
1. Introduction
Climate change has modified river floods in Europe (Blöschl et al., 2019) and other parts of the world (Alfieri 
et al., 2017; B.Merz et al., 2021). In order to assist flood management agencies, regional planners, and insurance 
companies in adapting to the changing hazard, large-scale inundation maps associated with a given return period 
are needed. Recently, extensive research has been carried out on continental and global inundation mapping 
(Alfieri et al., 2014; Bates et al., 2021; Dottori et al., 2016; Sampson et al., 2015), but bridging the gap between 
continental scale and local models is still challenging because of limitations regarding simulation accuracy and 
cost.

First, the accuracy of the hydraulic simulation is controlled, among other factors, by the numerical scheme and 
the resolution of the computational domain. Resolutions of a few meters are required to resolve terrain features 
such as levees and small channels. However, they require an efficient processing of a large amount of possibly 
heterogeneous data for large areas. Traditionally, two-dimensional (2D) hydrodynamic simulations were consid-
ered unviable for areas larger than 1,000 km 2 and resolutions at the meter scale (Teng et al., 2017) due to the high 
computational costs, even though the value of a high resolution is clear (Ernst et al., 2010; Fewtrell et al., 2011; 
Horváth et al., 2020; Shustikova et al., 2019; Xia et al., 2019). Various approaches have therefore been proposed 
for speeding up simulations. One example are linked 1D/2D models (Falter et  al.,  2016; Hoch et  al.,  2019; 
Morales-Hernández et al., 2013; Rajib et al., 2020), but they have disadvantages related to complex data preproc-
essing, implementation of the linking model and the need for a case-by-case decision if the linked model is indeed 
significantly faster than a 2D model. Another possibility consists of simplifying the physical processes, for exam-
ple, neglecting advection or inertia terms (Neal et al., 2012). While in general this seems to be a computationally 
very efficient alternative, efficiencies may drop for urban regions (Costabile et al., 2020) and for receding flows 
including wet-dry boundaries (Cozzolino et al., 2019). Cozzolino et al. (2019) conclude that numerical issues in 
these problematic regions may originate from simplifying the shallow water equations (SWEs) while discretiza-
tions of the full SWEs are not subject to these limitations. Second-order finite-volume (FV) schemes (Audusse 
& Bristeau, 2005; Hou et al., 2015; Murillo et al., 2008) or discontinuous Galerkin (DG) schemes (Kesserwani 
et al., 2008; Shaw et al., 2021; Vater et al., 2017) offer additional accuracy, however at the cost of higher runtimes. 
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For large-scale river flooding, the usage of a second-order scheme instead of its first-order counterpart may 
be preferrable in view of the workload–accuracy tradeoff (Horváth et  al.,  2020). Perhaps more important is 
the reduction of simulation runtimes by code parallelization. In particular the use of graphics processing units 
(GPUs) may lead to a drastic reduction of runtimes (Brodtkorb et al., 2012; Echeverribar et al., 2019; Horváth 
et al., 2016; Vacondio et al., 2016) when compared to central processing units (CPUs). Simulations of flood 
events on GPUs may be faster than realtime for domains of hundreds of km 2 and resolutions of a few meters 
(Morales-Hernández et al., 2021; Xia et al., 2019).

Second, an efficient approach to simulating large regions with numerous streams is needed. Typically, a single 
processing unit in a computer cluster, or a so-called computational node, is not able to accommodate the entire 
domain. Thus the entire domain needs to be split into subdomains with their sizes bound by the computational 
capability, for example, memory, of the individual computational node. Common approaches involve a decom-
position of the domain into individual river reaches allowing only small changes in flood discharges within the 
subdomains (Alfieri et al., 2014; Bates et al., 2021; Sampson et al., 2015). At the boundary of the subdomains, 
streamflow hydrographs are usually prescribed as inflow boundary conditions (BCs). In flood hazard mapping, 
the peaks of the streamflow hydrographs typically correspond to the flood quantiles of the return period of inter-
est. For large simulation tiles, however, changes of the river flood quantiles along the stream network within the 
subdomain can no longer be ignored because of lateral inflows of tributaries and diffuse sources. Moreover, at 
confluences the downstream flood quantile is not simply the sum of the upstream quantiles as the upstream flood 
quantiles are typically not fully correlated in space.

Third, the accuracy of the inundated areas also depends on the accuracy of hydrologic and topographic input 
data, dense upstream streamflow boundary conditions (Rajib et al., 2020), and detailed models to capture local 
flow dynamics. Local relevance is thus not only achieved by high spatial resolution, but also by the inclusion of 
small-scale local features. For example, underpasses usually appear closed in digital terrain models (DTMs), but 
may actually be open during a flood event. The inclusion of levees and dams is required to ensure that protected 
areas remain dry in the inundation model (Bates et al., 2021; Wing et al., 2017). Also, the way buildings and 
structures are treated has an effect on the small-scale dynamics of the water flow (Dottori et al., 2013). Culverts 
and power plants are often included in local models, but usually neglected in large-scale models. Inclusion of 
these structures is needed for locally relevant, regional flood simulation, especially in densely inhabited areas. 
The accuracy of the models can be assessed by comparing the flood areas with carefully designed local models 
(Wing et al., 2017), with remotely sensed flood inundation extents (Rajib et al., 2020), with observed high water 
marks (Wing et al., 2021), and with insurance claims (Zischg et al., 2018).

Fourth, multiple steps are required for setting up the input data and the BCs for hydraulic simulations. In a 
traditional modeling setup, these steps are usually carried out manually to allow for the handling of special cases 
which is almost always occur in real-world applications. An automatic execution of the workflow requires a 
consistent approach to process the steps, for example, a dataflow consisting of linked submodels that share data 
via input and output connections. Ideally, the whole modular dataflow is controlled by one interactive automation 
framework (Sampson et al., 2015) that allows for localized data corrections and automatically triggers only local 
resimulations.

In this paper, we present a framework for simulating inundated areas representing the river flood hazard in large 
domains at a high resolution. The study area is Austria (84,000 km 2) and the resolution chosen is 2 m (Figure 1). 
This paper goes beyond the existing literature by simulating a river network of 33,880 km with a second-order 
scheme that discretizes the full SWEs. We demonstrate the effectiveness of accelerated computational models 
to enhance the accuracy and local relevance of the simulations. We propose a novel method to ensure consistent 
flood quantiles across the entire river network of large simulation domains. Starting from raw input data for 
an entire country, we describe an automated simulation setup that derives BCs on-the-fly for the derivation of 
inundated areas. The proposed model introduces streamflow hydrographs for all catchments greater than 10 km 2 
and accounts for levees, buildings, and culverts to provide locally relevant flood hazard maps. We also perform a 
combined validation against rating curves of stream gauges and against detailed local flood maps.
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2. Methods
2.1. Integrated Setup as a Visdom Dataflow

While local simulation studies are often set up in an ad hoc way to maximize flexibility and cater for local 
requirements, larger scale studies require a more formal approach given the larger data volumes, in particular if 
different types of data are to be combined in an efficient way (Federal Emergency Management Agency, 2019; 
Sampson et al., 2015). Since the focus of this study was on maximizing the synergies of using local information 
with simulations at large scales, we are proposing a data flow that allows a combination of automatic and manual 
processing steps and at the same time ensures consistency of different data types. In order to obtain inundation 
maps from raw input data, a cascade of submodels, the so-called modular dataflow, needs to be executed. A 
simplified version of the dataflow used in our approach is shown in Figure 2. The raw input data comprise land 
use, stream gauge records, the river network, river thalweg and river bank lines, the DTM, and measured river 
bed profiles, as shown at the top of Figure 2.

