
1.  Introduction
Every year, floods cause important social and economic losses and the trend is increasing. Tellman et al. (2021) 
show that worldwide the population exposed to floods has increased by 20%–24% from 2000 to 2015, thereby 
highlighting the need for accurate and timely forecasts of water depth, discharge, flood wave propagation, and 
flood extent to help reducing or preventing the adverse effects of floods. Flood forecasting models are commonly 
used to generate short-to mid-term predictions. However, the accuracy of such predictions can be affected by 
multiple factors contributing to the overall model uncertainty. This challenge represents one of the major unsolved 
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scientific problems (Blöschl et al., 2019). The assimilation of independent observations, such as field gauging 
data or satellite observations, can help reducing these uncertainties (Liu & Gupta, 2007). The last decade has seen 
a substantial increase in the number of Earth Observation satellites providing a synoptic overview of the flooding 
situation at increasingly high frequency. Despite possible errors in the interpretation of the synthetic aperture 
radar (SAR) data (Chen et al., 2018; Grimaldi et al., 2020; Zhao et al., 2021) that should be masked out before any 
use of these data, frequent observations of flood extent and water depth represent substantial added value, espe-
cially over poorly gauged or ungauged catchments. For example, SAR data are relevant for observing inundation 
extent because of their day-night and quasi all-weather capability. As a consequence, several methods enabling 
an effective assimilation of such observations (e.g., Andreadis & Schumann, 2014; Garcia-Pintado et al., 2015; 
Hostache et al., 2018; Revilla-Romero et al., 2016) for improving the predictive capability of flood models have 
been introduced and investigated in recent years. The most widely used methods are based on the Kalman Filter 
and its variants (e.g., Annis et al., 2021; Revilla-Romero et al., 2016; Wongchuig-Correa et al., 2020) and they 
assume that the distributions of observation and model errors are Gaussian, which is not often the case when 
dealing with real word data (van Leeuwen et al., 2019).

Particle filters (PFs) have gained attention within the research community because of their ability to handle nonlin-
ear and non-Gaussian systems (van Leeuwen et al., 2019). PFs approximate the prior and the posterior probability 
distribution functions (PDFs) with an ensemble of model states also called particles. An equal weight is assigned 
to each particle a priori. Next, as a result of the assimilation, weights are updated to represent the posterior 
probability given the observations. The principal limitation of PFs is the difficulty to deal with high-dimensional 
systems. The weights may vary significantly across particles and in the ultimate case only one particle will have a 
weight close to unity while the other particles will have negligible weight. As a result, the ensemble may collapse. 
This well-known issue in PFs is often referred to as degeneracy. Degeneracy could lead to an erroneous approxi-
mation of the posterior distribution (García-Pintado et al., 2013) and a sub-optimal use of the assimilation filter. 
Resampling methods (e.g., Gordon et al., 1993) have been used to prevent the collapse of  the ensemble: particles 
with significant weights are replicated and non-significant particles are discarded. Even though resampling is 
powerful in reducing degeneracy, it often comes with a sample impoverishment and a poor representation of the 
actual uncertainty of the system (Moradkhani et al., 2012). After few iterations, replicated particles will hardly 
diversify and particles will again collapse into a single or few particles. According to Snyder et al. (2008), the 
number of particles should grow exponentially with the dimension of the system, otherwise, the PF may suffer 
from degeneracy. Of course, a higher number of particles implies an increased computational cost which may 
hamper the use of DA in near real-time application. As a consequence, it is important to minimize the weight 
variance so that each particle keeps a significant weight.

Di Mauro et  al.  (2021) and Hostache et  al.  (2018) recently developed, following a similar previous work by 
Giustarini et al. (2011), a data assimilation (DA) framework based on Sequential Importance Sampling (SIS), a 
variant of PFs that enables an efficient assimilation of SAR data into a hydrodynamic model. In their experiment, 
the rainfall forcing and the SAR data are assumed to represent the only sources of uncertainty. While Di Mauro 
et al. (2021) showed that the SIS method provides good results when the assumptions are indeed satisfied, they 
also highlight the need for a method to mitigate degeneracy and sample impoverishment. The assimilation via 
an SIS tends to degenerate with only a few particles getting significant weights as a result of the assimilation. A 
preliminary attempt to mitigate the degeneracy consisted in using a tempering coefficient for the inflation of the 
posterior probability. The likelihood was raised to the power of a coefficient whose value enables a substantial 
increase of the likelihood variance. However, using this coefficient to inflate the likelihood only partially solved 
the degeneracy issue, and sometimes at the cost of a decrease in prediction accuracy.

To mitigate the mentioned PF-related issues, the following approaches have been introduced in the literature:

1.	 �Using a one-step proposal density to steer particles in such a way that they obtain similar weights (Doucet 
et al., 2001; Van Leeuwen, 2009);

2.	 �Moving the particles from the prior to the posterior by applying a smooth iterative transition process using 
model transitional densities (Beskos et al., 2014).

3.	 �Using particles filters within Monte-Carlo Markov Chains (Andrieu et al., 2010)

These methodologies are exact in the limit of an infinite ensemble size. Many approximate algorithms exist, and 
the following list provides relevant examples of applications in hydrological sciences:
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1.	 �Localizing PFs, in which observations are only allowed to influence nearby elements of the state vector 
(Reich, 2013; Van Leeuwen, 2009);

2.	 �Bringing in approximate elements of ensemble Kalman filters into the PF (Frei & Kunsch, 2013; Potthast 
et al., 2019);

3.	 �Using approximate Markov Chain Monte Carlo (MCMC) steps within the PF proposal step (PF-MCMC; 
Moradkhani et al., 2012);

4.	 �Combining the PF with metaheuristic-algorithms from Computer Science, such as genetic algorithm (GA; 
Kwok et al., 2005; Park et al., 2010), particle swarm optimization (Li et al., 2005; Wang et al., 2006), and the 
immune genetic algorithm (Han et al., 2011);

5.	 �Combining the MCMC with GA algorithms and use it within the importance sampling step of the PF-MCMC, 
known as Evolutionary Particle Filter with Markov Chain Monte Carlo (EPFM; Abbaszadeh et al., 2018);

6.	 �Using 4DVar as an extra proposal density in an EPFM, known as hybrid ensemble and variational DA frame-
work for environmental systems method (HEAVEN; Abbaszadeh et al., 2019).

