
1.  Introduction
Floods often come as a surprise. Examples of extreme floods that have occurred unexpectedly and have led to 
disastrous socio-economic consequences abound in the literature (Merz et al., 2015). Figure 1 shows one exam-
ple time series with such a surprising flood. The 2002 flood peak of the River Kamp, Austria, was about three 
times larger than the highest flood in the 100-year observational period before and has indeed caused enormous 
damage triggering desperate emergency measures in the region (Blöschl et al., 2006). From a statistical perspec-
tive, the occurrence of such an event is very unlikely if the extreme value behavior conforms to an asymptotically 
exponential (light-tailed) distribution. However, if the underlying probability distribution has a heavy tail, its 
occurrence is less unlikely. A heavy upper tail implies that the extreme values are more likely to occur than would 
be predicted by distributions with exponential asymptotic behavior, such as Exponential, Gamma, and Gumbel 
distributions (El Adlouni et al., 2008). Because human intuition tends to expect light tail behavior, processes that 
show heavy tail behavior often lead to surprise (Taleb, 2007).

Heavy-tailed behavior of flood peak distributions is of the highest relevance for flood design and risk manage-
ment. Neglecting heavy tail behavior, if it exists, results in underestimating the probability of occurrence of 
extremes. This underestimation may result in biased flood management measures, such as underestimated dike 
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heights or inadequate insurance cover. These in turn will lead to much higher flood risks (damage times its prob-
ability) than flood management decisions based on unbiased probability estimates.

Unfortunately, the processes causing heavy tail behavior in flood peak distributions are not well understood and 
the literature on the subject is dispersed. There is some mechanistic understanding of the generation of heavy 
tail behavior of other geophysical phenomena, such as ocean rogue waves, wind gusts, and extreme precipitation 
(Böttcher et  al.,  2007; Toffoli et  al.,  2019; Wilson & Toumi, 2005), pointing to the non-linear interaction of 
component processes, but for the case of river floods the findings are unclear. In this review, we summarize in a 
coherent way the current knowledge of the processes that generate heavy tails in flood peak distributions.

We include atmospheric, catchment, and river system processes, such as rainfall mechanisms, runoff generation 
processes, and the construction of river embankments. We do not consider singularities, such as glacier lake 
outbreak floods or floods induced by massive landslides, which are caused by completely different mechanisms 
than the remaining floods in that catchment. An example of such an event is the Vajont disaster in 1963, where 
a landslide into a reservoir caused a flood wave that overtopped the dam and led to almost 2,000 fatalities (Delle 
Rose, 2012). The probability and magnitude of such singularities, or unrepeatable events, cannot be estimated 
by studying the other floods in the catchment. Their estimation requires assembling evidence about the relevant 
influencing factors and projecting them through a causal model (Hall & Anderson, 2002), applying, for instance, 
methods developed in the field of probabilistic risk analysis (Paté-Cornell, 2012). In this review, we propose 
nine hypotheses on generating mechanisms and discuss to which extent the current knowledge allows to support 
or falsify each hypothesis. We discuss the statistical conditions that may generate heavy tail behavior and relate 
them to the flood generation mechanisms. We explore the interplay of component processes and assess to which 
extent this information may guide the estimation of upper tail behavior. Component processes are defined as the 
elements of an aggregation. Examples of component processes are different flood types within a catchment that 
jointly constitute the sample of observed flood events or the aggregation of rainfall and runoff generation leading 
to flood peaks. Finally, we recommend future research on testing these hypotheses and improving the inference 
of upper tail behavior from data and process understanding.

2.  Identifying Heavy Tails
2.1.  Defining Heavy-Tailed Distributions

Our interest lies in the right tail of distributions, which characterizes, loosely speaking, the largest events and 
whether a distribution can be considered heavy-tailed or not. The most general definition (as it includes a wider 
class of distributions than other definitions) is that distribution with a distribution function 𝐴𝐴 𝐴𝐴  of a real-valued 
random variable 𝐴𝐴 𝐴𝐴 is heavy-tailed if and only if

Figure 1.  Times series of annual maximum streamflow (a) and flood frequency curve (b) of River Kamp, Austria. The flood peak in 2002 was roughly three times 
larger than the flood of record in the preceding 100 years. The fitted Generalized Extreme Value distribution shows heavy-tailed behavior. In addition, the light-tailed 
Gumbel distribution is fitted to the sample.
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Equation  1 also refers to the moment generating function of 𝐴𝐴 𝐴𝐴 . If the 
expected value does not exist for all 𝐴𝐴 𝐴𝐴 𝐴 0 , the random variable 𝐴𝐴 𝐴𝐴 is consid-
ered heavy-tailed. If any moments of 𝐴𝐴 𝐴𝐴 are not finite (do not exist), the 
moment generating function is not finite (does not exist) for all 𝐴𝐴 𝐴𝐴 𝐴 0 and 

𝐴𝐴 𝐴𝐴 is heavy-tailed. An equivalent expression to Equation 1, for the random 
variables relevant in hydrology, is: a random variable 𝐴𝐴 𝐴𝐴 is heavy-tailed if the 
tail of its distribution function, 𝐴𝐴 𝐹𝐹 (𝑥𝑥) = 1 − 𝐹𝐹 (𝑥𝑥) , is a heavy-tailed function, 
meaning

lim
�→∞

� (�)��� = ∞��� ��� � > 0� (2)

Equation 2 states that a random variable is heavy-tailed if the tail of the distri-
bution function decays more slowly than any exponentially decreasing func-
tion, and therefore the behavior of the product, as 𝐴𝐴 𝐴𝐴 grows, is dominated by 
the exponential increase of 𝐴𝐴 𝐴𝐴

𝜆𝜆𝜆𝜆 in Equation 2.