For a given simulation domain, the dataflow then assembles all the necessary data for the hydraulic simula-
tion including the roughness, the boundary conditions (BCs), the hydrologically enforced digital terrain model 
(DTM-H), and an initial state of water levels. The roughness is estimated from land use in the floodplains and 
from calibrated roughness at stream gauges (Section 2.2.5). The BCs account for buildings and hydraulic struc-
tures, such as culverts and power plants. Moreover, at the boundary of the simulation domain and at river origins, 
the BCs prescribe flood hydrographs (Sections 2.2.3 and 2.3). This sub-dataflow is visualized on the left of 
Figure 2.

The DTM-H represents a DTM that has been prepared for hydraulic modeling, for example, bridges have been 
cut-out and river beds have been burned in to allow free flow (Section 2.2.1). For most of the larger rivers in 
Austria bed measurements exist. Thus, we choose a dual approach. Where measurements exist, the river bathy-
metries are used to modify the DTM. Where no measurements exist, we estimate a trapezoidal profile based on 
discharge, the river network topology, the river thalweg and the river bank lines, and the DTM (Section 2.2.4). 
This sub-dataflow is visualized on the right of Figure 2.

The entire study region is split manually into rectangular tiles (Section 2.3.1). There are no restrictions on the 
domain decomposition from the input data. Given any domain, instationary BCs are specified automatically. The 
only step involving manual manipulations are corrections of data errors, for example, of river bed measurements 
or the coordinates of river thalweg and bank lines. The manual corrections and the domain decomposition are 
stored as “actions” in separate layers which are later applied automatically to the relevant data. For each of the 
tiles, BCs are automatically generated and the computation of the required input data for the hydrodynamic 
simulation is triggered. Initial water depths for the hydraulic simulation are obtained by subtracting the DTM-H 

Figure 1. Simulated rivers in Austria with decomposed simulation domains shown in the west. The inset image shows the 
simulated maximum water depths on the 2 m grid. The high resolution together with regionally consistent flood quantiles 
result in detailed, locally relevant inundation maps.
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from the original DTM. The simulation then computes water depth fields and velocity vector fields. Finally, 
at the bottom of the cascade, the flood hazard maps are identified from the simulated maximum water depths 
(Section 2.4).

Ideally, the execution of the dataflow should not involve any manual intervention. Here we use the interactive 
automation framework Visdom (Schindler et  al.,  2013; Waser et  al.,  2011), which determines the execution 
order by itself and executes the cascade of submodels in a fully automated way. Moreover, Visdom features an 
interactive visual representation of the dataflow consisting of several dozens of modular units and hundreds of 
connections. In reality the dataflow is more complex than the illustrative dataflow shown in Figure 2. Visdom 
allows interactive changes to the dataflow in an accessible graphical user interface throughout the entire project 
period. Moreover, the graphical representation greatly facilitates the comprehension of the dependencies between 
submodels.

2.2. Input Data and Pre-Processing

2.2.1. Terrain Model

The digital terrain model (DTM) covers all of Austria with a spatial resolution of 1 m and is based on light 
detection and ranging (LIDAR) data. The vertical precision of airborne laser scanning (ALS) is at the order of a 
few centimeters (Kraus, 2011; Pfeifer & Briese, 2007). However, the accuracy of the DTM-H, which is derived 
from the DTM, also depends on other factors not fully represented by ALS data, for example, water bodies and 
vegetated river banks. The acquired point clouds completely lack information about submerged topography, such 
as river beds, which has to be added. Bridges and non-monotonic terrain levels along rivers are eliminated from 
the DTM and the gaps are filled by adaptive river course interpolation between the unobstructed parts to obtain 
the DTM-H (Wimmer et al., 2021).

Figure 2. Simplified dataflow of the flood inundation model in the proposed automation framework.
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2.2.2. River Network

The digital river network consists of nodes and their directed connections. Each node is allowed to only have 
one downstream node. Nodes are placed at catchment outlets, at confluences (Figure  3a), and where stream 
discharges change significantly, for example, downstream of power plants. The 19,479 nodes hold the hydrologic 
data, such as flood discharges. The river thalweg lines are automatically realigned with thalweg lines derived 
from the DTM. In cases of doubt, manual checks and revisions are performed (Wimmer et al., 2021). Addi-
tionally, a left and a right river bank line representing the extent of the water body in case of bank-full flow are 
generated (Figure 3b). In total, 33,880 river km are delineated representing all Austrian streams with a catchment 
size greater than 10 km 2.

2.2.3. Streamflow Boundary Conditions

While in simulations of physical events, streamflow boundary conditions are given by observed or synthetic flood 
discharge hydrographs (Grimaldi et al., 2013), hazard simulations as in this study use effective flood discharge 
hydrographs. The hydrographs may take any shape as far as the simulation model is concerned, but there is value 
in making them representative of the multiple flood events that occur in a reach and estimate them from observed 
streamflow data. Here we assume hydrographs of the form (Dottori et al., 2009)

𝑄𝑄(𝑡𝑡) = 𝑄𝑄𝐵𝐵 + (𝑄𝑄𝑇𝑇 −𝑄𝑄𝐵𝐵)

(

𝑡𝑡

𝑡𝑡𝑃𝑃
exp

(

1 −
𝑡𝑡

𝑡𝑡𝑃𝑃

))𝛾𝛾

, (1)

where QB is the mean annual discharge, QT is the discharge of the flood peak for the associated return period, for 
example, T = 100 years, and γ is set to 3 based on hydrograph analyses in the study area. The time to peak param-
eter tP, QB and QT are estimated by a statistical regionalization method based on Top-Kriging (Skøien et al., 2006) 
following R. Merz et al. (2008).

2.2.4. River Bed Geometry

In Austria, 18.6% of all river km are covered by measured profile data, mostly at large rivers. Following Bures 
et al.  (2019) and Fleischmann et al.  (2019), we adopt a combined approach and construct the river bed from 
measured river bed profiles and estimated trapezoidal cross-sections. The cross-sectional river width is based on 
the distance between the left and right river bank lines. The depth is determined by Manning's equation under the 
assumption of a trapezoidal cross-section with a bank slope of 60°. The Manning's roughness value is set to the 
same value as used in the SWEs (see Section 2.2.5). The slope of the energy grade line is determined by sampling 
the original DTM including water bodies along the river thalweg line. The discharge consistent with the time of 
the DTM survey is assumed to be proportional to the mean annual discharge. A proportionality factor of 0.7 was 
backcalculated from measured profile data. A factor smaller than 1 is in line with the practice of conducting DTM 
surveys in autumn when stream flow is low in Austria (R. Merz et al., 1999). Figure 4a shows a comparison of 
estimated trapezoidal cross-sections and measured river bed geometries for a reach of the Inn river and Figure 4b 
shows the associated relative wet area deviations defined as the ratios of estimated wet areas over measured wet 
areas. For the major river flowing from west to east (the Inn river) the bed is approximated very well. For the 
southern tributary, the estimated cross-section is slightly too deep.