The evolutional swarm-like PFs contain several steps and assumptions for mutation and cross-over without guar-
anteeing convergence to the full posterior PDF in the limit of an infinite ensemble size. Less significant approxi-
mations are needed in the Evolutionary PF-MCMC (EPFM) method described in Abbaszadeh et al. (2018) where 
GA-MCMC is used to define the importance sampling step. EPFM outperforms the PF-MCMC providing more 
accurate and reliable results and overcomes the limitations of the recent standard PF-GA algorithm where param-
eters of crossover and mutation steps need to be tuned. The EPFM method uses crossover and mutation step to 
generate new proposal model states. The crossover step consists in a linear combination of parent particles. The 
mutation process is carried out to increase the diversity among the particles. Afterward, the proposal particles are 
further refined with the MCMC approach. A Gaussian distribution of the proposal state is assumed to calculate 
metropolis acceptance ratio in the MCMC step. The HEAVEN (Abbaszadeh et al., 2019) integrates the EPFM 
algorithm and the 4D-VAR to also account for model structure uncertainty other than model parameters and input 
uncertainties. Abbaszadeh et al. (2019) show that HEAVEN outperforms EPFM and better simulates streamflow 
in high flow regimes.

In this study, we adopt and evaluate an enhanced PF following the results of the previous studies by Di Mauro 
et al. (2021) and Hostache et al. (2018). The DA approach, hereafter called tempered particle filter (TPF), applies 
tempering coefficients to inflate the likelihood within an iterative process so that the Bayes' formula is respected 
(Beskos et al., 2014). The method is based on the method first proposed by R. M. Neal (1996), combined with 
ideas from Herbst and Schorfheide (2019). The iterative assimilation approach is based on successive Sequential 
Importance Resamplings (SIRs) and particle mutations (Abbaszadeh et al., 2018; Han et al., 2011; Li et al., 2005; 
Moradkhani et al., 2005). The mutations enable the ensemble to regain diversity after each resampling step in 
each iteration and are based on a Metropolis Hasting (MH) algorithm. We hypothesize that the proposed DA 
methodology enables the mitigation of some PF limitations, sample degeneracy, and sample impoverishment, 
while preserving the assimilation performances in terms of flood extent, discharge, and water level simulations.

In this study, we also further investigate additional benefits that come from this new approach. According to 
Dasgupta et al. (2021), degeneracy plays a crucial role in the persistence of the assimilation benefits over several 
time steps. Therefore the TPF approach could also help with improving the persistence of the assimilation bene-
fits. Moreover, DA algorithms often assume that the observations as well as the model predictions are unbiased. 
Many authors pointed out the importance of bias removal before the DA, but it is not a straightforward procedure, 
especially in model forecasts (De Lannoy et al., 2007). Bias can depend on the model structure or parameters, on 
the initial conditions, or on forcing errors (especially when the forcings are derived from a forecast model, as in 
this study). In this context, we hypothesize that the new approach based on a TPF enables the reduction of bias 
in the model predictions and we test this hypothesis. To enable a meaningful evaluation and to verify whether the 
new approach outperforms the previous one, the TPF performance is compared to that of the SIS.

We carry out twin experiments based on a synthetically generated data set with controlled uncertainty. The SAR 
observations are synthetically generated from the simulated flood extent maps and assimilated into a coupled 
hydrologic-hydraulic model. Two different background ensembles, that is, Open Loops (OLs), are drawn and 
used: in the first case, the ensemble encompasses the synthetic truth most of the time, in the second case the 
ensemble is most of the time outside the ensemble range.
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The objectives of this study are therefore (a) to evaluate whether a principled method, in which the only approx-
imation is the finite ensemble size, can mitigate degeneracy, (b) to evaluate whether the proposed framework 
improves the prediction accuracy and increases the persistence of the assimilation benefits, (c) to evaluate the 
efficiency of the method in reducing forecast bias. The paper is structured as follows: Section 2 describes the 
materials and methods, Section 3 showcases and discusses the results and three draws the conclusions of the  study.

2.  Materials and Methods
The first part of this section presents the structure of the flood forecasting system. The second part describes the 
proposed assimilation framework based on a TPF. The experimental design, case study, and the performance 
metrics used within this experiment are introduced in the last part.

2.1.  The Flood Forecasting Model

We use the ERA5 data set (Hersbach et al., 2019) to derive the forcing of the flood forecasting system. Rainfall 
and 2 m air temperature at a spatial resolution of approximately 25 km and a temporal resolution of 1 hr are 
used as inputs to the flood forecasting system. A conceptual hydrological modeling framework (SUPERFLEX) 
coupled with a hydraulic model (LISFLOOD-FP) approach has been adopted: the run-off estimated with the 
hydrological model is used as input to the shallow water hydraulic model. In this study, the rainfall-runoff model 
SUPERFLEX (Fenicia et al., 2011) is a lumped conceptual model. The state variables and the parameters used 
are listed in Figure 1. The conceptualization model is composed of three reservoirs: an unsaturated soil reservoir 
with a storage SUR representing the root zone, a fast reservoir with storage SFR representing the fast responding 
components (e.g., the riparian zone and preferential flow paths), and a slow reservoir with storage SSR representing 
slow responding components (e.g., deep groundwater). A lag function is used at the outlet of the unsaturated soil 
reservoir to enable a delayed hydrological response of the basin under intense rainfall conditions. The hydraulic 

Figure 1.  Scheme of the SUPERFLEX model used in this study. The hydrological model is based on three reservoirs: an unsaturated soil reservoir (SUR), a fast run-off 
reservoir (SFR), and a slow run-off reservoir (SSR). The discharge deriving from the three reservoirs are: QUR, QFR, QSR. A triangular lag function with a base length equal 
to 2 ⋅ t rise is applied at the outflow of the unsaturated soil reservoir. EU and P represent the potential evaporation and rainfall respectively.
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model is based on LISFLOOD-FP (Bates & Roo, 2000; J. Neal et al., 2012) and simulates flood extent, water 
level, and discharge within the hydraulic model domain. The roughness coefficient and the bathymetry of the 
hydraulic model have been previously calibrated (Wood et al., 2016).

