ASSESSMENT OF EMBEDMENT AND PLUG-TENSION-SHEAR FAILURE OF DOWEL GROUPS **BY DIC MEASUREMENTS**

G. Hochreiner, M. Schweigler, J. Eberhardsteiner

MOTIVATION

Focus of interest:

- $oldsymbol{\square}$ Load carrying behavior of dowel groups subjected to bending \pm normal force
- Knowledge about elastic limit, nonlinearities and collapse load
- ☐ Global system response and history of crack formation
 - Indications for necessities of subsequent numerical modeling
- ☐ Background for overcoming of limits within the traditional design of EC5
 - Visualization of failure mechanisms for sake of convincement

Measurement tasks:

- ☐ Relative displacements (incl. relative rotation) of the steel plate to the LVL-beam
- ☐ Failure mode according to EC5 and bending angle of the single dowels
- ☐ Identification of local strains and extensions induced by dowel groups ☐ Visualisation of load redistributions due to crack formations by strain fields
- ☐ Data base for coupling of the global system response to the sequence of crack
- formation and internal load redistribution among the dowels

TEST SETUP AND GLOBAL SYSTEM RESPONSE

Single dowel

- ☐ Embedment tests according to EN 383:2007 with extensions
- □ LVL (Kerto-S), 45 mm for M12 resp. 51 mm for M16
- ☐ Test samples were prevented from premature splitting by reinforcements (Fig. a)

Dowel group

- ☐ Rectangular and circular arrangement of dowels
- ☐ Four point bending test (=M) acc. to Fig. c Inverse support conditions to reduce global displacements in the field of view (DIC)
- ☐ Additional eccentricity (=M+N) acc. to Fig. d
- □ Some test samples were prevented from premature splitting by reinforcements

Setup of measurements

- ☐ ARAMIS (3D DIC-system)
 - 2-cam system (4 megapixels)
- Displacement and strain field (Fig. e)
- ☐ PONTOS (3D point-measurement system)
 - Distinct markers (dots see Fig. f)
- > Movement of the dowel heads ☐ Some LVDTs for redundancy purpose

Global system response

Typical load displacement curves: ☐ M12: Smooth slip curve every time ☐ M20: Significant drop of stiffness in

case of unreinforced test samples Note: Limitation of the rotation due to restrictions of the test setup

DIC RESULTS

Embedment behavior of a single dowel

□ Load in line with displacement Later on deviation along the fiber

 \Box Hardening for $\alpha = 60^{\circ} \div 90^{\circ}$

 \square ε_v : banding due to annual rings of plys ☐ Field of view reduced by splintering

Identification of the type of failure modes (1÷3)

☐ Failure mode 1 ☐ Failure mode 2-3 (NO plastic hinge) (1÷2 plastic hinges) ☐ Loading inverse ☐ Loading in line

with compression with compression

Note: Strains perp. to the grain; compression=blue, tension=red

☐ Changes depending on load stage ☐ Final assessment / validation by demolition of the test samples

Experimental results essential for the design acc. to EC5

Superposition of global shear strains induced by the dowel group

☐ Similar extension for both rectangular and circular dowel groups ☐ Only interaction of local tensile stress perp. to the grain and shear stress

Sequence of crack formation

- \Box Shear angle as perfect indication for crack formation additional to ϵ_{xy} . Extension of the shear field by formation of a framework
- \square Corresponding bending strains from ϵ_x
- $lue{}$ Indication for load redistribution due to crack formation : On the surface less compressive strains ε_v due to plastic hinge inside

Two significant failure modes according to EC5:

- (1) Failure due to "notching" (EC5 6.5)
- (2) Failure due to "connection of forces at an angle to the grain" (EC5 8.1.4)

LESSONS LEARNED

Structural assessment:

- □ DIC measurements are a powerful tool for monitoring crack formation Surface identification of plastic hinge formation in the interior
- ☐ Reinforcement by full threaded screws ensure plastic behavior of dowels groups ☐ Large plastic displacements are possible and should be included in the design process for sake of competitiveness of timber structures
- ☐ Underestimation of load carrying capabilities perpendicular to the grain

Future projects:

- ☐ Additional embedment tests with extended specifications (different wood species, elevated temperature, creep, growth irregularities e.g. knots)
- ☐ Validation of numerical model for plastic behavior of dowel groups to be implemented in commercial structural analysis software
- ☐ Specification of design rules for block failure in case of moment loading ☐ Optimization of strategies for the reinforcement of dowel groups