

A

INSTITUTE FOR MECHANICS OF MATERIALS AND STRUCTURES

THE INFLUENCE OF DISPLACEMENT BOUNDARY CONDITIONS ON THE EMBEDMENT BEHAVIOR OF DOWEL-TYPE FASTENERS

M. Schweigler¹, T. K. Bader², J. Eberhardsteiner¹

¹ Vienna University of Technology, Institute for Mechanics of Materials and Structures

² Linnaeus University Växjö, Department of Building Technology

In dowel connections, loads can either be transferred directly from timber-to-timber elements, or indirectly via an intermediate steel plate. The latter ones are so-called **steel-to-timber** connections, where the loading directions of the single dowels in a dowel group, are prescribed by the displacement of the quasi-rigid steel plate. In this case, the embedment behavior underlies a prescribed (constrained) displacement boundary condition. On the contrary, loading in **timber-to-timber** connections is close to an unconstrained displacement situation.

Due to the inherent, **anisotropic** mechanical nature of wood, significant differences in the embedment behavior, between loading at different **angles with respect to the grain direction**, α , in combination with different **displacement boundary conditions**, are observed. The latter two influence parameters are experimentally investigated by means of embedment tests in this study.

Timber-to-timber

Materials & Methods

GENERAL PRINCIPLES

- Full-hole embedment tests according to EN 383 [1]
- Same materials for both test series screw reinforced laminated veneer lumber (LVL) with parallel veneers and steel dowels of hardened steel
- Dowel diameter d=12 (and 16 mm); LVL specimen width 51 mm
- Climatic conditions: 20°C and 65% RH

UNCONSTRAINED

DISPLACEMENT

CONDITION [2]

• Uniaxial test setup (pendulum)

• Only vertical reaction force

• Vertical and lateral dowel

BOUNDARY

displacement

• Displacement controlled loading up to at least twice the dowel diameter, including two unloading cycles, at seven different load-to-grain angles (α)

pendulum

DEFORMATION MEASUREMENT TECHNIQUE

Non-contact deformation measurement system based on digital image correlation (DIC)

- Unconstrained: 2 pairs of 5 mpx cameras (ISTRA 4D, Dantec Dynamics)
- Constrained: I pair of I2 mpx cameras (Aramis, GOM)

CONSTRAINED DISPLACEMENT BOUNDARY CONDITION

A-A

 Biaxial test setup
Vertical and lateral reaction force
Only vertical dowel

displacement

Results & Conclusions

A-A

loading ,

device

dowel

d=12 mm

support

device

l=16 mm

reinforcement

screws

DISPLACEMENT BEHAVIOR

Î	<i>d</i> =12 mm	<i>d</i> =12 mm	<i>d</i> =12 mm	d=12 mm	d=12 mm
	$ a=0^{\circ} $		$= a=45^{\circ}$	$\alpha = 60^{\circ}$	$\alpha = 90^{\circ}$
				ĭ∣ : : ¥ : :	grain direction

- Nonlinear dowel displacement path
- Change in sign of lateral displacement
- Lateral dowel displacement up to 9 mm $(d=12 \text{ mm}, \alpha=60^{\circ})$

Constrained loading:

- Almost vertical dowel displacement path
- Small lateral displacements due to compliances in the test setup

dowel displacemer 5 unconstrained 10 10 10 10 unconstrained constrained 15 15 15 15 ng tin unconstrained unconstrained Vertical 20 20 20 20 20 constrained constrained constrained unconstrained constrained 25 10 15 -15 10 15 -15 -10 -5 -15 -15 -10 -5 -10 -5 10 -15 -10 -5 10 -10 -5 5 10 15 5 -5 5 15 Horizontal dowel displacement (mm) Horizontal dowel displacement (mm) Horizontal dowel displacement (mm) Horizontal dowel displacement (mm) Horizontal dowel displacement (mm)

LOAD-DISPLACEMENT BEHAVIOR

- Pronounced nonlinear load-displacement behavior with high ductility
- Considerable hardening for load-to-grain angles larger than 45°
- Higher embedment stresses for loading under constrained boundary conditions
- Lateral reaction forces of up to 14 N/mm² (d=12mm, $\alpha=45^{\circ}$) for unconstrained loading

References:

 EN 383, 2007, Austrian Standards Institute.
Schweigler et al., 2016, submitted to Construction and Building Materials.
Foschi, 1974, Wood Science.
Hankinson, 1921, Air Force Information Circular.

Acknowledgements:

The financial support to Michael Schweigler, through a Short Term Scientific Mission of COST Action FP1402 (Basis of Structural Timber Design

33rd DANUBIA-ADRIA SYMPOSIUM on Advances in Experimental Mechanics, September 2016, Portorož, Slovenia