ERA5 rainfall time series are used to generate the synthetic truth and are also perturbed to generate an OL 
simulations consisting in 32 particles. These 32 particles are then used as input to the flood forecasting model to 
obtain the ensemble of flood extent maps. We adopt the method proposed and detailed in Di Mauro et al. (2021) 
to generate synthetic observations from model results. The flood extent map of the synthetic truth together with 
a real SAR observation are used to compute probabilistic flood maps (PFMs) where each pixel represents the 
probability to be flooded given the recorded backscatter values (Giustarini et al., 2016). During the analysis (i.e., 
assimilation) step, the generated PFMs are assimilated into the ensemble of wet-dry maps via the TPF to obtain 
the updated particles. The following section describes the DA framework.

2.2.  Data Assimilation Framework

PFs are based on Bayes' theorem:

𝑝𝑝
(
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=
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The observation y at time k, which is the probability to be flooded given the SAR backscatter value, is combined 
with the forecasts of the numerical model x at time k. The posterior probability p(x k∣y k) is computed by multiply-
ing the prior probability density function p(x k), which is the probability of the model before any observation is 
taken into account, with the likelihood p(y k∣x k) that is the probability density that the model state x n produces the 
observation. In PFs, the prior PDF is drawn from an ensemble of model states of size N called particles. Equa-
tion 2 represents the computation of the prior probability:
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where δ is the Dirac delta function. Inserting Equation 2 into Equation 1 leads to the posterior probability formula:
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The weights Wn, hereafter called global weights, were computed by the multiplication of the pixel-based local 
weights 𝐴𝐴 𝐴𝐴𝑛𝑛

𝑖𝑖
 , according to the formula by Hostache et al. (2018), assuming that observation errors are independent 

across space. The set of particles tends to degenerate: after the assimilation, the number of particles with signif-
icant weight is reduced to a few and the posterior distribution is poorly approximated. Di Mauro et al. (2021) 
made a first attempt to reduce degeneracy, within this DA framework, using a tempering coefficient γ according 
to the formula:
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This technical solution enables inflating the posterior variance so that several particles keep significant weight. 
However, it is an approximate solution as not all information from the observations is taken into account.

In the current study, we aim to further improve the application of the likelihood tempering. The proposed method 
relies on the factorization of the likelihood through an iterative approach according to the following formula:
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where 0 < γs < 1 for each iteration, s and 𝐴𝐴
∑𝑆𝑆

𝑠𝑠=1
𝛾𝛾𝑠𝑠 = 1 .
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This factorization enables application of the Bayes' theorem iteratively so that the transition from the prior to the 
posterior probability is smoothly processed. The iterative methodology leads to the following equation after one 
iteration:
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At each iteration s, the tempering coefficient γs enables inflation of the likelihood variance and reduction of the 
weight variance, therefore reducing degeneracy. The exponent γs allows to keep a substantial number of particles 
with significant weights. At each iteration s, the γs value is increased and represents the solution to Equation 9:
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where the ensemble inefficiency ratio (InEff) is given by Equation 10:
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and a target value r* of the InEff is previously defined. Iterations are stopped when InEff(1)  <  r* and 
𝐴𝐴 𝐴𝐴𝑆𝑆 = 1 −

∑𝑆𝑆−1

𝑠𝑠=1
𝛾𝛾𝑠𝑠 , where S is the total number of iterations.

After each iteration s, the particles with high weights are resampled using the SIR algorithm proposed by Gordon 
et al. (1993). Particles are replicated proportionally with their weights: those with an associated low importance 
weight are replaced with replicas of those having higher weight. After resampling, particles are equally weighted.

Next, a mutation is applied to the fast run-off reservoir level (SFR), a variable of the hydrological model, 24 hr 
prior to the assimilation to regain diversity within the particle ensemble and the mutated value is used as initial 
condition for a subsequent model simulation over the 24 hr preceding the assimilation time. Mutating the hydro-
logical state variable 24 hr prior to the assimilation time and carrying out the related model simulations is done in 
order to update the hydrological and hydraulic models more consistently since the water depths simulated by the 
hydraulic model at a certain time are the result not only of the current but also of the past upstream streamflow 
conditions.

This mutation is carried out using an MH algorithm, based on a random perturbation via the steps of MCMC 
methods. Since the model is deterministic a mutation of the state 24 hr back in time leads to a corresponding 
unique mutation at present time. This allows us to write 𝐴𝐴 𝐴𝐴

(
𝑦𝑦𝑘𝑘|𝑥𝑥𝑘𝑘

𝑗𝑗

)
= 𝑝𝑝

(
𝑦𝑦𝑘𝑘|𝑥𝑥𝑘𝑘−1

𝑗𝑗

)
 for each particle j. Hence, the 

MH is based on two steps: first, draw a new particle from a proposal density as 𝐴𝐴 𝐴𝐴∗
∼ 𝑞𝑞

(
𝑥𝑥|𝑥𝑥𝑘𝑘−1

𝑗𝑗

)
 , and then calculate 

the MH acceptance ratio:

𝛼𝛼 = min

{
1,

(
𝑝𝑝
(
𝑦𝑦𝑘𝑘|𝑥𝑥∗

)
𝑝𝑝 (𝑥𝑥∗

)