Examples of heavy-tailed distributions are the Pareto distribution and the lognormal distribution. Subclasses of 
this definition are long-tailed distributions, sub-exponential distributions, asymptotic Pareto distributions (also 
called regularly varying), distributions with an exact Pareto tail, and (α-)stable distributions. All these defini-
tions are nested with increasingly heavier tails, meaning that a long-tailed distribution is always heavy-tailed, a 
sub-exponential distribution is always long-tailed, and so on, but not vice versa. An overview of the definitions 
is given in Table 1.

Heavy-tailed distributions appear in flood statistics most commonly for two kinds of time series of flood peaks: 
annual maximum series (AMS) and Peak-over-Threshold series (POT). AMS consists of the largest flood peak 
per year. If the events are assumed to be independent, the asymptotic distribution converges to a Generalized 
Extreme Value (GEV) distribution with a distribution function

𝐹𝐹 (𝑥𝑥) = 𝑒𝑒𝑒𝑒𝑒𝑒

(

−

(
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where 𝐴𝐴 𝐴𝐴 ∈ ℝ
∖0 is the shape parameter, 𝐴𝐴 𝐴𝐴 𝐴 0 is the scale parameter, and 𝐴𝐴 𝐴𝐴 ∈ ℝ is the location parameter (Fisher & 

Tippett, 1928). The constraint 1 + ξ (x − μ)/σ > 0 has to hold. The special case of 𝐴𝐴 𝐴𝐴 = 0 with
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Corresponds to the light-tailed Gumbel distribution. If 𝐴𝐴 𝐴𝐴 𝐴 0 , the distribution represents the extreme value distri-
bution of maxima of type II, also known as Fréchet distribution (Coles, 2001), and is heavy-tailed. Similar results 
also exist for short-range dependent data (Leadbetter & Rootzen, 1988).

POT series consists of all events above a threshold, which can be chosen hydrologically or statistically (Lang 
et al., 1999). Again, assuming independence of events and invoking the Pickands-Balkeema-de Haan Theorem 
(Balkema & de Haan, 1974; Pickands, 1975), the limit distribution for a given threshold 𝐴𝐴 𝐴𝐴 is given by the Gener-
alized Pareto Distribution (GPD):

𝐹𝐹𝜇𝜇(𝑥𝑥) = 1 −

(

1 +
𝜅𝜅(𝑥𝑥 − 𝜇𝜇)

𝜎𝜎

)−1∕𝜅𝜅

� (5)

For 𝐴𝐴 𝐴𝐴 𝐴 𝐴𝐴 if 𝐴𝐴 𝐴𝐴 𝐴 0 and 𝐴𝐴 𝐴𝐴 𝐴 𝐴𝐴 𝐴 𝐴𝐴 − 𝜎𝜎∕𝜅𝜅 for 𝐴𝐴 𝐴𝐴 𝐴 0 , where 𝐴𝐴 𝐴𝐴 ∈ ℝ
∖0 is the shape parameter, 𝐴𝐴 𝐴𝐴 𝐴 0 is the scale 

parameter and 𝐴𝐴 𝐴𝐴 ∈ ℝ is the location parameter. The distribution is heavy-tailed for 𝐴𝐴 𝐴𝐴 𝐴 0 . Again, there exists a 
special case for 𝐴𝐴 𝐴𝐴 = 0 with

Heavy-tailed 𝐴𝐴 𝐴𝐴
(

𝑒𝑒
𝜆𝜆𝜆𝜆
)

= ∞∀𝜆𝜆 𝜆 0 

Long-tailed � (�+�)
� (�)

→ 1 ��� � → ∞∀� > 0 

Sub-exponential
𝐴𝐴 lim

𝑥𝑥→∞

𝑃𝑃(𝑋𝑋1+⋯𝑋𝑋𝑛𝑛>𝑥𝑥)
𝑃𝑃(max(𝑋𝑋1 ,⋯, 𝑋𝑋𝑛𝑛) >𝑥𝑥 )

= 1 

Regularly varying (Asymptotic Pareto)
𝐴𝐴 lim

𝑡𝑡→∞

𝐹𝐹 (𝑡𝑡𝑡𝑡)

𝐹𝐹 (𝑡𝑡)
= 𝑥𝑥

−𝛼𝛼
𝛼𝛼 𝛼 0 

Exact Pareto tail
𝐴𝐴 𝐴𝐴𝑃𝑃 (𝑥𝑥) = 1 −

(

𝑢𝑢

𝑥𝑥

)𝛼𝛼

𝛼𝛼 𝛼 0, 𝑥𝑥 𝑥𝑥𝑥  

Stable (α-stable) Pareto tail with 𝐴𝐴 𝐴𝐴 𝐴 2

Note. For a real-valued random variable X with distribution function 𝐴𝐴 𝐴𝐴  , we 
denote 𝐴𝐴 𝐹𝐹 = 𝑃𝑃 (𝑋𝑋 𝑋 𝑋𝑋) . An overview of the different classes of tail heaviness 
for the most common distributions in hydrology is given in the study by El 
Adlouni et al. (2008).

Table 1 
Heavy-Tailed Distributions and Their Characterization
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Which can be interpreted as a shifted exponential distribution.