Figure 3. (a) River network around Innsbruck, Austria. The network consists of nodes (gray circles) linked by the river. The 
nodes hold the hydrologic data, such as flood discharges. (b) Detail of river thalweg lines and river bank lines.



Water Resources Research

BUTTINGER-KREUZHUBER ET AL.

10.1029/2021WR030820

6 of 22

2.2.5. Roughness

Accurate estimates of roughness are essential, as simulated velocities, and thus water levels and inundation extent, 
are usually quite sensitive to channel roughness (Hall et al., 2005; Savage et al., 2016; Werner et al., 2005). In 
general, roughness can be calibrated from observed water levels or inferred from landscape characteristics (such 
as landuse), using published relationships (Arcement & Schneider, 1989; Chow, 1959). Here the roughness coef-
ficient is compiled from different sources, in an attempt to maximize its information content.

In a first step, floodplain and river channel are treated separately. On the floodplains, a mapping from land use 
type to Manning roughness coefficients is adopted from Chow (1959). Inside the river channel, we calibrate the 
roughness with water level and discharge data from 420 stream gauges. We choose to calibrate the roughness at 
each gauge individually with Manning's equation, in line with the estimation of the trapezoidal cross-sections and 
the rating curves at the outflows. The approach of individual calibration is computationally much more efficient 
than a joint calibration on all the gauges, because of its lower dimensionality. The calibrated roughness values 
are interpolated on the river nodes with Top-Kriging. To reduce the influence of only locally valid high rough-
ness coefficients at some gauges, we average the estimated roughness values with a default roughness value of 
0.03 s/m 1/3, which is the median over the entire stream network. The resulting Manning roughness coefficients 
along all rivers are displayed in Figure 5a.

In a second step, roughness coefficients from previous local studies are incorporated if available for a reach, 
which is the case for around 10% of the river network (3,350 river km). As the roughness coefficients from local 
studies are often calibrated based on local data, there is an extra benefit beyond the information from the first 
step. However, they sometimes contain artefacts and inconsistencies in overlapping river reaches. In order to 
ensure an overall homogeneous treatment and at the same time take advantage of local information, the roughness 
coefficients from local studies are averaged on a cell-by-cell basis with the ones based on land use (in the flood-
plains) and the ones interpolated from the stream gauges (in the river channels). The averaging method adopted 
is a pragmatic choice to give the information from previous local studies equal weight to that of the present one. 
A detail of the final spatially distributed roughness field is shown in Figure 5b.

2.3. Automatic Boundary Conditions

2.3.1. Tiling

As the simulation operates on a uniform Cartesian grid, rectangular tiles are an efficient and natural choice for 
decomposing the study region. The region is split into 182 rectangular simulation tiles on the basis of the follow-
ing criteria: The tiles are specified in such a way that power plants are far enough away from an inflow, so that 
backwater effects are fully captured. Cities and large confluences are sought to be in the middle of a tile to avoid 
boundary effects. The tiles are required to overlap with each other to capture all flooded areas originating from 
levee overtoppings several kilometres up- or downstream in the case of large rivers. To balance these goals, the 
tiles are specified manually. Although the tiling process could be automated, we argue that a manual approach, 

Figure 4. (a) Example validation of the estimated trapezoids (red) burned into the original digital terrain models (DTM) 
(blue) against the measured bottom topography (gray) at the Inn river. Numbers are length across the river (m) and level (m). 
(b) Comparison of the burn-in approach against measured cross-sectional data along the Inn river and a tributary in terms of 
their relative wet area deviation. Red indicates an overestimation of the computed wet areas, blue an underestimation. The 
yellow lines indicate culverts, where the river bed was not burned in.
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in which the various controls can be evaluated in a flexible way, may be more efficient, given that there are only 
180 tiles to specify.

The tile size is limited by the available memory on the GPU to a total number of around 150 million wet cells. 
Thus, given a resolution of 2 m, we limit the tiles to an area of 1,000 km 2, assuming a maximum of 60% wet cells. 
An example tiling is shown in Figure 6 along with the locations of the automatically derived boundary conditions, 
including inflows and outflows shown as wave icons. The tiles are simulated completely independently of each 
other enabling fast parallel processing.

Figure 5. (a) Roughness coefficients in the river channel interpolated from coefficients calibrated at the stream gauges to 
the river network with Top-Kriging. The photos give an impression of the river characteristics of locations with (1) a high 
roughness of around 0.06 s/m 1/3 for a natural stream in rocky hills and (2) a relatively low roughness of 0.02 s/m 1/3 for a 
regulated stream in the lowlands. (b) The spatially distributed roughness coefficients in the floodplains are based on land 
use. The roughness legend is valid for both (a) and (b). Image Copyright: (1) https://commons.wikimedia.org/wiki/File:Die_
Lainsitz_im_Gabrielental_bei_Weitra_01_NDM_GD-103.jpg, CC BY-SA 3.0 AT. (2) Hydro Burgenland, Heiligenbrunn/
Strem. Permission granted.

https://commons.wikimedia.org/wiki/File:Die_Lainsitz_im_Gabrielental_bei_Weitra_01_NDM_GD-103.jpg
https://commons.wikimedia.org/wiki/File:Die_Lainsitz_im_Gabrielental_bei_Weitra_01_NDM_GD-103.jpg
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2.3.2. Automatic Inflows

Whenever a river enters a simulation tile or starts inside a simulation tile, upstream BCs are derived (Figure 7a). 
The flood hydrograph at the inflow positions is calculated by Equation 1 from interpolated hydrologic parameters 
(Figure 7b). In order to account for the travel times of the flood waves, the hydrographs are shifted in time by a 
recursive algorithm (Section 2.3.4). This is because synthetic, effective hydrographs are simulated. Such a shift 
would not be needed if observed events were simulated.

The inflow geometry is identified by constructing a cross-sectional line normal to the river line and intersecting it 
with the river bank lines. This line is extended by a fixed factor on both sides, and based on trial and error a factor 
of two was chosen (Figure 7c). At the rasterized cell interfaces of the extended cross-sectional line, we prescribe 
a fraction of the discharge given by the hydrograph. The fraction at each interface is assumed to be proportional 
to the water depth ensuring a natural distribution of the discharge, as only neighboring wet cells receive a water 
influx.

2.3.3. Streamflow Adjustments for Consistent Quantiles

Flood hazard mapping requires the estimation of inundation areas that conform to the same return period every-
where. Based on the definition of a T-year flood as the discharge exceeded with a probability of 1/T in any one 
year at a specific point on the stream network (Fuller, 1914), the corresponding inundation areas also conform to 

Figure 6. (a) Domain decomposition of Upper Austria into 24 tiles which are simulated in parallel. The size of a tile is 
limited by the memory of a single GPU. The tiles labeled A, B, C show slow simulation performance (Figure 11). (b) 
Close-up of tile A with all BCs. Inflows and outflows are displayed as wave icons. Culverts are indicated as dark yellow lines.