𝑝𝑝
(
𝑦𝑦𝑘𝑘|𝑥𝑥𝑘𝑘−1

𝑗𝑗

)
𝑝𝑝
(
𝑥𝑥𝑘𝑘−1
𝑗𝑗

)
𝑞𝑞
(
𝑥𝑥𝑘𝑘−1
𝑗𝑗

|𝑥𝑥∗
)

𝑞𝑞
(
𝑥𝑥∗|𝑥𝑥𝑘𝑘−1

𝑗𝑗

)

)}

� (11)

Many possibilities are available for choosing the proposal density q(). As detailed below, we choose it symmetric 
in order to cancel the proposal density ratio. Furthermore, since the prior 24 hr back is much wider than the like-
lihood, we can safely ignore the ratio 𝐴𝐴 𝐴𝐴 (𝑥𝑥∗

) ∕𝑝𝑝
(
𝑥𝑥𝑘𝑘−1
𝑗𝑗

)
 , and in this case the acceptance ratio becomes:
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𝛼𝛼 = min

{
1,

(
𝑝𝑝
(
𝑦𝑦𝑘𝑘|𝑥𝑥∗

)

𝑝𝑝
(
𝑦𝑦𝑘𝑘|𝑥𝑥𝑘𝑘

𝑗𝑗

)

)}

� (12)

where 𝐴𝐴 𝐴𝐴𝑘𝑘
𝑗𝑗
 represents the particles with high weight that have been resampled. A random variable u ∼ U[0, 1] is 

drawn and the mutated particle is accepted if α > u, otherwise we keep the particle as before its mutation.

As proposed by Herbst and Schorfheide  (2019), the mutation is carried out based on a proposed innovation 
𝐴𝐴 𝐴𝐴

(
𝑥𝑥∗|𝑥𝑥𝑘𝑘−1

)
= 𝑁𝑁

(
𝑥𝑥𝑘𝑘−1, 𝑐𝑐2𝑠𝑠 ⋅ 𝜎𝜎

2
)
 , with cs being a scaling factor given by the following equation:

𝑐𝑐𝑠𝑠 = 𝑐𝑐𝑠𝑠−1

(
0.95 + 0.10 ⋅

𝑒𝑒20⋅(𝛼𝛼−0.4)

1 + 𝑒𝑒20⋅(𝛼𝛼−0.4)

)
� (13)

cs at the first iteration is set to 0.2. The mutation step is repeated for l = 1, .., N MH. In our study N MH = 2.

In detail, the method is structured according to the following time steps (Figure 2):

1.	 �Ensemble forcing are used as input to the flood forecasting model;
2.	 �The hydrodynamic simulations are carried out over the 24 hr prior to the assimilation.
3.	 �Calculate p(y|xi) for each particle i and find γ1 such that InEff(1) ≥ r*.
4.	 �Particles are resampled using the tempered weights. The particles after resampling that are duplicates of 

particles with high weights are perturbed at time ta-24 hr.
5.	 �New hydrodynamic simulations with the mutated levels of the SFR are carried out during the 24 hr prior to 

the assimilation.
6.	 �The likelihood of the mutated particles pmu(y∣x) is compared to the likelihood of the resampled particles 

pre(y∣x).
7.	 �The resampled particles are replaced by the mutated particles if the ratio of the two is larger than a value 

randomly taken from the interval [0, 1].

Figure 2.  Flow chart of the data assimilation framework where synthetic probabilistic flood maps are generated from flood extents, derived from a truth run, and 
assimilated within the same flood forecasting model. The flood forecasting model is represented with a gray rectangle, mathematical operations with a white rectangle, 
state variables, input, and observations with a blue ellipse.
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8.	 �The mutation step is repeated twice.
9.	 �The iteration with a new tempering coefficient is realized.

10.	 �The entire process is repeated until the sum of the tempering coefficients is equal to unity.

2.3.  Experimental Design, Case Study, and Performance Metrics

The study area is the lower river Severn located in the United Kingdom (Figure 3, on the left). To analyze the 
filter performances at different assimilation times, SAR images have been synthetically generated (see Di Mauro 
et al., 2021) every 24 hr from 19 July 00:00 to 28 July 00:00 (Figure 3, on the right) and the 10 corresponding 
independent assimilations are carried out and evaluated.

The flood event has been simulated using the rainfall and temperature (ERA-5 data set) time series corresponding 
to the July 2007 event as input data to the flood forecasting system.

Further details concerning the hydrological and hydraulic model set-up as well as the study area of the synthetic 
experiment, are provided in our previous study (Di Mauro et al., 2021). In this study, the ensemble contains 32 
particles. The proposed TPF is characterized by a particle mutation at each iteration. The mutation step could have 
a key-role, especially when the ensemble is biased with respect to the observations. On the one hand, in the SIS 
case, the weighted mean (also called expectation) is based on the initial particles of the ensemble meaning that if 
the truth falls outside the ensemble range the expectation cannot reach the synthetic truth. On the other hand, in 
the TPF case, the particles can mutate and move outside the initial ensemble range. This way the expectation can 
potentially reach the synthetic truth. For evaluating the capability of the TPF to compensate for bias within the 
ensemble, two different cases are investigated. The difference between the OL and the synthetic truth (O) rainfall 
time series averaged over the flood event period (K) represents the mean bias error (MBE, Equation 14) and it is 
used to estimate the bias. For a “markedly” biased case MBE is 0.92 𝐴𝐴

𝑚𝑚𝑚𝑚

ℎ
 while for a “limited” bias case the MBE 

is 0.14 𝐴𝐴
𝑚𝑚𝑚𝑚

ℎ
 , meaning that the error of the markedly biased case is 6.56 times larger than for the other case.