2.2.  Quantifying the Upper Tail Behavior

There are different measures for quantifying the tail behavior of flood peak distributions, with the most wide-
spread measure being either the shape parameter of the GEV distribution for AMS or the shape parameter of the 
GPD for POT (Coles, 2001). The shape parameters are directly related to the tail index 𝐴𝐴 𝐴𝐴 = 1∕𝜉𝜉 and 𝐴𝐴 𝐴𝐴 = 1∕𝜅𝜅 
for AMS and POT, respectively (The tail index refers to α in Table 1, rows 4 and 5). The GEV with a positive 
shape parameter belongs to the class of regularly varying distributions, while the Generalized Pareto distribution 

𝐴𝐴 𝐴𝐴 𝐴 0 possesses an exact Pareto tail. The Gumbel and the exponential distribution are light-tailed distributions. 
For other distributions than the GPD and the GEV, such as the lognormal distribution, the GEV shape parameter 
is not an adequate indicator of the upper tail behavior. The skewness is also frequently used to characterize the 
behavior of the upper tail of flood peak distributions (McCuen & Smith, 2008). Although a skewed distribution 
is not necessarily heavy-tailed, skewness is often preferred as no assumption on the underlying distribution, 
besides the existence of the third moment, is required for the consistent estimation of skewness, as compared 
to more direct indices of tail heaviness. For the specific case of GEV, skewness and the shape parameter are 
directly related. Other quantitative metrics, such as the Upper Tail Ratio (Smith et al., 2018) or the Gini Index 
(Davidson, 2012) are less often used (see Wietzke et al.  [2020] for a discussion on scalar upper tail indices). 
Further, graphical methods allow estimating the upper tail behavior from data, for example, by mean excess plots 
or the generalized Hill ratio plot (Embrechts et al., 1997), but more subjective choices must be made. In general, 
it is not a priori clear which estimator to use and a suitable choice depends on the possible values of α as well as 
the assumptions made for the distribution function (Embrechts et al., 1997).

There are various estimators for the different measures of upper tail behavior, but generally, very long time series 
are needed to reliably estimate these measures from observations (Papalexiou & Koutsoyiannis, 2013; Wietzke 
et al., 2020). Given the typical time series lengths in hydrology, light-tailed distributions can seem heavy-tailed 
and vice versa. When estimating an upper tail parameter, the sampling behavior depends on the actual under-
lying tail behavior, possible misspecifications of the model, the size of the sample, and the estimator itself. For 
example, the method of moments shows a strong underestimation for heavy-tailed distributions for a sample size 
smaller than 50, hence with this method the heavy-tailed behavior of flood time series of typical length might 
not be recognized, as pointed out by Koutsoyiannis (2004). Analyses of flood data of numerous catchments show 
patterns of the upper tail behavior of flood peak distributions that tend to be erratic or only weakly consistent in 
space (Bernardara et al., 2008; Merz & Blöschl, 2009). This behavior has been explained by the large influence of 
sampling uncertainty and the effect of single extreme floods, as the tail heaviness can be overestimated if a short 
time series contains an extreme event (Merz & Blöschl, 2009). Robust estimation techniques can reduce the impact 
of single extreme events on the estimation of the tail for small samples. Fischer and Schumann (2016) propose 
POT approaches based on monthly maxima and demonstrate their higher statistical robustness (Huber, 2004) 
against occasional extreme events compared to the approach using annual maxima series.

3.  Statistical Perspectives on the Generation of Heavy Tails
Heavy tails of flood frequency curves can result from heavy tail characteristics of the component processes or 
may emerge from the non-linear superposition of light-tailed processes (Blöschl & Zehe, 2005). If we represent 
the component processes as random variables, we can investigate how different mathematical operations on these 
component processes influence the upper tail behavior of the resulting flood frequency curve. We organize the 
operations most relevant to flood generation into three groups: (S1) Arithmetic combination of random variables, 
(S2) Mixture of distribution functions, and (S3) Transformations of random variables (Figure 2). For all of these 
operations, two approaches are relevant from a statistical point of view: Asymptotic approximations, referring to 
limit theorems, and finite sample aggregations of random variables. Both approaches are discussed separately and 
further details can be found in Appendix A. In Section 3.4 we embed these statistical perspectives in the context 
of flood frequency analysis to discuss how they can contribute to better understanding the flood tail behavior.
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Figure 2.
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3.1.  Arithmetic Combination of Random Variables (S1)

The flood peak at a confluence of two tributaries can be represented as an additive aggregation of the floods of 
the tributaries if they occur at the same time (Guse et al., 2020). Spatial aggregation of flood producing point 
precipitation can also be a relevant additive aggregation process:

𝑍𝑍 = 𝑋𝑋1 +𝑋𝑋2�

Here, 𝐴𝐴 𝐴𝐴1 and 𝐴𝐴 𝐴𝐴2 are component processes that are additively aggregated to the variable 𝐴𝐴 𝐴𝐴 . Assuming statisti-
cal independence, additive aggregations generally do not create heavy tails, if 𝐴𝐴 𝐴𝐴1 and 𝐴𝐴 𝐴𝐴2 are light-tailed, but 
usually propagate them, if at least one component is heavy-tailed. The most relevant cases in the context of 
floods are summarized in Table A1. For the sum of dependent random variables, the tail heaviness of the aggre-
gated random variable depends on the heaviness of the marginal tails and the dependence of the tails (Albrecher 
et al., 2006; Kortschak & Albrecher, 2009). For the additive aggregation of many random variables, the aggre-
gation via the mean may remove heavy tails, as a consequence of a variation on the classical Central Limit 
Theorem (Billingsley, 1995; Nair et al., 2017). However, heavy tails are preserved in the limiting distribution of 
mean-aggregated processes, if the condition of finite variance of the components is not met, resulting in α-stable 
distribution (Table 1, for details, see Nair et al. [2017]).

In contrast to additive processes, multiplicative processes can lead to heavy-tailed outcomes, even if the compo-
nents are light-tailed. Here, 𝐴𝐴 𝐴𝐴1 and 𝐴𝐴 𝐴𝐴2 are component processes that are multiplicatively aggregated to the vari-
able Z:

𝑍𝑍 = 𝑋𝑋1 ⋅𝑋𝑋2�

This behavior is relevant, for example, for runoff generation where the flood peak is often formulated as the 
product of a runoff coefficient and a representative rainfall that can both be considered as random variables (e.g., 
Gaume, 2006; Gottschalk & Weingartner, 1998; Sivapalan et al., 2005; Viglione et al., 2009).

