

R **EMBEDDING BEHAVIOUR** A **OF DOWEL TYPE CONNECTORS IN WOOD INTERPRETATION OF EXPERIMENTAL FINDINGS**

G. Hochreiner, M. Schweigler, J. Eberhardsteiner

MOTIVATION

Focus of interest:

NUBIA

- **Q** Reasons for linear course of hardening
- □ Knowledge about elastic limit and cracking mechanisms
- □ Size of affected area and the characteristic of the local strain field

Experimental assessment:

□ Fields of displacements at different load steps >> "history" of crack formation Due to no splintering at the surface assessment of results from the mid-plane by cutting of the specimen

TEST SETUP AND GLOBAL SYSTEM RESPONSE

Embedment test-setup

- **Embedment tests according to** EN 383:2007 (Fig. a) with extensions:
 - ✓ displacements >> 5mm
 - ✓ unconstrained
 - ✓ constrained (load-direction = displacement-direction)
- □ Test samples were prevented from premature splitting by reinforcements (full threaded screws). No contact to the dowel
- Clear wood substituted by LVL (Kerto-S) □ 51mm for both M12 resp. M16 to reduce the impact of lateral splintering

Global system response

Typical load displacement curves:

- □ Smooth slip curve every time
- Decreasing elastic stiffness with increasing load-to-grain angle
- □ Increasing strength with increasing load-to-grain angle and relative dowel displacement ($\approx 2x \Phi$)
- Approximately linear course of hardening
- **Lateral displacements** perpendicular to the load direction following the lowest embedding stiffness as impact of the orthotropic material profile (Fig. b)

VISUAL INSPECTION AND INTERPRETATION

Changes of the wooden texture

Beneath the dowel: □ Inferior areas of *crushed* wood-cells parallel to the grain and

Continuous shear and tensile failure at the zone of sharp redirection of the flow of fibers (usually no bending or tensile failure)

History of crack formation Loading at 0°: 8mm, 16mm, 26mm

Loading at 30°: 8mm, 16mm, 26mm

Interpretation of the loading mechanism

Loading at 0° (parallel to the grain) • ONLY very first load transfer by compression parallel to the grain **Consequent symmetrical flow of fibers** around the dowel head (fluid dynamics) **Lateral compression and sliding friction** □ Impact of gapping beneath the dowel

Loading at 30°

- □ Single or double-sided tensile failure parallel to the grain and gapping perpendicular to the grain
- Densification of wood perpendicular to the grain with strains up to at least 50%
- **Delamination of the outer** veneer layers is observable for larger dowel displacements, reducing the effective length for embedment

Loading at 60°: 8mm, 16mm, 26mm

Loading at 90°: 8mm, 16mm, 26mm

Note: Constrained loading, Φ-12mm

- initial loading perpendicular to the grain **Lateral displacement due to single-side** formation of a layer of densified wood
- **□** Rope effect and single sided tensile failure due to bending and wrapping of fibers Loading at 60°
- **□** Fictitious increase of the dowel diameter by increased bending and wrapping of fibers around the dowel head
- □ Heavy lateral displacements in the case of unconstrained test configuration

Loading at 90°

- **□** Fictitious increase of the dowel diameter by a load distribution beam $(l \approx 4x \Phi)$
- Double sided tensile failure due to the rope effect, little asymmetry due to inhomogeneities

CHALLENGE FOR NUMERICAL MODELLING

Features for structural assessment:

- Large displacements, inducing rope effect and tensile failure parallel to the fibre
- □ High strains, typical for compression perpendicular to the grain
- □ Superposition of several cracking mechanisms (tensile and shear failure)
- □ Friction between singles layers
- **Extensions:** Impact of moisture, temperature and creep.
 - Variation of orthotropic material profiles due to growth irregularities like knots...,

Transfer to practice:

□ Strategies for numerical modelling:

- ✓ Lattice model: uncomplicated implementation
- ✓ 2D-element: necessary upgrade for high strain formulation
- ✓ 3D-model: effective length of embedment
- □ Model validation also by intermediate load stages

Generation of input data for simplified structural sub-modelling

M. Schweigler, T.K. Bader, G. Hochreiner, G. Unger, J. Eberhardsteiner, Load-to-grain angle dependence of the embedment behavior of dowel-type fasteners in laminated veneer lumber, submitted to Construction and Building Materials (2016)