Figure 7. Automatically derived inflows for an arbitrarily chosen domain. (a) Inflows are placed at the start of rivers and when streams enter the domain. (b) At each of 
the nine inflows shown in (a), a flood hydrograph is calculated from the interpolated hydrologic parameters of the upstream node. (c) At an inflow, the discharge is then 
distributed on the rasterized inflow interfaces of the cross-sectional line normal to the river thalweg.
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the same return period, if a unique, monotonic relationship exists between water level and discharge. The inun-
dation areas are thus associated with the same return period in a region (Alfieri et al., 2014; Bates et al., 2021; 
Sampson et al., 2015). Previous studies have sometimes approximated these inundation patterns by simulation 
of real events, for example, with the hydrograph peaks of the desired return period along the main stream, and 
smaller return periods at the tributaries as may occur during real events (Sampson et al., 2015), but this approxi-
mation is not amenable to the simulation of large regions where the same return period of the peak flows should 
be maintained everywhere. This is because an infinite number of hydrological situations can produce a T-year 
flood discharge at a specific point. A conceptually more consistent alternative are long-term simulations of many 
events over hundreds of years (e.g., Falter et al., 2016), from which the inundation areas associated with a return 
period T can be determined by extreme value analysis, but these long-term simulations are computationally very 
expensive. Here, we propose a new, computationally more efficient method that allows maintaining the same 
return period of flood peaks on the entire stream network for effective hydrographs with a peak flow correspond-
ing to a T-year return period. This effective hydrograph does not represent one event but the summary effect of 
all possible events. Since the flows associated with the same return period along the stream network are not mass 
conserving along gaining reaches and at river junctions, water is added or removed in a precisely specified way.

Small tributaries not explicitly resolved in the river network and diffuse lateral inflows contribute to an increase 
in flood discharges along a river. In such a case, water is added along the river to ensure return periods are 
maintained. Confluences are considered in a similar fashion. Such a situation is illustrated in Figure 8a for the 
Inn–Sill confluence. In Figure 8b the corresponding hydrographs of the tributary before the confluence, as well 
as the hydrographs of the main river before and after the confluences, are plotted. The sum of the peak discharge 
of the tributary and that of the main river upstream of the confluence is generally greater than the peak discharge 
downstream of the confluence. This is because of the probability of a joint occurrence of floods at both streams 
is usually significantly smaller than 1 (Bender et al., 2016; Guse et al., 2020). For a confluence node, the adjust-
ment is given by the difference between the sum of the upstream hydrographs and the downstream hydrograph 
associated with that node. The resulting difference hydrograph at the confluence is negative around the peak time 
(Figure 8b). Therefore, at a confluence typically water needs to be removed from the hydraulic simulation to 
ensure the return period is maintained. This adjustment is performed at rasterized adjustment polygons related  to 
the river geometry (indicated in green in Figure 8a). In these cells, a specific source term is introduced in the 
SWEs, which applies the adjustment to the wet cells in the polygon.

The proposed approach ensures that inundated areas are not underestimated before confluences, as in other 
approaches, where the flood quantile at the outlet is redistributed to the inflows in the same tile (Sampson 
et al., 2015). The adjustment serves as an hydrological-hydraulic interface and is applicable to any hydrograph 
shape. For continuous hydrological models (Falter et  al.,  2016; Rajib et  al.,  2020) or for individual events 
(Costabile & Macchione, 2015) the difference hydrographs are always non-negative, even after confluences, and 
the adjustments are to be interpreted as diffuse lateral inflows.

2.3.4. Temporal Relationship Between Streamflow Hydrographs

At each river node, a hydrograph is specified by the statistical regionalization described in Section 2.2.3 with the 
peak flow representing the discharge of a given return period and the volume estimated as the median of observed 

Figure 8. Hydrographs at the Inn–Sill confluence for a 100-year flood. (a) A schematic illustration of the confluence with an inset image of the real-world situation. 
(b) The hydrographs at the confluence with the hydrograph of the tributary shown in violet. The adjustment is made at specific cells (indicated in green in (a)) via a 
source  term.
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events. In addition, some assumption is needed regarding the timing of the hydrographs. We propose the follow-
ing procedure to provide temporal relationships between streamflow hydrographs for an efficient mapping of the 
inundated areas within a simulation tile.

Within a river reach without tributaries, the wave travel time between two neighboring nodes is estimated by a 
uniform wave approximation and the velocity obtained from Manning's law using the median water depth, the 
average roughness and slope along the reach as well as the river width, assuming the wave celerity is not vastly 
different from the flow velocity.

At confluences, the timing difference of the tributaries cannot be inferred from hydraulic relationships. This is 
because the simulations do not represent a real event but the summary effect of many events that may have very 
different characteristics, mainly due to differences in the spatial rainfall distribution. We therefore assume that 
flood waves at confluences peak simultaneously. This assumption ensures that the differences in the discharge 
time series are smaller than for non-synchronous flood peaks and it enhances numerical efficiency, as any 
non-zero timing difference between the tributary and the main river increases the duration of the simulation. We 
illustrate the effects of the travel time approximation and the synchronous peaking assumption at confluences in 
Figures 9a and 9b, respectively, on a small domain shown in Figure 9c. Alternative formulations could be based 
on the bivariate statistics of the coincidence of floods at river confluences (Bender et al., 2016; Guse et al., 2020).

If a simulation tile is divisible into multiple smaller independent river networks, the peak time at the outflows is 
set to occur at the same time. This rule increases simulation performance as it ensures fast simulations until the 
common flood peak, as the simulation is faster before the flood peak than after the flood peak due to the smaller 
percentage of wet areas.

Based on the above assumptions, a recursive algorithm estimates all the time shifts needed for the adjustment and 
inflow hydrographs. The required simulation time of a tile is controlled by the node with the maximum hydro-
graph duration. The hydrograph duration is determined by the time to peak parameter and the travel time needed 
for the wave at that node to leave the domain. The required simulation durations range from 1.7 days in steep 
terrain to 31 days in tiles with lakes and large rivers.

Figure 9. (a) Streamflow hydrographs at the river network nodes of a single river reach, the Zwieselbach in Tyrol. The peaks are slightly shifted by time lags computed 
from a uniform wave approximation. (b) Streamflow hydrographs at the nodes of the main river, the Archbach, and a tributary, the Zwieselbach. At the confluence the 
peaks are exactly aligned. The river with the shorter hydrograph duration, in this case the Zwieselbach, is shifted toward the river with the longer hydrograph duration. 
(c) Associated nodes and domain.
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2.3.5. Rating Curve Outflows

Whenever a river leaves a tile, outflow BCs are automatically derived. 
The geometric setup is similar to the inflows, however we extend the 
cross-sectional line only by 20% at each side in contrast to a 100% extension 
for inflows. We specify an absorbing BC at the domain boundary allowing 
water to freely leave the domain. Thus, if water bypasses the specified outflow 
interfaces, it can leave the domain at the boundary. To ensure numerical 
stability, we prescribe a dynamic water level BC at the outflows. Specifically, 
we employ a rating curve to dynamically map the simulated discharge that 
leaves the domain through this outflow BC to the corresponding water level 
at every time step (Figure 10). Assuming uniform flow, we use Manning's 
equation to derive the rating curve. We emphasize that dynamic is intended 
to mean  that the water level time series is not a priori set from recorded gauge 
data, but computed at every time step via the rating curve. This dynamic 
outflow condition ensures a correct specification of the water level, account-
ing for changes of the flood wave inside the simulation domain, such as peak 
discharge reduction due to dike overtoppings or floodplain spills, and avoids 
a possibly incorrect propagation of a priori converted peak water levels at the 
downstream boundaries into the simulation domain.