The conditions for the creation of a heavy-tailed distribution from the multiplicative aggregation of light-tailed 
random variables are complex, even for the independent case. For example, the product of two exponentially 
distributed random variables is heavy-tailed, the product of two normally distributed random variables is 
light-tailed, while the product of three normally distributed random variables is heavy-tailed (Foss et al., 2009). 
Rojas-Nandayapa and Xie (2018) suggested sufficient conditions for the product of any two random variables 
to be heavy-tailed. If at least one of the components is heavy-tailed, this property is propagated to the resulting 
random variable 𝐴𝐴 𝐴𝐴 . Table A2 summarizes the most relevant cases for the product of random variables for differ-
ent classes of heavy-tailed distributions. For dependent random variables, the dependence structure of the compo-
nents is relevant for the tail behavior of the aggregated random variable (for several special cases see Ranjbar 
et al., 2013). For the multiplicative combination of many random variables the lognormal distribution, which is 
heavy-tailed, arises naturally (Nair et al., 2017).

Figures 2a and 2b illustrate the differences in terms of tail behavior between the sums and the products of random 
variables. The sum of two random variables with light tails (Gumbel distributed, ξ = 0) shows a light-tailed 
behavior, while for the sum of a Gumbel and a heavy-tailed GEV variable (ξ = 0.2), the heavy tail of the GEV is 
propagated. In contrast, if two random variables are multiplied, the resulting distribution shows an upper heavy 
tail, even for the case where both variables have a Gumbel distribution.

Figure 2.  Illustration of the statistical perspectives S1-S3 and examples of related hydrological processes. (a) Sum and (b) product of two random variables for the 
independent and dependent case. Each subplot shows two variants: combination of two component distributions with ξ = 0 (solid) and combination of two component 
distributions with ξ = 0 (solid) and ξ = 0.2 (dashed). Although the component distributions are the same, the upper tail behavior of the resulting distributions varies 
clearly between the subplots. For instance, the product of two dependent random variables (b2) shows a much heavier tail than the sum of the same random variables 
(a2). For the dependent case, a Gaussian copula with dependence parameter ρ = 0.8 was used. (c) Effects of mixing distributions on the tail behavior. The three 
component distributions (dashed) are combined with equal weights to a mixed distribution (solid). (c1) The tail behavior of the mixed distribution tends to follow the 
most dominant tail of the components. (c2) Mixing three Gumbel distributions (with light upper tails) preserves the tail behavior. (d) and (e) Effects of non-linear 
transformations on the upper tail behavior. (d1) and (e1) show the non-linear transformation, (d2) and (e2) show the input and distributions of the transformed random 
variables.
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3.2.  Mixture of Distribution Functions (S2)

While in the statistical perspective S1 we considered the arithmetic combination of random variables, here 
component processes contribute randomly, according to assigned probabilities, to the outcome of the aggregated 
process, resulting in a mixture distribution. For many catchments, it has been shown that floods are generated by 
different (atmospheric and catchment) processes and that the population of flood events in observed time series 
is a mixture of flood types (Tarasova et al., 2019). These can be represented by mixture distributions in terms of 
flood process types (Fischer, 2018), flood seasons (Strupczewski et al., 2012; Waylen & Woo, 1982), and precip-
itation types (Cavanaugh et al., 2015).

The distribution function of the mixture distribution Z is the weighted sum of the distribution functions 𝐴𝐴 𝐴𝐴𝑖𝑖 of the 
components 𝐴𝐴 𝐴𝐴𝑖𝑖

𝐹𝐹𝑍𝑍 (𝑥𝑥) =

𝑘𝑘
∑

𝑖𝑖=1

𝜔𝜔𝑖𝑖𝐹𝐹𝑖𝑖(𝑥𝑥)�

where 𝐴𝐴 𝐴𝐴𝑖𝑖 are the weights with 𝐴𝐴 𝐴𝐴𝑖𝑖 ≥ 0 and 𝐴𝐴
∑𝑘𝑘

𝑖𝑖=1
𝜔𝜔𝑖𝑖 = 1 .

The mixture of a finite number of light-tailed distributions can only result in a light-tailed mixture distribution. 
If all components are heavy-tailed, the heavy tail is generally propagated to the aggregated mixture distribu-
tion (Foss et al., 2009). The assumption of heavy-tailedness is a weaker assumption than the non-existence of 
moments. If the assumption of the non-existence of the moments of one of the components holds, the resulting 
mixture distribution is heavy-tailed. In empirical hydrological studies it has been pointed out that the tail index 
of a mixture distribution seems to be inherited from the component with the most pronounced tail (e.g., Carreau 
et al., 2009; Cavanaugh et al., 2015). Figure 2 (c) illustrates these effects with two examples. In Figure 2 (c1) three 
different tails of the components result in a heavy-tailed mixture distribution, while in Figure 2 (c2) the mixture 
of three light-tailed random variables that are Gumbel distributed results in a light-tailed mixture distribution.

3.3.  Transformations of Random Variable (S3)

The transformation of rainfall to surface runoff in the case of infiltration excess overland flow can be consid-
ered a non-linear transformation, where runoff is zero as long as rainfall intensity is below infiltration capacity, 
but becomes the difference between rainfall and infiltration capacity when the infiltration capacity is exceeded. 
Another example of a transformation is applying the maximum transformation to continuous streamflow data to 
obtain annual maximum streamflow. In both cases the underlying concept is a transformation 𝐴𝐴 𝐴𝐴 of random varia-
bles 𝐴𝐴 𝐴𝐴 and its effect on the propagation of heavy tails to the transformed variable Z:

𝑍𝑍 = 𝑔𝑔(𝑋𝑋)�

While linear transformations do not change the tail behavior, non-linear transformations can affect the tail of the 
transformed variable, depending on the transformation itself, its parameters as well as the tail characteristics of 
the input variable. Results for selected transformations that are most relevant for hydrological purposes are given 
in Appendix. The exponential transformation illustrated in Figure 2 (d) gives a heavy tail for a light-tailed input 
variable, while the simple thresholding in Figure 2 (e) preserves the light tail of the input variable. An example 
of exponential transformation is runoff generation where the runoff coefficient depends in a non-linear way on 
the soil moisture. Thresholding behavior can occur when process types switch, for instance, when subsurface 
stormflow occurs during small events and saturated overland flow during large events.

