cflcf{f—over-

E_ .. Was investigated. Together with (Cflcf{f /E.,,)-values stemming from ultrasonic experiments, theoretical values predicted

applying the classical isotropic self-consistent micromechanics scheme [7, 8,9, 10, | |] were taken into account (see Fig. 2).

The fact that the relation between coating volume fraction and the (C;%// E__)-ratio are significantly different among

chosen coatings indicates distinct micromechanical interactions patterns. Additionally, scanning electron microscopy (SEM),
revealed that PCL (unlike collagen) did not clog the micropores of the as-fabricated scaffolds (which supports the thesis of
different micromechanical interactions patterns), which are deemed essential for cell seeding and the resulting in-growth of
bone tissue.
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