THE INFLUENCE OF DISPLACEMENT BOUNDARY CONDITIONS ON THE EMBEDMENT BEHAVIOR OF DOWEL-TYPE FASTENERS

M. Schweigler', T. K. Bader², J. Eberhardsteiner'
' Vienna University of Technology, Institute for Mechanics of Materials and Structures
${ }^{2}$ Linnaeus University Växjo, Department of Building Technology

Motivation

In dowel connections, loads can either be transferred directly from timber-to-timber elements, or indirectly via an intermediate steel plate. The latter ones are so-called steel-to-timber connections, where the loading directions of the single dowels in a dowel group, are prescribed by the displacement of the quasi-rigid steel plate. In this case, the embedment behavior underlies a prescribed (constrained) displacement boundary condition. On the contrary, loading in timber-to-timber connections is close to an unconstrained displacement situation.
Due to the inherent, anisotropic mechanical nature of wood, significant differences in the embedment behavior, between loading at different angles with respect to the grain direction, α, in combination with different displacement boundary conditions, are observed. The latter two influence parameters are experimentally investigated by means of embedment tests in this study.

Materials \& Methods

GENERAL PRINCIPLES

Full-hole embedment tests according to EN 383 [I]
Same materials for both test series - screw reinforced laminated veneer lumber (LVL) with parallel veneers and steel dowels of hardened steel Dowel diameter $d=12$ (and 16 mm); LVL specimen width 51 mm
Climatic conditions: $20^{\circ} \mathrm{C}$ and $65 \% \mathrm{RH}$
Displacement controlled loading up to at least twice the dowel diameter, including two unloading cycles, at seven different load-to-grain angles (α)

DEFORMATION MEASUREMENT TECHNIQUE

Non-contact deformation measurement system based on digital image correlation (DIC)

Unconstrained: 2 pairs of 5 mpx cameras (ISTRA 4D, Dantec Dynamics) Constrained: I pair of 12 mpx cameras (Aramis, GOM)

UNCONSTRAINED DISPLACEMENT BOUNDARY CONDITION [2]

- Uniaxial test setup (pendulum) Only vertical reaction force Vertical and lateral dowel displacement

CONSTRAINED DISPLACEMENT BOUNDARY CONDITION

- Biaxial test
setup
Vertical and lateral reaction
force
Only vertical
dowel
displacement

Results \& Conclusions

DISPLACEMENT BEHAVIOR

Unconstrained loading:

- Nonlinear dowel displacement path
- Change in sign of lateral displacement Lateral dowel displacement up to 9 mm $\left(d=12 \mathrm{~mm}, \alpha=60^{\circ}\right)$
Constrained loading:
Almost vertical dowel displacement path Small lateral displacements due to
compliances in the test setup

LOAD-DISPLACEMENT
 BEHAVIOR

Pronounced nonlinear load-displacement behavior with high ductility
Considerable hardening for load-to-grain angles larger than 45°
Higher embedment stresses for loading under constrained boundary conditions Lateral reaction forces of up to $14 \mathrm{~N} / \mathrm{mm}^{2}$

Dowel displacement (mm)

Dowel displacement (mm)

Dowel displacement (mm)

