

R S INSTITUTE FOR MECHANICS OF MATERIALS AND STRUCTURES

A MULTISCALE SYSTEMS BIOLOGY APPROACH FOR COMPUTER SIMULATION-BASED **PREDICTION OF BONE REMODELING**

M.I. Pastrama[†], S. Scheiner[†], P. Pivonka[‡], C. Hellmich[†]

[†] Institute for Mechanics of Materials and Structures, Vienna University of Technology, Austria; [‡] Australian Institute for Musculoskeletal Science, The University of Melbourne, Australia E-mail: maria-ioana.pastrama@tuwien.ac.at

Introduction

Bone remodeling, a remarkable process taking place throughout the whole life of vertebrates, is driven by the cellular activity of bone-resorbing osteoclasts, bone-forming osteoblasts, and load-sensing osteocytes, and governed by biochemical factors, such as the **RANKL/RANK/OPG pathway**, parathyroid hormone (**PTH**), and transforming growth factor beta (**TGF-**β) [1]. Here a mathematical model derived from a previously published modeling strategy [2, 3] is presented, based on which the dynamics of bone remodeling can be accurately predicted. We consider the different length scales found in bone by means of a multiscale systems biology approach, and follow the evolutions of osteoclast and osteoblast mechanical dis- and overuse, as well as of postmenopausal osteoporosis (PMO).

concentrations due to biochemical factors and changes in the mechanical loading. Thereby, the effects of **porosity changes** are explicitly taken into account. Mechanical regulation of the process is considered by coupling the mathematical systems biology-based model with an experimental, multiply validated continuum micromechanics representation of bone [4], and a recently developed multiscale poromechanics model [5], based on which the length scalespecific strain states in the vicinity of the bone remodeling-driving cells can be estimated. The model is applied for studying the development of the bone composition in the course of

Materials and Methods

Length scales in bone

images of long bone at the macroscopic scale [6] II: representative volume element (RVE) of cortical bone microstructure (L >> I >> d [7]) **III:** main mechanisms involved in bone remodeling

Model assumptions

- Bone remodeling is considered to take place in the vascular pore space, where "teams" of osteoblasts and osteoclasts work together
- Cell populations are considered in terms of molar vascular concentrations C_i^{vas} [8]
- Biochemical regulation is mainly realized via the **RANKL/RANK/OPG pathway** and **TGF-**β; the concentrations of these factors are also considered at the level of vascular pores, C_i^{vas}
- Mechanical regulation is evaluated by means of the strain energy density (SED) of the extravascular matrix Ψ_{exvas} ; increased mechanical loading leads to increased osteoblast precursor proliferation [9]
- decreased RANKL-production, downregulation RANKL-RANK binding and, thus, of downregulation of osteoclast differentiation [10]

Mathematical model

Evolutions of the vascular cell concentrations of osteoblast progenitors (OCP), active osteoblasts (OBA) and active osteoclasts (OCA):

 Ψ_{macro}, Ψ_{vas} ...macroscopic and vascular SED, respectively, resulting from the multiscale poromechanics model

 k_{form}^{vas} ...bone formation coefficient

Simulation of bone disuse (microgravity)

Results & Discussion

Mechanical loading is prescribed in terms of the stress tensor of cortical bone:

$$\Sigma_{cort} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \Sigma_{33} \end{bmatrix} \quad \begin{array}{l} \text{normal:} \quad \Sigma_{33} = -30 \text{ MPa} \\ \text{disuse:} \quad \Sigma_{33} = -25 \text{ MPa} \end{array}$$

- The increase in vascular porosity due to disuse reaches a plateau with a constant value $f_{vas} = 0.21$ after approximately 1200 days (Fig. 1), when the cells return their initial concentrations to $C_i^{vas}/C_{i,ini}^{vas} = 1$ (Fig. 2)
- The simulation is in agreement with experiments on astronauts during and after space flight [11]
- The return of f_{vas} to its initial value after disuse is much more rapid when simulated with the vascular scale-related model, compared previous, to macroscopic formulations [2, 3]

2000 days of disuse ($f_{vas,ini} = 0.05$)

Simulation of postmenopausal osteoporosis

- PMO is modeled biochemically, by introducing [12,13]:
 - a disease-related increase of the vascular concentration of RANKL (leading to increased osteoclast concentration and bone resorption)
 - **a** reduction of the mechanoresponsiveness
- The simulated decrease of the bone matrix volume fraction with PMO agrees well with corresponding clinical data [14]

Simulation of bone overuse

- Overuse is simulated by setting $\Sigma_{33} = -35$ MPa
- Compared to previous, macroscopic model formulations, the overuse does not lead to a rapid increase and negative values of the vascular porosity; instead, the increase of f_{vas} over time is slow and never reaches negative values (as shown in the figure)
- The simulation agrees qualitatively with experiments associating long-term sport-specific exercise loading with thicker cortex at certain areas [15]

References

[1] S.Theoleyre et al. (2004). Cytokine Growth F R, 15(6): 457–75. [2] S. Scheiner et al. (2013). Comput Methods Appl Mech Eng, 254: 181-196. [6] S.Weiner and H.D Wagner (1998). Annu Rev Mater Sci, 28: 271-298. [7] A. Zaoui (2002). J Eng Mech-ASCE, 128: 808-816.

[11] L.Vico and and C.Alexandre. J Bone Min Res, 7(S2): 445–447. [12] S. Manolagas (2000). Endocr Rev, 21: 115-137. [13] A.Tomkinson et al. (1998). J Bone Miner Res, 13: p1243-1250. [14] N. Bonnet and S. Ferrari. IBMS BoneKey, 7: 235-248. [15] R. Nikander (2010). Osteoporosis Int, 21:1687–1694.

[3] S. Scheiner et al. (2014). Int J Numer Meth Bio. 30(1):1–27.

[4] C. Hellmich et al. (2008). Ann Biomed Engrg, 36(1): 108–122. [5] S. Scheiner et al. (2015). Submitted to Biomech Model Mechanobiol. [8] V. Lemaire et al. (2004). J Theor Biol, 229: 293-309.

[9] D. Kaspar et al. (2002). J Biomech, 35(7): 873-880.

[10] C. Liu et al. (2010). Bone, 46(5): 1449-1456.

9. Jahrestagung der Deutschen Gesellschaft für Biomechanik, 6. – 8. Mai 2015, Bonn, Deutschland