In flood frequency analysis the maximum operation is usually applied to daily flows to obtain yearly maxima. 
The heavy tails of components are preserved under the maximum operation (Foss et al., 2011; Mikosch, 1999), 
meaning that heavy tails of daily streamflow are propagated to the flood peaks. For the maxima of many random 
variables, the GEV arises as to the limiting distribution for most relevant hydrological variables, which moti-
vates its frequent use in flood frequency analysis. More specifically, the aggregated maximum distribution is 
heavy-tailed, if the components lie in the domain of attraction of Frechet, resulting in a positive shape parameter 
for the GEV (Fisher & Tippett, 1928).
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3.4.  Statistical Perspectives and the Context of Flood Frequency Analysis

When discussing the hypotheses, we also consider whether the flood generation mechanisms can be related to the 
statistical conditions that can generate heavy tail behavior. There are, however, differences in the statistical and 
hydrological perspectives on heavy tails.

Statistically speaking, the property of heavy tails is an asymptotic property of a distribution. It is hard to infer 
such property from quantiles with finite return periods only. Large sample approximations, that is, an asymp-
totic theory suggesting a GEV distribution, may not always be accurate for small sample application due to a 
slow rate of convergence, and pre-asymptotic results may be a better approximation (Fisher & Tippett, 1928). 
In hydrological practice, we typically focus on return periods in the range of 50–200 years and in rare cases 
up to higher return periods. The hydrological practice thus investigates heavy tail properties for finite return 
periods and pre-asymptotic behavior. Further, we neither know the true distributions of the components nor 
the true operation/transformation. In flood frequency analysis using extreme value statistics, we assume one 
or several distributions, fit them to the observed data and estimate the upper tail behavior from the fitted 
distributions.

Wilson and Toumi (2005) discussed the difference between asymptotic and pre-asymptotic behavior for heavy 
precipitation events. Based on physical considerations, they represented daily precipitation as the product of 
three independent Gaussian random variables, that is advected mass, specific humidity, and precipitation effi-
ciency. According to statistical theory, the tail of the distribution of this product has a stretched exponential 
form and is thus heavy tailed, but at the same time is formally in the domain of attraction of Gumbel (ξ = 0). 
Block maxima of such random variables would be heavy tailed as well for finite block sizes but converge to a 
Gumbel distribution in the limit. They argued that the often observed heavy tail behavior may be explained by 
the slow convergence to the ξ = 0 limit, that is, finite block sizes. These differences in the statistical (asymptotic) 
and hydrological (pre-asymptotic) perspectives are illustrated by an example for the statistical perspectives S2 
(Mixture of distribution functions) and S3 (Transformation of random variables), respectively. Let's assume that, 
in the given catchment, floods are caused by extratropical rainfall systems. However, there is a small probability 
that the catchment is hit by a landfalling tropical cyclone. In the latter case, the much higher rainfall volumes will 
generate much higher flood peaks compared to the other floods. For the sake of the argument, we assume that the 
distributions of both flood processes are light-tailed. In the context of the hydrological perspective, we fit a prese-
lected distribution to the observed flood peaks. We easily find heavy-tailed behavior for the mixture distribution 
when we disregard the heterogeneity of a sample (Figure 3, upper panel), although the true mixture distribution 
is light-tailed (statistical perspective, see Section 3.2). Repeating this example with bounded distributions also 
yielded some realizations with heavy tails (not shown), although mixtures of bounded GEV distributions cannot 
be heavy-tailed in a statistical sense.

A similar argument can be made for the transformation of random variables, for instance, in the case of threshold 
behavior. Let's assume that the light-tailed input, for example, event rainfall volume, is transformed into much 
higher flood peaks once a certain threshold is exceeded. As we do not know the transformation, we fit a prese-
lected distribution to the observed flood peaks. Again, hydrological practice can easily find heavy-tailed behavior 
(Figure 3, lower panel), although the true behavior is light-tailed (statistical perspective, see Section 3.3).

Other sources of misestimation of the upper tail behavior are temporal changes in time series of flood peaks or 
flood-related variables. In such cases, the upper tail behavior of the flood peak distribution can vary in time, as 
shown for flood-rich and flood-poor periods by Lun et al. (2020). When dealing with non-stationary time series, 
the aggregation of non-identically distributed random variables may lead to a misclassification of the underly-
ing model and to a falsely estimated tail behavior. Ignoring non-stationarity, a model is chosen that best fits the 
non-homogeneous observations. For example, a GEV might provide a good fit for a sample of non-stationary 
Gumbel-distributed variables. Figure 4 illustrates this effect. A step change in the mean behavior is falsely inter-
preted as heavy-tailed behavior when pre- and post-change time periods are not separated in the flood frequency 
analysis (Figure 4, upper panel). Multidecadal variation can also be falsely interpreted as heavy-tailed behavior 
(Figure 4, lower panel). Drawing blocks of 30 years out of a time series with a substantial multidecadal varia-
tion leads to a wide range of shape parameters depending on the specific block that is drawn. In such cases, a 
non-stationary distribution may be fitted to the data, where the parameters are estimated as functions over time 
(Delgado et al., 2010).
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A final caveat is related to the typical distributions, such as the GEV, that are used in flood frequency analysis 
and the statistical perspectives S1-S3. Process-based simulations suggest that the flood peak distributions may 
have more complex shapes, for instance, an S-shape (Rogger, Pirkl, et al., 2012). Using field data in two Austrian 
catchments they found a sharp increase in the slope of the flood frequency curve when the storage capacity in 
parts of the catchment was exhausted and a decrease in the slope when only a few additional areas got saturated 
with increasing return periods. Along similar lines, Guse et al. (2010) and Fernandez et al. (2010) proposed an 
S-shaped flood frequency curve based on the argument that for any catchment under stationary conditions there 
should exist a maximum flood value that cannot be exceeded due to physical grounds. These studies indicate that 
the widely used distributions may not represent the true upper tail behavior.