��� = 1
�

�
∑

�=1

(��� − ��)� (14)

Figure 3.  Study area of the synthetic experiment (left). Black dots correspond to the points where evaluation of the data 
assimilation performances is carried out (“Severn at Bewdley” and “Severn at Saxons Lode”). Ensemble time series 
of discharge in Saxons Lode and assimilation times (right). Gray lines correspond to the Open Loop (OL), the red line 
corresponds to the synthetic truth, the green line corresponds to the mean of the OL. The dashed lines correspond to the 
different assimilation time steps performed independently every 24 hr from 19 July 00:00 to 28 July 00:00.
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In the limited case, the synthetic truth is most of the time within the ensemble range; in the other case the ensem-
ble is conspicuously biased and the synthetic truth falls outside the ensemble range most of the time. The assim-
ilation steps are performed at the same time for both cases and the same observations are used.

Results are analyzed according to different spatial (global and local) and temporal scales (at the assimilation time 
and for the subsequent time steps). The filter performances are evaluated in terms of predicted flood extent and 
water depth maps, as well as local discharge and water levels time series. The performance metrics are assessed 
by comparing the results of the TPF with those of the OL. Moreover, the TPF is compared with the SIS method 
applied in our previous study Di Mauro et al. (2021). The local evaluation of the prediction accuracy of water 
levels and discharge is performed by comparing the simulated discharge and water level time series with respect 
to the synthetic truth.

The following performance metrics are used:

1.	 �Confusion matrices: a matrix providing the number of false negatives (under-prediction) and false positives 
(over-prediction), together with correct positives and negatives;

2.	 �Contingency maps: maps comparing the simulated flood map with the synthetic truth map;
3.	 �Critical success index (CSI): a metric that evaluates the accuracy of the flood map predictions and is defined 

as the ratio between the number of pixels correctly predicted as flooded over the sum of predicted flooded 
pixels (correct positives, false positives, and false negatives). It ranges from 0, complete disagreement, to 1, 
perfect match;

4.	 �Root mean square error (RMSE): it is given by the square root of the mean of the squares of the deviations of 
the predicted water levels against the synthetic truth over the hydraulic model domain. It evaluates the predic-
tion errors of a state variable, in our case the water levels.

5.	 �95% Exceedance Ratio (ER95): it measures the reliability of the ensemble prediction quantiles and it is given 
by the formula: (Nexceedence/T) ⋅ 100, where Nexceedence is the number of times during the total simulation T where 
observations fall outside the 95% predictive bounds. The ideal ensemble should fall outside the 95% predictive 
bounds only the 5% of the time (Moradkhani et al., 2006).

6.	 �Normalized RMSE ratio (NRR): it is a normalized measure of the ensemble dispersion. It is defined as the 
ratio of the time-averaged RMSE of the ensemble mean to the time-averaged RMSE of the single members of 
the ensemble over the value 𝐴𝐴

√
(𝑁𝑁 + 1)∕2𝑁𝑁  and it should be equal to one. NRR > 1 indicates an insufficient 

spread, while NRR < 1 indicates the opposite (Anderson, 2001; Moradkhani et al., 2005).

3.  Results and Discussions
3.1.  TPF-Based Assimilation Performances

3.1.1.  Flood Extent Map Predictions

The flood extent maps are evaluated via different performance metrics: the contingency maps, the CSI and the 
confusion matrix. The contingency map is derived from the comparison between the simulated flood extent map 
(i.e., expectation) and the validation map which is derived from the synthetic truth simulation in our case. The 
contingency maps, corresponding to three different assimilation time steps (rising limb, peak, falling limb), are 
shown in Figure 4.

Yellow and red pixels correspond to errors of under-prediction (when the model wrongly predicts the pixels 
as not-flooded) and over-prediction (the opposite case), respectively. In Figure 4, the reported images for each 
assimilation time correspond to the OL (on the left) and the TPF analysis (on the right). Over-prediction repre-
sents the most frequent type of error and it is significantly reduced as a result of the TPF-based assimilation.

The decrease of wrongly predicted pixels is quantified in the confusion matrix reported in Table 1. In line with 
Figure 4, after any of the three assimilation time steps, the number of over-prediction errors is reduced by 90% 
or more, while the number of under-predicted pixels increases in the upstream part of the river. However, they 
represent only 0.3% or less of the total number of flooded pixels.

Time series of CSI are also used to evaluate the TPF performances (Figure  5). They allow to evaluate the 
predicted flood extent maps not only at the assimilation time step (as for the contingency maps and the confusion 
matrices) but also for subsequent time steps. Time series of CSI provide an assessment of the persistence of the 
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improvements over longer lead times after the assimilation. Figure 5 shows the time series of CSI before (black 
line) and after (blue line) the assimilation of SAR images taken during the rising limb (23 July 00:00), at the peak 
(24 July 00:00) and during the falling limb (25 July 00:00) of the flood event.

This figure shows an improvement of the analysis compared to the OL not only at the assimilation time but also 
over subsequent time steps: on average, CSI improvements persist for more than 3 days after the TPF application.

3.1.2.  Water Level and Discharge Predictions

To further investigate the TPF assimilation performance we evaluate water level and discharge predictions. This 
evaluation is carried out first at specific points along the river Severn: in Bewdley (the gauge station located 
at the upstream boundary of the hydraulic model domain), and in Saxons Lode (within the hydraulic domain). 
In Figure 6, the discharge at Bewdley (on the left) and at Saxons Lode (on the right) are plotted. The analysis 
expectation of discharge (blue line) moves closer to the synthetic truth (red line) at the two stations as a result 
of the assimilation showing a substantial improvement of the predictions. Here, we show the results from the 
assimilation on 23 July 00:00 as an illustrative example since the other assimilations produce similar effects. In 
Figure 6, it can be observed that the degeneracy is mitigated. At the assimilation time, the analysis particles are 
very similar and close to the synthetic truth, but rapidly regain diversity, thereby avoiding degeneracy. After more 
than 3 days, the particles return to their initial trajectories (i.e., the OL) mainly because precipitation uncertainty 
seems to prevail in the forecasts from that moment on.