2.3.6. Buildings, Culverts and Power Plants

Given the resolution of 2 m, all buildings in the domain are rasterized as wall cells where no water can enter. 
In urban regions, culverts and sewers may affect the inundation area. While the representation of urban sewer 
systems is beyond the scope of this paper, we do use a simple culvert model supporting culverts without bifurca-
tions that are fed by streams and aligned with river thalweg lines. The cross-sectional geometry is automatically 
derived from the river thalweg and river bank lines at the ends of a culvert. The discharge is computed taking into 
account the pressure heads and the cross-sectional geometry at the in- and outlet. In total, there are 1,475 culverts.

Additionally, run-of-river and high-head power plants are considered. For large rivers, the weirs of run-of-river 
power plants that are opened during floods are represented in the DTM-H. The retention effects of high-head 
power plants are simulated by specifying water level-discharge relationships of the outlets. Downstream of the 
reservoirs, at the outlets, hydrographs are set as upstream BCs analogously to the inflows in Section 2.3.2.

2.4. Hydrodynamic Simulation

The hydrodynamic simulation engine solves the full two-dimensional shallow water equations (SWEs)

𝜕𝜕𝑡𝑡𝐔𝐔 + 𝜕𝜕𝑥𝑥𝐅𝐅 (𝐔𝐔) + 𝜕𝜕𝑦𝑦𝐆𝐆 (𝐔𝐔) = 𝐒𝐒𝑏𝑏 (𝐔𝐔, 𝑏𝑏) + 𝐒𝐒𝑓𝑓 (𝐔𝐔) + 𝐒𝐒𝑐𝑐 , (2)

where 𝐴𝐴 𝐔𝐔 = [ℎ, ℎ𝑢𝑢, ℎ𝑢𝑢]𝑇𝑇  is the vector of conserved variables and F and G are the flux functions
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The bed slope term Sb models the fluid's acceleration due to gravitational forces,
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Flow resistance is modeled by the friction term Sf,

Figure 10. Outflow rating curve automatically derived from the water level 
slope along the river thalweg line, the roughness along the river and along the 
outflow cross section. Simulated outflow discharges are mapped to a water 
level at every time step.
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In these definitions, h represents the water height, hu is the discharge along the x-axis, hv is the discharge along 
the y-axis representing the conserved variables. Furthermore, u and v are the average flow velocities in x and 
y-directions respectively, g is the gravitational constant, and b is the bathymetry (assumed to be time-independent), 
and n is the Manning roughness coefficient. The source and sink term Sc is only active in adjustment cells with 
prescribed positive or negative discharges (Section 2.3.3).

For the spatial discretization of the SWEs, the finite volume method (FVM) is used on a uniform Cartesian grid of 
2 m. We use a second-order accurate, shock-capturing finite-volume scheme (Buttinger-Kreuzhuber et al., 2019). 
The benefit of a shock-capturing second-order scheme relative to a first-order scheme has been highlighted by 
several studies for small regions, for example, for steep catchments (Kvočka et al., 2015) and for large-scale stud-
ies in combination with fine resolutions (Dazzi et al., 2021). In some subregions of the simulation domain of the 
present study, Horváth et al. (2020) has shown that the water level errors of a second-order finite-volume (FV2) 
scheme are less than half of those of its first-order counterpart (FV1). We believe that the results of the subareas 
extend to the entire simulation domain because of a similar topography, similar event magnitudes and similar 
simulation tile sizes. Although a FV2 scheme requires around 5 times longer runtimes than a FV1 scheme, in the 
present study the FV2 scheme was therefore preferred.

The scheme preserves still-water and lake-at-rest steady states and properly handles flow states across bed discon-
tinuities. Second-order accuracy in space is achieved through a minmod limiter. The minmod parameter is set 
to one, in order to ensure robust and fast simulations (Horváth et  al.,  2020). At wet-dry boundaries only the 
velocities are set to zero below a cut-off water depth threshold of 0.0001 m, thus ensuring mass conservation up 
to floating-point precision. The friction source term Sf is evaluated in a semi-implicit manner by splitting it into 
a coefficient-wise product of an implicitly evaluated state and an explicitly evaluated friction term (Brodtkorb 
et al., 2012). For the second-order time integration we use Heun's method (Buttinger-Kreuzhuber et al., 2019).

The FVM enables straightforward parallelization on regular grids. The scheme is implemented on GPUs using 
the CUDA platform (Wilt,  2013) for substantially faster runtimes relative to CPUs (Brodtkorb et  al.,  2012; 
Morales-Hernández et al., 2021; Xia et al., 2019). On a GPU, parallel tasks are organized into blocks. A block 
size of 12 by 12 cells is used as it is the optimal block configuration for second-order schemes allowing for a high 
utilization of the GPU (Horváth et al., 2016). The implementation is heavily optimized and data dependencies 
are handled with on-chip memory for fast processing of the computational stencil. For fuller details the reader is 
referred to Horváth et al. (2016). Each simulation tile is assigned to a specific GPU and split into thousands of 
blocks. When a block is dry and not at risk of flooding, it is excluded from the hydraulic simulation. Therefore, 
only wet blocks have an impact on the simulation runtime. Well-constructed datastructures consisting of mostly 
single-precision floats guarantee that the GPU achieves maximum performance. We use 10 NVIDIA Titan RTX 
GPUs in parallel, each equipped with 24 GB of video memory. For the second-order accurate scheme, each GPU 
is able to process a maximum of approximately 150 million wet cells. The exact number depends on the distribu-
tion of the wet cells, input data size of the BCs and other minor factors.

The tiles specified in Section 2.3.1 are processed in parallel and independently of each other. Each GPU processes 
one tile and does not need to exchange data with another simulation. For a cluster of 10 GPUs, 10 tiles are 
processed in parallel. Whenever a GPU is ready for work, after finishing its previous job, the next tile in the 
queue is assigned to it automatically by the dataflow system (Section 2.1). Once all tiles are processed they are 
aggregated. Since the tiles are simulated independently, the inundated areas do not necessarily agree in overlap-
ping regions. In these regions, the water depths of the overlapping tiles are averaged with weights depending on 
the distance from the tile boundary ensuring smooth transitions at tile borders. This results in a unique maximum 
water depth for every location of the study domain. Finally, polygons of the inundated areas are delineated from 
the cells where the maximum water depth exceeds 5 cm.
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3. Results
3.1. Model Runtimes

An overview of the average model runtimes per km 2 of simulated wet area and 
the average simulated times for the regions of Austria is given in Table 1.The 
model runtime is defined as the cumulative wall clock time that a single GPU 
needs to process the specified area. The simulated time specifies the duration 
of the simulated timespan, which is given by the duration of the streamflow 
hydrographs inside the domain. It is larger than average in regions with lakes, 
for example, in Carinthia and Upper Austria. For a 100-year flood, the accel-
erated computational model ensures that a tile is processed with a runtime of 
a quarter of the maximum hydrograph duration on average. With a cluster of 
10 GPUs the actual model runtime is approximately one tenth of the runtime 
specified in Table 1 resulting in an overall runtime of less than a month for 
all of Austria.