These differences in statistical perspectives (asymptotic behavior) and hydrological practice (pre-asymptotic 
behavior) should be considered when estimating the upper tail behavior of flood peak distributions. First, one 
should be aware of the pre-asymptotic behavior which is considered an upper tail in hydrology. It is important to 
reflect on the range of return periods for which one can make sound statements and discuss whether processes 
may emerge with increasing return periods that are not at work for less extreme floods. Further, as we typically 
do neither know the true distribution functions and their temporal variation nor the underlying transformations, 
the statistical perspectives can give hints, but not the certainty, about the true upper tail behavior.

Figure 3.  Top: Example for statistical perspective S2: Mixture of floods caused by extratropical rainfall systems and landfalling tropical cyclones. (a) Mixture of two 
Gumbel distributions (similar to Figure 2c) whereas 5% of the events are drawn from the distribution yielding higher rainfall volume. (b) The aggregated distribution 
is estimated by fitting a GEV to 100,000 values (denoted entire dataset) and to 30 random samples of size 50 (denoted subsets of 50 years). Bottom: Example for 
statistical perspective S3: (c) Non-linear transformation of rainfall in runoff (similar to Figure 2e), but (d) fitting of GEV to the transformed variable for 100,000 values 
(denoted entire dataset) and for 30 samples of size 50 drawn randomly from the transformed variable (denoted subsets of 50 years).
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4.  Prevalence of Heavy Tails and Hypotheses on Their Causes
4.1.  Prevalence of Heavy Tails in Flood-Related Data

Analyses of observed flood time series often suggest the presence of heavy tails, either due to pre-asymptotic 
results or asymptotic behavior. For example, Farquharson et al. (1992) found an average GEV shape parameter 
of 0.40 for 162 catchments in various arid and semi-arid regions around the world, indicating strong heavy-tailed 
behavior. For the AMS time series of 813 catchments from Austria, Italy, and Slovakia, the averaged values of 
the L-coefficient of skewness were found to be generally larger than Gumbel's fixed L-coefficient of skewness, 
indicating heavy tail behavior (Salinas et  al.,  2014). Bernardara et  al.  (2008) estimated positive GEV shape 
parameters for 60% of the 173 catchments analyzed in southeastern France. The GEV shape parameters of the 
AMS time series for 572 stations in the eastern US were found to be generally positive (Villarini & Smith, 2010). 
For about 32% of the stations, the shape parameter was larger than 0.2, and for about 9% it was greater than 
0.33 suggesting very heavy tails. In the Appalachians, Morrison and Smith (2002) estimated GEV shape values 
larger than 0.5 in 28% of 104 catchments examined. Molnar et  al.  (2006) found that heavy-tailed power law 
distributions were a better fit than exponential distributions for daily discharges greater than 20% of the flood 
of record for 159 rivers across the US. Finally, Smith et al. (2018) concluded from the analysis of several thou-
sand flood time series across the US that the sample properties of the Upper Tail Ratio (ratio of the flood of 
record and the magnitude of the 10-year flood) were most consistent with GEV distributions with positive shape 

Figure 4.  Effects of temporal changes on the upper tail behavior. Upper panel: (a) Time series (80 values generated) with a step change in the mean value. (b) The 
distributions for the periods prior to and after the step change show light-tailed behavior, but aggregating both periods and falsely fitting a GEV leads to heavy-tailed 
behavior. Lower panel: (c) Cyclic fluctuations (100,000 values generated but only 200 values shown) generated by the superposition of a sine wave with period of 
50 years and random, Gumbel distributed values. (d) 30 block samples of length 30 are drawn randomly and illustrated (light gray). A large range of upper tail behavior 
can be obtained depending on the specific 30-year period drawn.
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parameter, implying heavy-tailed distributions. These results are broadly consistent with the earlier conclusion 
of Martins and Stedinger (2000) that hydrologic experience indicates that a likely range for annual flood data is 

𝐴𝐴 0 ≤ 𝜉𝜉 𝜉 0.3 , that is, that flood peak distributions tend to have heavy tails.

Hydrological practice often applies the concept of PMP (Probable Maximum Precipitation) and PMF (Probable 
Maximum Flood) for designing sensitive infrastructure, such as hydro-power dams. The assumption of a maxi-
mum value implies a bounded distribution. Hence, there is a discrepancy between widespread observations of 
heavy flood tails and the PMF concept. However, the PMP/PMF concept has been criticized as logically incon-
sistent and delusive (e.g., Koutsoyiannis & Papalexiou, 2017; Salas et al., 2014). For instance, PMP estimates 
are based on combinations of observed maxima of selected drivers of precipitation, whereas one assumes the 
existence of deterministic upper limits, but determines these limits statistically – an approach that is logically 
inconsistent (Koutsoyiannis & Papalexiou, 2017). This problem is aggravated for PMF as the upper limits of the 
processes that are combined within flood events are not known. Given these inconsistencies, and the fact that 
there is no consensus on how to estimate the PMF (Felder & Weingartner, 2017), the PMP/PMF concept is not a 
strong argument against the notion of heavy flood tails.