To generalize the evaluation made for the gauging stations, we evaluate the accuracy of water level predictions 
globally, using time series of RMSE computed over the entire hydraulic model domain. This index has been 
calculated at the assimilation time and for subsequent time steps, in order to assess if the assimilation benefits 
persist in time. In Figure 7, the RMSE of the analysis is lower than the OL and this improvement lasts for more 
than 3 days following the assimilation. The accuracy of the results is higher when assimilation is performed after 

the flood peak, when rainfall has stopped, and inflow errors are dominating. 
Flood extents during the falling limb become more sensitive to changes in 
water depth due to the connectivity between the river channel and its flood-
plain (Dasgupta et  al.,  2021). Because of this high sensitivity, during the 
falling limb, flood extents change faster and weights should be updated more 
frequently to be consistent with the new hydraulic conditions. This could 
explain the reason why, as for the CSI plots (Figure 5), DA performances 
start dropping more quickly for the assimilation at the falling limb. The 
performances of the TPF experiment have been compared to those of the 
OL for lead time up to 7 days. After 1 week, we observe that the TPF-CSI is 
10% greater than the OL-CSI whereas the TPF-RMSE is 20% lower than the 
OL-RMSE. These results show that the TPF still outperforms the OL after 
1 week. The standard deviation of the errors has also been computed in order 
to evaluate the accuracy of the second moment (Figure 8). In this case, the 

Figure 4.  Contingency maps of the Open Loop (left) and after the assimilation (right) for three different assimilations at time 23 July 00:00, 24 July 00:00, 25 
July 00:00. Red pixels correspond to over-prediction (false positives) errors, yellow pixels to under-prediction (false negatives) errors, pixels correctly classified as 
not-flooded are in gray and when the contrary occurs pixels are in blue.

Method

23 July 00:00 24 July 00:00 25 July 00:00

PF PN PF PN PF PN

Open TF 7,497 0 9,374 0 8,390 1

Loop TN 2,441 260,974 1,356 260,182 1,219 261,302

TPF
TF 7,475 22 9,374 22 8,378 13

TN 204 263,211 78 261,460 30 262,491

Note. TF, flooded pixels in the truth map, TN, not-flooded pixels in the truth 
map, PF, predicted flooded pixels, PN, predicted non-flooded pixels.

Table 1 
Confusion Matrix of the Open Loop and Tempered Particle Filter Analysis 
for Three Different Time Steps (23 July 00:00, 24 July 00:00, 25 July 00:00)
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standard deviation represents the dispersion of the errors (given as the difference between the expectation and 
the true water levels). Results show that the TPF application determines less dispersed and more clustered results 
around the synthetic truth.

3.2.  Comparison Between TPF- and SIS-Based Assimilation Experiments With Unbiased Background

We showed in Section 3.1 that the TPF improves the predictions of water levels and discharge, as well as flood 
extent. In this section, the new TPF-based DA framework is compared with the SIS approach previously proposed 
by Di Mauro et al. (2021). To do so, we apply the SIS method as proposed in Di Mauro et al. (2021) on the same 
32 background particles (i.e., OL) and the same synthetically generated flood extent observations. The choice of 
comparing the TPF with this SIS is related to the fact that other methods reported in Di Mauro et al. (2021) were 
providing comparable performances, and therefore, SIS has been chosen as a benchmark. In terms of flood extent, 
the comparison is realized using the hourly time series of the CSI index (Figure 9).

In Figure 9, the blue line corresponds to the CSI of the forecast obtained from the TPF-based case, the orange line 
to the one obtained from the SIS-based case and the black line to the one of the OL. The three plots correspond 
respectively to the assimilation on 23 July 00:00, 24 July 00:00, and 25 July 00:00. The CSI values obtained when 
assimilating an image during the rising limb are systematically higher for the TPF. When the image is assimilated 
close to the peak and during the falling limb, CSI values of the TPF and SIS-based assimilation are very similar 

Figure 5.  Hourly time series of the critical success index of the Open Loop (black line) and tempered particle filter analysis (blue line) due to the assimilation of three 
different images: during the rising limb (23 July 00:00), at the peak (24 July 00:00) and during the falling limb (25 July 00:00).

Figure 6.  Time series of discharge at the peak at Bewdley and at Saxons Lode with the assimilation of an image at 23 
July 00:00. The vertical dashed lines indicate the time of the assimilation. The gray lines correspond to the Open Loop 
(OL) particles, the green line to the OL mean, the light blue lines to the analysis particles and the blue line to the analysis 
expectation. The synthetic truth is represented by a red line.
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at the assimilation time and for subsequent time steps. After 2 days, the performance of the SIS becomes substan-
tially worse than that of the TPF. SIS suffers from degeneracy, the number of particles with a significant weight 
as a result of the assimilation is very limited. These particles produce accurate results at the assimilation time, 
but are not necessarily efficient after a few hours or days, especially when hydraulic conditions have changed in 
the meantime.

We have also compared the performances of the SIS and the TPF using time series of RMSE (Figure 10). As 
expected, the RMSE time series exhibit very similar trend to the CSI: the RMSE is lower with the TPF experi-
ment when assimilating an image during the rising limb. For the other two assimilation steps RMSE values are 
comparable, but performances of the SIS decrease more rapidly, especially after 2 days. Overall, Figures 9 and 10 
clearly show the beneficial effects of the TPF assimilation on the long-term.