For the tiles of Upper Austria, which are shown in Figure 6, the model runt-
imes per tile (for one GPU) are displayed in Figure 11a. Tiles that are covered 

by large inundated areas require longer runtimes, as can be seen when comparing tiles A, B and C in Figure 11b. 
In tile A, more than 20 million cells are wet, that is, an area of 80 km 2 is flooded. Only tiles with large lakes differ 
from the general pattern, for example, in tile C the lake Attersee is responsible for a wet area of 46 km 2. The 
ratio between model runtime and simulated time in Figure 11b does not not show any kinks, indicating that no 
high speeds occur which shows the robustness of the underlying scheme. As a side note, doubling the resolution 
increases the runtime by a factor of 5–7 times (Horváth et al., 2020). The factor is larger than 4 because of the 
shorter timestep according to the Courant–Friedrichs–Lewy (CFL) condition.

3.2. Comparison With Measured Rating Curves

To validate the accuracy of the simulations, we compare them with measured rating curves at eight stream 
gauges along the Inn river (Figure 12), where measured river bed profiles exist. Very good agreement is found 
for the top six gauges and slightly poorer agreement is found for Jenbach-Rotholz and Brixlegg. The rating 
curve of Jenbach-Rotholz shows a bias of around 30 cm which may be due to an inaccurate representation of the 
measured river profiles in the neighborhood of the gauge. Additional surveys would be needed to shed light on 
this issue, but this is beyond the scope of this article. At Brixlegg, simulated water levels tend to deviate from 
measured water levels for high discharges. In this case, an inaccurate representation of the flow at several bridges 
downstream of the gauge explains the low simulated water levels at high flows, since bridges are not explicitly 
considered in the simulations. Another reason may be an underestimation of the channel roughness which might 
be addressed by local recalibration.

Region
Sim. wet area 

(km 2)
Runtime (hours/

km 2)
Simulated 
time (days)

Carinthia 372.1 2.40 7.80

Lower Austria 1463.7 1.80 7.24

Salzburg 209.4 1.92 5.93

Styria 636.9 1.28 4.71

Tyrol and Vorarlberg 307.5 1.79 4.44

Upper Austria 541.9 2.51 9.87

Austria 3531.5 1.88 6.54

Note. For each region, the model runtimes are given in the average values per 
km 2 of simulated wet area (per 250,000 wet cells).

Table 1 
Wet Areas, Average Model Runtimes, and Average Simulated Time by 
Austria's Regions for a 100-Year Flood

Figure 11. (a) Model runtimes for each of the 25 tiles of Upper Austria for a 100-year flood. Simulation of a tile is performed on a single graphics processing unit 
(GPU). (b) Depending on the number of cells and the wave speeds inside these tiles, the simulation of a single tile is between real time and 20 times faster than realtime. 
The number of wet cells in a tile ranges between 1 and 20 million.
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3.3. Comparison With Local Flood Hazard Maps

For a spatially distributed validation, we compare the simulated inundated areas against local flood hazard zones, 
which have been developed in local studies for individual river reaches and approved by the respective authorities. 
Both the local hazard polygons used as reference (R) and the simulated flood zones are sampled on a 8 by 8 m 2 
grid. This results in two possible states for each cell in the reference benchmark data, either wet (R1) or dry (R0), 
if the reference polygons covers more or less than half of the respective grid cell. In the model M, a cell is consid-
ered wet (M1) if a threshold of 5 cm is exceeded at the cell center, otherwise it is dry (M0). Four performance 
measures are used. The first is the hit rate (HTR), defined by the number of cells that are wet in both the model 
and the reference over the number of wet cells in the reference data, that is,

HTR =
|𝑀𝑀1𝑅𝑅1|

|𝑅𝑅1|
∈ [0, 1]. (6)

Figure 12. Simulated (red lines) and observed (gray points) discharges and water levels at eight Inn gauges in Tyrol. The 
reference measurements are monthly maxima collected between 2010 and 2017. Catchment areas of the gauges range from 
2,162 to 8,504 km 2. Station names and numbers are given in the panels.
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The hit rate provides information whether the model can correctly replicate the wet cells, ignoring however if the 
model overpredicts flood extents. The false alarm ratio (FAR) accounts for the overprediction of the flood extent 
as it is directly proportional to the number of false alarms, that is, cells that are wet in the model but dry in the 
reference data.

FAR =
|𝑀𝑀1𝑅𝑅0|

|𝑀𝑀1|
∈ [0, 1]. (7)

A FAR equal to zero indicates that there are no false alarms. The critical success index (CSI) provides a measure 
of fit by relating the correctly predicted wet cells to the total number of wet cells in either model or reference or 
both, that is,

CSI =
|𝑀𝑀1𝑅𝑅1|

|𝑀𝑀1𝑅𝑅1 +𝑀𝑀0𝑅𝑅1 +𝑀𝑀1𝑅𝑅0|
∈ [0, 1]. (8)

A CSI of one describes a perfect match of the model flood extents and the reference data. Finally, the error bias 
(EBS) shows if a model tends toward overestimating (EBS greater than one) or underestimating (EBS smaller 
than one) flood extents. The error bias describes the number of false alarms over the number of cells that the 
model missed, that is,

EBS =
|𝑀𝑀1𝑅𝑅0|

|𝑀𝑀0𝑅𝑅1|
∈ [0,∞]. (9)

Not all simulated rivers are covered by the reference flood hazard maps, thus a buffer zone around rivers covered 
in the reference flood polygons is computed. The buffer zone width wb depends on the catchment area Ac, that 
is, 𝐴𝐴 𝐴𝐴𝑏𝑏 = 200 + 15

√

𝐴𝐴𝑐𝑐  . Furthermore, lakes and buildings are excluded in the buffer zone for a fair comparison. 
Model evaluation was subsequently restricted to this buffer zone.

For Austria, a critical success index (CSI) score of 0.69 and a hit rate of 83% is achieved. In Table 2 these perfor-
mance measures are evaluated per region. The CSI ranges between 0.61 and 0.74, the highest value is achieved 
in Styria, the lowest in Salzburg. The hit rate ranges between 0.71 and 0.88, the highest rate is achieved in Lower 
Austria. The false alarm ratio (FAR) ranges between 0.11 in Styria and 0.24 in Lower Austria. In Lower Austria, 
hit rate, FAR, and error bias are high due to a modest overestimation of inundated areas in the large floodplains 
along the Danube and its tributaries. In Styria, the good fit may be explained by the fact that rivers flow mostly 
through natural floodplains in hilly lowlands or alpine valleys. In Carinthia, Tyrol and Salzburg the floodplains 
lie in clearly defined alpine valleys where the hinterland is often protected by highways used as levees. These 
levees frequently have small openings for tributaries or streets, which can be closed if a flood only occurs at the 
main river, and are therefore mostly considered closed in the reference flood maps. However, in the proposed 
regional approach used here, they remain open to facilitate free flow of the tributary. Thus, model performance is 
worse in alpine valleys where rivers are constrained by highways used as levees, for example, Salzburg and Tyrol, 
than in regions where most levees do not have a secondary purpose, for example, in Lower and Upper Austria. 
These findings suggest that regional inundation modeling of rivers constrained by complex defensive protection 

Region CSI HTR FAR EBS𝐴𝐴 𝐴𝐴𝑅𝑅1𝑀𝑀1
 (km 2) Max. AC (km 2) Median AC (km 2)

Carinthia 0.71 0.84 0.18 1.13 113.8 7065.8 205.2

Lower Austria 0.68 0.88 0.25 2.48 630.7 130804.6 123.7

Salzburg 0.60 0.71 0.21 0.64 54.4 6124.1 181.0

Styria 0.73 0.81 0.12 0.55 380.5 9829.6 95.3

Tyrol and Vorarlberg 0.61 0.76 0.23 0.95 118.0 9531.1 96.2

Upper Austria 0.72 0.81 0.14 0.66 279.3 92515.6 74.7

Note. The metrics include the critical success index (CSI), hit rate (HTR), false alarm ratio (FAR), error bias (EBS), the area 
𝐴𝐴 𝐴𝐴𝑀𝑀1𝑅𝑅1

 that is wet in both the model and the reference, and the maximum and median of the catchment areas AC.