Heavy-tail behavior seems to be not only widespread in flood peak data, but also in other variables related to 
flooding (Katz et al., 2002). Annual maxima of more than 15,000 daily rainfall time series around the globe 
showed heavy tails in 60% of the stations (Papalexiou et al., 2013). The spatial variability of the GEV shape 
parameter was normally distributed with a positive mean (0.114) and a standard deviation of 0.045 (Papalexiou 
& Koutsoyiannis, 2013). Cavanaugh et al. (2015) found that most locations of a global daily data set with more 
than 22,000 weather stations showed heavy tails in annual maximum precipitation. For more than 4,000 stations 
across the United States, Papalexiou et  al.  (2018) concluded that hourly extreme precipitation had a heavy 
(sub-exponential) tail, much heavier than exponential or Gamma tails. Heavy tails have also been found to occur 
rather frequently in loss data for floods and other natural hazards (Cooke & Nieboer, 2011).

4.2.  Hypotheses on the Hydrological Causes of Heavy Tails

We screened the literature to develop hypotheses on the causes of heavy-tailed flood peak distributions. We included 
studies that investigated the upper tail behavior of flood peak distributions via data-based and simulation-based 
approaches. Data-based studies, several of them mentioned in Section  4.1, typically estimate an indicator of 
upper tail behavior, such as the shape of the GEV or the skewness, for a large set of catchments, and attempt 
to explain the variation of this indicator between catchments by catchment characteristics. Simulation-based 
studies estimate  the flood peak distribution, including the upper tail behavior, via a hydrological model from 
rainfall characteristics (derived flood frequency analysis; Eagleson, 1972). Under simplifying assumptions on 
the rainfall and runoff generation, flood peak distributions can be derived analytically (e.g., Basso et al., 2016; 
Sivapalan et  al.,  2005; Viglione et  al.,  2009). Coupling a stochastic weather generator with a rainfall-runoff 
model allows investigating more complex settings (e.g., Beven, 1987; Struthers & Sivapalan, 2007). Some of 
these simulation-based studies have specifically investigated, for instance, how threshold processes in the runoff 
generation affect the upper tail of the flood frequency curve (Rogger et al., 2013).

We extracted from these data-based and simulation-based studies any hints about the mechanisms that may cause 
heavy tails in flood peak distributions. Some papers directly proposed hypotheses about the emergence of heavy 
tails, in other cases we have formulated the hypotheses based on the findings reported in the papers. We developed 
nine hypotheses and associated them with the compartments atmosphere, catchment, and river network (Table 2). 
This association is based on the main mechanisms that are assumed to cause heavy-tailed flood distributions.

5.  Atmosphere
5.1.  Heavy Flood Tails Are Inherited From Heavy Rainfall Tails

Given the prevalence of heavy tails in rainfall distributions (e.g., Cavanaugh et  al.,  2015), either due to 
pre-asymptotic results or asymptotic behavior (see Section 3.4), and the high relevance of rainfall characteristics 
for flood peak distributions, the hypothesis that heavy flood tails are inherited from the rainfall distribution seems 
obvious. Hence, we review the question of whether heavy (light) tails of rainfall distributions lead to heavy (light) 
tails of flood peak distributions.
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There is not much data-based evidence supporting this hypothesis. McCuen and Smith (2008) compared the skew 
of annual maximum rainfall and annual maximum streamflow for 28 streamflow gauges on the US east coast. 
They obtained almost identical skew values for rainfall but a very large variation in flood skew values, that is, 
very different upper flood tails resulting from rather homogeneous rainfall tail behavior. They argued that this 
larger variation in flood skew was caused by catchment processes, in particular those related to catchment and 
channel storage, which transferred the upper tail behavior of rainfall into the upper tail behavior of flood peaks. 
Only for the extreme case, the catchment will be saturated, acting much like an impervious surface, and the runoff 
characteristics will follow the rainfall characteristics. Otherwise, catchment storage will determine how the flood 
distribution is related to the rainfall distribution.

The finding of McCuen and Smith (2008) that similar upper tail behavior of rainfall can lead to different upper 
tail behavior of flood peaks resonates well with the results of Gottschalk and Weingartner (1998). They estimated 
flood peak distributions for 17 small Swiss catchments, assuming that they can be derived from the product of 
the rainfall volume, scaled with respect to its duration, and the runoff coefficient. Their analyses demonstrated 
that identical distributions of rainfall volume gave rise to the very different behavior of the peak flow distribution 
depending on the distributions of runoff coefficients.

Gaume  (2006) investigated the relationship between the upper tail of the rainfall and flood distributions by 
derived flood frequency analyses. He concluded that his analysis “… confirms and extends the results of previ-
ous works, that is, the shape of the flood peak distribution is asymptotically controlled by the rainfall statistical 
properties, given limited and reasonable assumptions concerning the rainfall-runoff process…”. He suggested 
that for very large return period floods, for example, beyond 500 years, the distribution of the maximum mean 
rainfall intensity over a duration in the order of the time of concentration of the catchment should be considered 
as the possible flood peak asymptotic distribution, as schematically illustrated in Figure 5. The suggestion that the 
flood tail heaviness follows the tail heaviness of precipitation for large return periods is also the basic assumption 
of the GRADEX method which is widely used in practice, particularly in France (Naghettini et al., 2012). The 
return period beyond which the flood distribution follows the rainfall distribution is typically set to much lower 
values, for instance, to 10–20 years for relatively impermeable watersheds and up to 50 years for watersheds with 
high infiltration capacity (Naghettini et al., 2012). Such low values are in contrast to McCuen and Smith (2008) 
and Gaume (2006) who suggested that the tail behavior of the flood distribution was inherited from the rainfall 
distribution in the extreme case only, that is, for very large return periods.

