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Motivation

Bone tissue engineering aims at repairing damaged bone and restoring its functions with the Highly porous baghdadite (Ca;ZrSi,O,) scaffolds have shown promising biological
help of biocompatible materials cultivated with cells and corresponding growth factors [I]. responses when used for the repair of critical size defects in rabbit radial bones [2]. However, the
Besides being osteoconductive and osteoinductive, the bone substitute or scaffold should exhibit mechanical properties of these scaffolds require further investigation. Therefore, by using
sufficient porosity for good vascular and tissue ingrowth, while not overly compromising the structure-property relations derived from ultrasound and nanoindentation experiments,
overall mechanical properties of the implant, i.e. its stiffness and strength. The design process of and on the basis of theoretical and applied micromechanics, the current research aims at
such scaffolds requires a multitude of in vitro and in vivo experiments and has proven to be a applying the state-of-the-art methods in computational biomechanics and biomaterials to this
challenging task, thus giving rise to the wish for rational, computer-aided design of biomaterials, new material to investigate its elastic properties.

regarding not only biological and cell transport aspects, but also mechanics.

Material and Experimental Methods

Sample data Ultrasound tests Separation of length Micromechanical model
Y i Synchronization S c a I e S

Signal
output

Eynom ... homogenized Young’s

modulus

4 . i Pulser-
receiver

"

L 1 — I

E;... Young’s modulus of a single

1 crystal

Vhom--- homogenized Poisson’s

N 0 ratio
N sender 1 recelver Normal stiffness component of the oo Fefissents raife el o Side
Density:p = — Wave velocity: 17 = o overall scaffolds crystal
Porosity: qbl-e P= 66% - 94% v ¢ hom ,
Pore diameter: d = 500 pm Wavelength: A = ? Ci111 ...normal stiffness component
of the homogenized stiffness tensor
N = ey ~  Bg,Cg,A,,B,,C, as given in [4]
12 | , . , | | , , , , , The nanoindentation tests were Minimizing the mean absolute error between the micromechanics-based
i | performed with a Berkovich tip with a stiffness evaluated for different experimentally determined porosities
= 12 | loading- unloading rate of 30 mN/min, gbl.exp, and the corresponding experimentally determined stiffness values,
% 5 | a holding time of 10 s, and four provides an estimate for the elastic properties of a single baghdadite
1 . | different maximum loads: 10, |5, 20 crystal, E; and v:
‘ | . . ‘ | and 30 mN. The 1750 measurements
0 ) P D g TR el T T are evaluated according to the
Typical load-displacement curve Distribution of all the 1750 measurements method of Oliver and Pharr [3].

Results & Discussion
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the corresponding mean porosity of each sample group The normal stiffness increases with decreasing porosity. The minimization of the mean absolute error between the model-predicted and the

experimentally determined stiffness delivered the elastic properties of pure (dense)

Validation of the elastic properties by statistical evaluation of the baghdadite: £5= 126 GPa and v; = 0.29.
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