Table 2 
Performance Metrics for Austria's Regions for a 100-Year Flood
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measures is more involved and associated with a higher uncertainty (Annis et al., 2020) than that of rivers flowing 
through natural floodplains.

For a historical reach-scale scenario with manual calibration of roughness parameters, a CSI value of 0.89 against 
observed high water marks was reported in Echeverribar et al. (2019). Aronica et al. (2002) report CSI values 
of 0.7–0.85 for the best pick of ensemble scenarios. Thus, CSI values of 0.9 seem to represent an upper limit for 
local models. For two continental-scale models (Alfieri et al., 2014; Wing et al., 2017), CSI values are in the 
range of 0.44–0.65, and 0.51–0.9, respectively. However, comparisons across regions need to be considered in 
light of the complexity of the floodplain topography, for example, if the floodplain is defended or developed, as 
it has an effect on the model performance (Wing et al., 2017).

Figure 13a shows the CSI values aggregated on a grid with 2.5 × 2.5 km 2 cells for Tyrol. Illustrative examples of 
the inundated areas of the model and the reference data set are shown in Figures 13b–13d. In the following, we 
give reasons for the differences of the two data sets in order of their importance.

First, the inundated areas of the reference flood hazard maps are constructed for single reaches using simulations 
that are mass preserving. Typically, in these simulations the discharge of the main stream corresponds to that 
of the return period of the scenario, while the discharges of the tributary are reduced to the extent to make the 
confluences mass conserving. Normally, discharges of the tributaries correspond to return periods of 3–5 years, 
while the main stream maintains a 100-year flood quantile. The reference areas thus describe a realization of a 
single possible event. In contrast, the proposed model represents a regional pattern of the ensemble of multiple 
hypothetical events for a water level consistent with a 100-year flood quantile everywhere (Figure 8a). Thus, in 
our simulations inundated areas tend to be larger upstream of confluences, and smaller downstream, than in the 
reference map. This is particularly apparent in Figures 13b and 13c.

Second, rivers exist that are included in the data set used here but are not included in the reference data set and 
vice versa. Modeled inundated areas of tributaries are sometimes inside the buffer zone even if they are not 
included in the reference flood hazard maps. In this case, flooding of small rivers in the present model are incor-
rectly treated as false alarms.

Third, the DTMs are different as the data source and date of the ALS campaigns are not the same. The reference 
flood hazard maps include underpasses which are considered closed in the reference but open in our model 
and vice versa, thus causing differences in the flooded areas as is shown in Figure 13d. In general, levees are 
resolved and protected areas remain dry (Figure 13b). In rare cases, mobile walls or concrete walls with a width 
smaller than 2 m, which are resolved in the reference data set but not here, cause an overestimation of wet areas. 
In general, uncertainties are larger in urban areas, which is also in line with the findings of Dottori et al. (2013); 
Wing et al. (2017); Annis et al. (2020).

As the reference flood hazard maps are also created from a shallow water model in addition to comparisons 
with observed flood cases, and some of the data are shared between the models (e. g., river bed), this test is not 
fully independent and may not reveal all the biases. A validation against remotely observed inundation patterns, 
observed flood marks or against validation claims of individual inundated buildings could help to further improve 
the modeling approach (Wing et al., 2021; Zischg et al., 2018).

3.4. Model Sensitivity to Tiling

In this section, we investigate the effect of varying the boundary for a specific tile and the effect of different 
tilings for an entire region comprising up to 20 tiles. In order to test the sensitivity of the BCs for a single tile, 
we performed a reference simulation for a 100-year flood on a large tile with a size of 32 × 15.8 km 2 and simu-
lations on eight smaller alternative tiles (Figure 14a). These tiles are obtained by shrinking the reference tile at 
the eastern or western border with a step size of 2 km. Table 3 shows performance metrics of these simulations in 
comparison to the reference simulation. They are evaluated in the tile in the center with a size of 12 × 15.8 km 2. 
The metrics show that there is almost perfect agreement if the boundaries are 2 km away from the reference 
simulation. If the boundaries move further away from the reference boundaries, the agreement diminishes only 
slightly to a CSI value of 0.98 for the outflow BC. For the inflow BC, the CSI value drops to 0.85 for one tile. 
In this case, the inflow BC lies in an urban area and crosses multiple buildings. Once the river floods the urban 
floodplain, a significant proportion of the water volume is held back resulting in lower flood discharges further 
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downstream and comparably lower CSI and HTR values. In fact, the variation of the inflow BC has a greater 
effect on the inundated areas than the variation of the outflow BC. This demonstrates that occasionally issues for 
specific borders might occur in a fully automated tiling process. In general, the very high CSI values indicate an 
overall robust approach.

In order to test the sensitivity of different tilings for an entire region (around 10,000 km 2), we examined three 
different tilings for a 100-year flood for Tyrol (Figure 14b). The inundated areas are relatively consistent across 
the three different tilings with CSI values of 0.89, 0.90 and 0.87. The HTR amounts to 0.96, 0.93 and 0.91. 
Differences are mostly located close to inflow BCs and downstream of lakes. This indicates that discharges 
obtained by a hydraulic simulation do not always agree well with the specified flood hydrographs derived from 

Figure 13. (a) Critical success index (CSI) scores in Tyrol aggregated on a 2.5 by 2.5 km 2 grid. (b) Both models resolve 
levees (1) at the Inn around Telfs, but the adopted regional model causes larger inundation areas for the northern tributaries 
(2). (c) In Sankt Johann, flooded areas deviate due to the proposed regional modeling approach including the adjustments. 
Upstream of the confluence the flood quantiles are higher than those of the local reference data set resulting in larger modeled 
indundation areas (3), (4). (d) At the Inn in Schwaz an underpass is included in the reference data set, but not in the DTM 
used here (5) and vice-versa (6).
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the hydrological data at lake outlets. We also compared the alternative tilings with local flood areas in this region 
as in Section 3.3 and found CSI values of 0.65 for the base tiling, as well as 0.65 and 0.62 for the alternative 
tilings. Although different tilings do not result in exactly the same inundated areas, the differences are small.

4. Discussion
Previous large-scale flood hazard simulations have often used coupled 1D/2D models (Falter et al., 2016) or reso-
lutions too coarse to explicitly resolve fine structures, for example, levees and small rivers, in the terrain model 
(Alfieri et al., 2014; Wing et al., 2017). A resolution of 2 m as adopted in this study allows for a direct incorpo-
ration of such terrain features. As a consequence, additional techniques, such as subgrid simulation or downsam-
pling algorithms (Neal et al., 2012; Schumann et al., 2014), are not required. Due to the high resolution, openings 
in levees, for example, street underpasses, can be represented explicitly. This opens up new questions regarding 
the modeling of underpasses since, without additional information, it is not clear from the DTM whether they 
will be closed or not in an emergency case. Overall, the direct inclusion of levees and buildings enables a detailed 
representation of flow in urban regions. The high detail also allows for the direct estimation of building damage 
and other socio-economic impacts (Ernst et al., 2010).