Table 2 reports the ratios between the analysis-RMSE and the OL-RMSE for each assimilated SAR image and for 
different lead times. These ratios were calculated at each hour and for all the different assimilation dates. In the 
table, the values at the assimilation time and for lead times of 6 hr, 1 day, 2, 3, and 4 days are reported. The ratios 
obtained with the TPF method are shown in the gray cells. The cyan cells contain the ratios obtained with the SIS 
experiment. The last row of the table shows the mean of the RMSE ratios over the different assimilation times 
at given prediction lead times. The lower the RMSE ratio values, the better the performance. Ratios of RMSEs 
lower than unity indicate that the assimilation improves forecasts. Table 2 shows that the TPF-based ratios are 
most of the time substantially lower than those of the SIS-based ones. For instance, the SIS-based mean ratios for 
3 and 4 days of lead times are almost twice that of the TPF-based one. The benefit of the TPF-based assimilation 

Figure 7.  Hourly time series of the root mean square error. Black line refers to the Open Loop (OL) and blue line to the analysis results after the assimilations of three 
different images (23 July 00:00, 24 July 00:00, and 25 July 00:00).

Figure 8.  Hourly time series of the standard deviation of the errors due to the assimilation of three different images: 24 July 00:00, 25 July 00:00, and 26 July 00:00. 
The standard deviation of the errors as difference between the Open Loop (OL) and the true water levels (black line) and as difference between the analysis expectation 
and the true water levels (blue line).
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persists for more than 4 days after the assimilation time. Moreover, the TPF-based ratios are always lower than 
unity, whereas the SIS-based ratios get also values higher than unity.

Model performances have also been statistically evaluated using the ER95 and the normalized root mean square 
error ratio (NRR). Both metrics have been used to evaluate the water level ensemble at two different gauge 
stations (Bewdley and Saxons Lode). ER95 evaluates the ensemble spread by quantifying the percentage of 
time the observation falls outside the 95% confidence interval derived from the ensemble. ER95 values should 
be  ideally around 5%, meaning that the observation falls outside of the 95% predictive bounds only 5% of the 
time. NRR also evaluates the spread of the ensemble, ideal values should be around the unity and lower or higher 
values indicate a too narrow or too wide ensemble, respectively. Table 3 reports these statistical performances for 
the SIS and TPF experiments. While TPF- and SIS-NRR are both close to the unity for the different assimilation 
time steps, ER95 varies with the different assimilation time steps. In particular, we found that on average, over the 
different assimilations, the value of ER95 for the TPF is around 7% in Bewdley and 9% in Saxons Lode, which are 
values close to the target values (5%). Moreover, if we compare these values with those of the SIS that are around 
25%, it is clear that TPF substantially outperforms SIS. This highlights a marked degeneracy in the SIS, that is 
substantially reduced by TPF.

3.3.  Comparison Between TPF- and SIS-Based Assimilation Experiments With Biased Background

In this last experiment, we use the same set-up as in the previous experiment but with the exception of a modified 
OL. We have introduced a perturbation error to the ERA-5 rainfall time series so that the bias in the ensemble is 
6.56 times larger than in the previous case. The ensemble has significant bias and the synthetic truth is most of 

Figure 9.  Comparison of the hourly time series of the critical success index of the Open Loop (OL) (black line), tempered particle filter (TPF) analysis (blue line) and 
Sequential Importance Sampling (SIS) analysis (orange line) due to the assimilation of three different images: 23 July 00:00, 24 July 00:00, and 25 July 00:00.

Figure 10.  Hourly root mean square error (RMSE) time series. The black line represents the RMSE of the Open Loop (OL), the blue line the tempered particle filter 
(TPF)-based RMSE and the orange line the SIS-based RMSE. Three different assimilation cases are plotted: 23 July 00:00, 24 July 00:00, and 25 July 00:00.
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the time located outside of the ensemble range as can be seen in Figure 11. For the evaluation of the results, the 
same performance indices and the same plots are used. The ratios between the analysis-RMSE and the OL-RMSE 
for each assimilated SAR image and for different lead times are reported in Table 4. At the assimilation time and 
for more than 1 day after that, the TPF-based assimilation is capable of substantially reducing the forecast bias. 
The SIS is less efficient in that respect, as RMSE ratios are larger for the SIS-based assimilation. For longer 
lead times, the error in water levels increases due to the bias in the rainfall ensemble and the RMSE ratios of the 

Note. Gray cells refer to the TPF-based method, cyan cells to the SIS-based method.

Table 2 
Ratios Between the Analysis and Open Loop RMSE for Each Assimilation Date and for Various Lead Times

Note. SIS statistical performance measures are shown in the cyan column and TPF performance measures in the gray column. 
The average of the measures over the different assimilation time is also reported in the last row of the table.

Table 3 
Normalized Root Mean Square Error Ratio (NRR) and 95% Exceedance Ratio (ER95) of Water Levels at the Different 
Assimilation Times and at two Different Gauge Stations (Bewdley and Saxons Lode)
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TPF-based and the SIS-based assimilation become similar. This is clearly visible in Figure 12 which shows the 
RMSE time series on 23 July, 24 July, and 25 July at 00:00. When the bias is limited and the synthetic truth falls 
inside the ensemble range most of the time, as in the previous case (Figure 7), the forecast improvement lasts for 
longer lead times. However, when the ensemble is markedly biased (Figure 12), the TPF improves the results at 
the assimilation time but the level of improvement degrades more quickly compared to the limited biased case.

At the assimilation time, the TPF always improves the accuracy of the results of the flood forecasts (in terms 
of flood extent, water levels, discharge) with respect to the OL and it is comparable to the SIS performances. 
An important aspect that emerges from the results is the persistence of the assimilation benefits. They remain 
significant even 3 days after the TPF assimilation when compared to the SIS performances; nonetheless, perfor-
mances start degrading with the onset of rainfall over the headwater catchment and rainfall uncertainty prevails 
in the forecast uncertainty. We argue that the marked improvement in the forecast skill of the TPF, compared to 

Figure 11.  Discharge time series ensemble at Bewdley (on the left) and at Saxons Lode (on the right). The Open Loop (OL) 
particles are represented with gray lines, the synthetic truth is represented by the red line. The OL expectation is in green. In 
this case, the ensemble is markedly biased; the synthetic truth falls outside the ensemble range most of the time.

