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Introduction

Bone remodeling, a remarkable process taking place throughout the whole life of vertebrates, concentrations due to biochemical factors and changes in the mechanical loading. Thereby, the
is driven by the cellular activity of bone-resorbing osteoclasts, bone-forming osteoblasts, and effects of porosity changes are explicitly taken into account. Mechanical regulation of the
load-sensing osteocytes, and governed by biochemical factors, such as the process is considered by coupling the mathematical systems biology-based model with an
RANKL/RANK/OPG pathway, parathyroid hormone (PTH), and transforming growth factor experimental, multiply validated continuum micromechanics representation of bone [4], and
beta (TGF-B) [I]. Here a mathematical model derived from a previously published modeling a recently developed multiscale poromechanics model [5], based on which the length scale-
strategy [2, 3] is presented, based on which the dynamics of bone remodeling can be accurately specific strain states in the vicinity of the bone remodeling-driving cells can be estimated. The
predicted. We consider the different length scales found in bone by means of a multiscale model is applied for studying the development of the bone composition in the course of

systems biology approach, and follow the evolutions of osteoclast and osteoblast mechanical dis- and overuse, as well as of postmenopausal osteoporosis (PMO).

Materials and Methods

Length scales in bone Model assumptions Mathematical model
* Bone remodeling is considered to take place in the Evolutions of the vascular cell concentrations of osteoblast progenitors (OCP),
vascular pore space, where “teams” of active osteoblasts (OBA) and active osteoclasts (OCA):

osteoblasts and osteoclasts work together
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resulting from the multiscale poromechanics model

Results & Discussion

Simulation of bone disuse (microgravity) Simulation of postmenopausal osteoporosis
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