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In dowel connections, loads can either be transferred directly from timber-to-timber elements, or indirectly via an intermediate steel plate. The latter

ones are so-called steel-to-timber connections, where the loading directions of the single dowels in a dowel group, are prescribed by the

displacement of the quasi-rigid steel plate. In this case, the embedment behavior underlies a prescribed (constrained) displacement boundary

condition. On the contrary, loading in timber-to-timber connections is close to an unconstrained displacement situation.

Due to the inherent, anisotropic mechanical nature of wood, significant differences in the embedment behavior, between loading at different

angles with respect to the grain direction, α, in combination with different displacement boundary conditions, are observed. The latter

two influence parameters are experimentally investigated by means of embedment tests in this study.

• Uniaxial test setup (pendulum)

• Only vertical reaction force

• Vertical and lateral dowel 

displacement

Non-contact deformation measurement system 

based on digital image correlation (DIC)

• Unconstrained: 2 pairs of 5 mpx cameras 

(ISTRA 4D, Dantec Dynamics)

• Constrained: 1 pair of 12 mpx cameras 

(Aramis, GOM)

• Full-hole embedment tests according to EN 383 [1]

• Same materials for both test series – screw reinforced laminated veneer 

lumber (LVL) with parallel veneers and steel dowels of hardened steel

• Dowel diameter d=12 (and 16 mm); LVL specimen width 51 mm

• Climatic conditions: 20°C and 65% RH

• Displacement controlled loading up to at least twice the dowel diameter, 

including two unloading cycles, at seven different load-to-grain angles (α) DIC – ISTRA 4D

1st step: Fit of single slip curves for each 

load-to-grain angle (α), using exponential 

regression function presented by Foschi [3]
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GENERAL PRINCIPLES DEFORMATION MEASUREMENT TECHNIQUE
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DISPLACEMENT 

BOUNDARY 

CONDITION [2]

PARAMETERIZATION

• Biaxial test 

setup

• Vertical and 

lateral reaction 

force

• Only vertical 

dowel 

displacement

CONSTRAINED DISPLACEMENT BOUNDARY CONDITION

Unconstrained loading:

• Nonlinear dowel displacement path

• Change in sign of lateral displacement 

• Lateral dowel displacement up to 9 mm 

(d=12 mm, α=60°)

Constrained loading:

• Almost vertical dowel displacement path

• Small lateral displacements due to 

compliances in the test setup

DISPLACEMENT BEHAVIOR

• Pronounced nonlinear load-displacement 

behavior with high ductility

• Considerable hardening for load-to-grain 

angles larger than 45°

• Higher embedment stresses for loading 

under constrained boundary conditions

• Lateral reaction forces of up to 14 N/mm² 

(d=12mm, α=45°) for unconstrained loading
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Timber-to-timber

Steel-to-timber

DIC – TEST SPECIMEN
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2nd step: Regression of the three coefficients 

from step 1 over α (Hankinson [4]) 3rd step: Application of regression 

function from step 2 on step 1

fh,in,α

kf,α

k0,α

fh,in,0

kf,0

k0,0

fh,in,90

kf,90

k0,90

𝑓ℎ,𝑖𝑛,𝛼 =
𝑓ℎ,𝑖𝑛,0 ∙ 𝑓ℎ,𝑖𝑛,90

𝑓ℎ,𝑖𝑛,0 sin𝑚 𝛼 + 𝑓ℎ,𝑖𝑛,90 cos𝑚 𝛼
𝑘𝑓,𝛼 =

𝑘𝑓,0 ∙ 𝑘𝑓,90

𝑘𝑓,0 sin𝑚 𝛼 + 𝑘𝑓,90 cos𝑚 𝛼
𝑘0,𝛼 =

𝑘0,0 ∙ 𝑘0,90
𝑘0,0 sin𝑚 𝛼 + 𝑘0,90 cos𝑚 𝛼

m