Note. Gray cells refer to the TPF-based method, cyan cells to the SIS-based method.

Table 4 
Ratio Between the Analysis and Open Loop of the RMSE for Each Assimilation Date and for Various Lead Times for a 
Markedly Biased Case
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the SIS, is due to the update of the initial conditions of the hydrological model including SFR 24 hr prior to the 
assimilation time. In the TPF, better initial conditions of the model forecast are defined at each assimilation time 
via the different iteration and mutation steps, whereas the SIS only defines the relative importance of each parti-
cle, without carrying out any better definition of the initial conditions of the model. The runoff that is used as 
upstream boundaries of the hydraulic model is a function of the storage SFR of the hydrological model. Updating 
the SFR, and consequently the fast run-off, represents an effective way to increase the long-lasting effects of DA 
since runoff has the highest uncertainty deriving from poorly known rainfall as already pointed out by Matgen 
et al. (2010). This aspect, together with the mitigation of degeneracy, as hypothesized by Dasgupta et al. (2021), 
could explain the longer-term persistence of DA benefits via the TPF.

After the TPF application, particles move toward the synthetic truth also in the case the truth falls outside the 
predictive bounds of the OL ensemble. Despite the improvements due to the TPF, performances are not as good 
as in the previous case. As a consequence, results obtained using the TPF are sometimes similar to those obtained 
using the SIS, or even slightly less satisfying when rainfall uncertainty dominates the system. The improvements 
resulting from the update of the initial conditions are vanished after a few days because of the bias in the ensemble 
and the model moves back to the OL state. The update of the state level of the reservoir has a time-limited bene-
fit. It is a state variable highly influenced by the inputs, and thus by the rainfall. In our experiment, the rainfall 
ensemble is obtained by perturbing the deterministic ERA-5 product using a multiplicative noise. Therefore, 
when there is low-intensity rainfall simulated in ERA-5 the uncertainty is very limited. Moreover, as the rainfall 
ensemble is not updated, the ensemble analysis goes back to the OL trajectory after a while. This return of the 
analysis back to the OL is even more rapid when higher rainfall intensity is imposed to the model: the influence 
of the initial conditions is rapidly overruled by the forcing uncertainty. To increase the time window of the assim-
ilation benefits, the update of hydrological model state variable could be completed by a forcing update or by 
a parameter update, as in Cooper et al. (2019) where channel friction is updated together with a state variable, 
but with the consequent risk of multiple acceptable solutions of the system according to the equifinality concept 
(Beven & Freer, 2001).

4.  Conclusions
In this paper, we have proposed a new approach based on a TPF to assimilate flood extent maps into a flood 
forecasting system. The objective of this new DA framework is to mitigate degeneracy and sample impoverish-
ment, well-known issues in particle filtering. In the proposed TPF method, the number of tuning parameters is 
small with respect to methods such as PF-MCMC (Andrieu et al., 2010; Moradkhani et al., 2012) thus rendering 
the TPF easily transferable to other situations. We also argue that this makes the approach potentially robust. 
Moreover, the TPF does not need cross-over steps or assumptions on the prior PDF used in the MH acceptance 
ratio as in the Evolutionary PF-MCMC (Abbaszadeh et al., 2018) or in the HEAVEN (Abbaszadeh et al., 2019). 
We have evaluated the performances of the filter in two different cases: with a limited forecast bias and with a 

Figure 12.  Hourly root mean square error (RMSE) time series for a markedly biased ensemble case. The black line represents the RMSE of the Open Loop (OL), the 
blue line the RMSE after the tempered particle filter (TPF) application and the orange line the RMSE after the Sequential Importance Sampling (SIS) application. 
Assimilation at 23 July 00:00, 24 July 00:00, and 25 July 00:00 are plotted.
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more important forecast bias. The TPF has been compared against the standard PF, namely the SIS as used in 
previous studies (Di Mauro et al., 2021; Hostache et al., 2018). The following key conclusions are drawn from 
our experiments:

1.	 �At the time of the assimilation, forecasts are very accurate locally: the forecast overlaps the synthetic truth 
for all the different assimilation cases and for both analyzed locations. Results are very satisfying at a larger 
scale as well: RMSE and CSI improve systematically as a result of the assimilation. On average, RMSE values 
decrease by 80% whereas CSI values increase by 30% as a result of the assimilation;

2.	 �Results are also satisfying across time: the CSI and RMSE are improved up to 3 days after the assimilation;
3.	 �Performances are improved compared to the OL and the SIS filter. The benefits of the newly introduced 

TPF-based assimilation are longer persisting when compared to the effects obtained with assimilation tech-
niques used in the previous studies;

4.	 �The new assimilation framework significantly outperforms the SIS. SIS performance indices are generally 
comparable to the TPF ones at the assimilation time, but they tend to drop more rapidly, in general 2 days 
after the assimilation. For example, TPF-based RMSE are 20% lower compared to the SIS-based ones, 2 days 
after the assimilation;

5.	 �When the ensemble is markedly biased results are significantly improved by the TPF at the assimilation times 
and for a few days after. Afterward, TPF and SIS based results are similar because the model state update 
cannot compensate for a too large bias in the precipitation ensemble.

The proposed DA framework based on a TPF holds promise for improving prediction accuracy for longer lead 
times. In this study, we have shown a synthetic experiment where rainfall and SAR observations are the only 
sources of uncertainty. In a future study, it will be interesting to apply and evaluate this enhanced approach on a 
real test case in a weakly controlled environment.

Data Availability Statements
The LISFLOOD-FP model can be freely downloaded at http://www.bristol.ac.uk/geography/research/hydrology/
models/lisflood. The river cross-section data, the digital elevation model, and the gauging station water level, 
streamflow, and rating curve data are freely available upon request from the Environment Agency (enquiries@
environmentagency.gov.uk). The ERA-5 data set is freely available at https://confluence.ecmwf.int/display/CKB/
ERA5.
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