In these types of large-scale applications, the storage capacities needed for the entire domain almost always 
exceeds what can be accomodated on a single computational device, so some tiling is necessary. One option is to 
couple the subdomains through overlapping halo and ghost cells and perform tightly coupled simulations where 
the state variables are exchanged at every simulation time step (Morales-Hernández et al., 2021; Xia et al., 2019). 
For example, Xia et  al.  (2019) distributed one simulation run for a catchment with a size of 2,500 km 2 and 
a resolution of 5 m (i. e., 100 million cells) on several GPUs. The tightly coupled approach tends to increase 
runtimes as the global timestep is restricted by the highest numerical speed in all the subdomains due to the 
CFL condition. This introduces a synchronisation barrier at every time step of the hydraulic simulation. Moreo-

ver, when simulating multiple non-overlapping catchments, every catchment 
needs to be simulated for the maximum flood duration of the entire region. 
Thus, the runtime tends to increase even further with the number of subdo-
mains. While these issues are avoided in the proposed less tightly coupled 
approach, one drawback are differences in regions where the tiles overlap. As 
the domain is subdivided into tiles, each of which is simulated independently 
and in parallel on one GPU, state variables are not synchronized during the 
simulation across the tiles. However, the inundated areas in different tiles 
are aligned with each other through consistent BCs, which are defined in 
a unique way for any river position and are thus independent of the tiling. 
The analysis in Section 3.4 shows that, although the inundated areas depend 
on the tiling, the resulting differences are small. We therefore consider the 
proposed less tightly coupled approach an interesting alternative to tightly 
coupled approaches.

In the proposed model the region of interest is tesselated into rectangular tiles 
rather than into individual river reaches, as for example, in Bates et al. (2021); 
Sampson et al. (2015); Wing et al. (2017). The proposed approach allows the 

Figure 14. (a) The sensitivity of the inundated areas in the center tile (black) is investigated for the inundated areas of the 
reference tile (blue) and eight alternative tiles with shrunken eastern or western boundaries (orange). (b) Three different 
tilings for Tyrol in order to compare the sensitivity of the inundated areas with respect to the domain decomposition.

CSI HTR FAR Tile border Change Affected BC

0.999 0.999 0.000 West 2 km Inflow

0.965 1.000 0.035 West 4 km Inflow

0.851 0.851 0.000 West 6 km Inflow

0.971 1.000 0.029 West 8 km Inflow

0.999 1.000 0.000 East 2 km Outflow

0.999 1.000 0.000 East 4 km Outflow

0.999 1.000 0.001 East 6 km Outflow

0.983 0.999 0.016 East 8 km Outflow

Table 3 
Critical Success Index (CSI), Hit Rate (HTR), and False Alarm Ratio (FAR) 
for Inundated Areas for Variations of the Western or Eastern Tile Border 
Shown in Figure 14a, Affecting Either the Main River's Inflow or Outflow 
Boundary Conditions (BC)
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simulation of flood discharges associated with a consistent return period across all river reaches. The inundated 
areas are determined by the flood quantiles representing the flood peak for a given return period at every node in 
the stream network. As a consequence, the simulated flood areas do not correspond to a single observable event, 
but are related to observed, real events through the flood frequency curve and associated flood discharges along 
the stream network. We consider this an attractive alternative to long-term stochastic simulations (e. g., Falter 
et al., 2015), because of the much faster runtimes. The application of a probabilistic sampling approach (e. g., with 
copulas (Bender et al. (2016)) to numerous confluences in ungauged catchments requires thousands of simula-
tions which would render the spatial resolution adopted here unfeasible.

Although the modeling framework is mostly automatic, we integrate manual methods where an improvement 
over the automatic methods was deemed feasible. The manual steps are pre-processing steps before the simula-
tion. They involve correction of data errors in the terrain model, the river network, for example, manual correction 
of the river and river bank lines (Wimmer et al., 2021), and the river bed geometry, for example, obstacle removal. 
The flood discharges are checked manually and, if necessary, corrected to account for local hydrological particu-
larities (R. Merz & Blöschl,  2005). Lastly, the simulation tiles are specified manually to balance the factors 
mentioned in Section 2.3.1.

5. Conclusions
In this paper, we present a modeling framework for large-scale hydraulic simulations of river floods. With a focus 
on accuracy and simulation speed, we employ a second-order finite-volume scheme that discretizes the full, 
transient shallow water equations (Buttinger-Kreuzhuber et al., 2019) implemented on graphics processing units 
(GPUs). Inundated areas are simulated for the whole of Austria (84,000 km 2) with quadratic cells of 2 × 2 m 2. We 
achieve local relevance through the number of included streams and through the high resolution of the DTM and 
the simulation grid, which allows explicit representation of dams, buildings and small rivers. Inflow boundary 
conditions (BCs) are automatically prescribed from hydrologic data. Hydraulic submodels of high-head power 
plants and culverts provide an accurate description of local effects. Dynamic outflow BCs account for instation-
ary two-dimensional effects, for example, from retention basins.

In order to efficiently map the inundated areas, we propose a workload distribution based on simulation tiles that 
allows adaptation to the capabilities of the individual computational devices. The approach allows for arbitrarily 
placed tiles with a domain size not constrained by hydrological data, but only bound by current hardware limi-
tations. For tiles with sizes of around 600 km 2, the GPU-accelerated robust hydraulic engine ensures fast hydro-
dynamic simulations. For all of Austria, 182 tiles are processed in parallel on a distributed setup of 10 GPUs. 
The effective runtime for the entire region of Austria is less than a month for a 100-year flood simulation, which 
results in 3,532 km 2 of inundated areas or 883 million wet pixels.

By providing additional adjustment source terms to the hydraulic engine, a novel approach to maintain consistent 
flood return periods across the river network is presented. With these adjustments, we are able to simulate all 
rivers in a tile in one run. The adjustments violate mass conservation at confluences, thus results deviate from 
conventional mass-conserving flood hazard maps. This approach provides an efficient way to map inundated 
areas at confluences without the need for ensemble simulations.

The automation framework Visdom (Waser et al., 2011) controls the complete dataflow including the automated 
generation of the inputs to the hydraulic simulations, their execution, and the post-processing without the need 
for manual interventions. Manual work is only required for a few specific tasks, for example, tiling of the region 
of interest and providing data corrections. A flexible setup ensures that changes and manual corrections are auto-
matically integrated and propagated forward to the simulations.

We regard the presented model as a prototype for a new standard that brings local relevance to large-scale high 
resolution modeling. The simulated rating curves show good agreement at stream gauges when compared with 
measured rating curves. The model delivers flood hazard maps comparable to flood hazard maps created in local 
studies with a critical success index (CSI) score of 0.69 and a hit rate of 83% across Austria. The individual CSI 
scores across Austria's regions range from 0.61 to 0.74. Deviations from local reference maps occur due to the 
consistent flood return periods or due to differences in the DTM, for example, open underpasses. In future work, 
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uncertainties in the model cascade and the effects of climate change could be addressed. One possibility would be 
ensembles of simulations that investigate changing streamflow conditions from climate projections.
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