No. Source of upper-tail behavior Hypothesis Hypothesis derived from …

Atmosphere

  H1 Rainfall Heavy flood tails are inherited from heavy rainfall tails. Gaume (2006)

  H2 Characteristic flood generation process The characteristic flood generation process shapes the upper 
flood tail (e.g., rain vs. snowmelt).

Bernardara et al. (2008)

  H3 Mixture of flood types Mixture of flood types generates heavy flood tails. Villarini and Smith (2010)

Catchment

  H4 Runoff generation Non-linear response to precipitation causes heavy flood tails. Gioia et al. (2008), Rogger et al. (2013)

  H5 Water balance Drier catchments have heavier flood tails due to interaction of 
water balance processes.

Farquharson et al. (1992), Berghuijs 
et al. (2014)

  H6 Catchment size Smaller catchments have heavier flood tails due to less 
pronounced spatial aggregation effects.

Villarini and Smith (2010)

River system

  H7 Reservoirs Construction of reservoirs increases tail heaviness. Maheshwari et al. (1995), Assani et al. (2006)

  H8 Confluences Confluences lead to downstream heavy-tail behavior. Vorogushyn and Merz (2013)

  H9 River embankments Dikes increase the tail heaviness up to certain point (dike 
failure).

Apel et al. (2009)

Note. The hypotheses are assigned to the compartments atmosphere, catchment and river network.

Table 2 
Hypotheses on the Hydrological Causes of Heavy Tails in Flood Peak Distributions
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As the rainfall is combined (statistical perspective S1) or transformed (S3) 
to flood peaks, the tail behavior of the flood time series depends on the type 
of combinations or transformations and on the tail behavior of rainfall and 
catchment response. A large variety of tail behavior (in the typical range of 
return periods of interest) is possible, in particular, if threshold processes in 
the rainfall-runoff process occur (e.g., Viglione et al., 2009; Rogger, Kohl, 
et al., 2012, 2013). As the flood generation process is often well described 
as the product of random variables representing the rainfall and catchment 
response, an increase in tail heaviness when moving from rainfall to flood 
peaks should not be surprising (see also Section 6.1, hypothesis H4). In the 
extreme case when the catchment is saturated, rainfall will be transformed 
in a linear way to runoff, and the upper tail of flood peaks will follow the 
upper tail of precipitation. The return period beyond which the upper-tail 
flood behavior converges to the upper-tail rainfall behavior depends on 
the flood generation processes and is expected to vary from catchment to 
catchment.

In summary, our review suggests that the hypothesis ‘Heavy flood tails are 
inherited from heavy rainfall tails’ is little plausible as the runoff genera-
tion processes strongly modulate the upper tail behavior of streamflow. This 
statement is, however, limited to the range of return periods where catchment 
processes, such as catchment and river network storage or snow cover and 
snowmelt, exert a substantial influence on flood magnitude. For very high 
return periods, the catchment response loses its influence and the flood tail 
tends to be dominated by the tail of the rainfall distribution. A highly rele-
vant question is beyond which return period the flood peak distribution is 
determined by the rainfall distribution. We recommend systematic studies 
to understand how this threshold varies between catchments and how it is 
related to climate and catchment characteristics.

5.2.  The Characteristic Flood Generation Process Shapes the Upper Flood Tail

Catchments show different flood generation processes (Merz et  al.,  2020). In arid regions floods tend to be 
generated by heavy precipitation and infiltration of excess overland flow, whereas in humid regions subsurface 
stormflow and saturation excess overland flow dominate flood generation (Blöschl et  al.,  2017; Farquharson 
et al., 1992). In high elevation and high latitude catchments, snowmelt plays a dominant role. Here, we review the 
question of whether the characteristic flood generation process in a catchment leaves a fingerprint on the flood 
frequency curve with effects on its upper tail.

Merz and Blöschl (2003) compared two catchments, characterized by different flood types, in Austria. The flood 
frequency curve steepens with an increasing return period for the Fahrafeld catchment whose majority of floods, 
including the largest events, are long-rain floods. Flood peaks tended to increase with increasing rainfall. This 
relationship gets progressively steeper, reflecting the non-linearity of runoff generation with increasing event 
rainfall depth. In contrast, the frequency curve flattens out at large return periods for the Obermühl catchment for 
which most events, including the largest ones, are rain-on-snow floods. They suggested that the different flood 
generation processes caused the difference in the upper tail behavior. As the meltwater release is limited by the 
available energy, one would expect the tail of the distribution of the rain-on-snow-dominated catchments to be 
flatter than that of the rainfall-dominated catchments.

This suggestion is supported by regional studies. For more than 200 large catchments in Norway, the shape 
parameter of the GEV distribution is mainly explained by the average fraction of rain during the flood event 
(Thorarinsdottir et  al.,  2018). In regions where snowmelt dominates the event water input, lower, and often 
negative, shape parameters are found, suggesting an upper threshold for these spring floods caused by snowmelt. 
Similarly, Bernardara et al. (2008) found that the hydrological regime was the best predictor for explaining the 
shape parameter of the 173 flood time series of the Rhone-Mediterranean region in southeast France. About 97% 
of the catchments belonging to the Mediterranean regime showed heavy-tail behavior, whereas catchments of the 

Figure 5.  (a) Schematic frequency curves for flood peaks and for precipitation 
and (b) runoff coefficient as a function of return period (logarithmic axes). 
Only for very large return periods, the flood frequency curve is controlled by 
the rainfall statistical properties and both frequency curves run in parallel. 
For lower return periods the catchment response dominates the behavior of 
the flood frequency curve. The catchment shows a nonlinear response caused 
by a switch between subsurface stormflow and saturated overland flow and a 
threshold when all areas contributing to event runoff are active.
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continental regime and snowmelt-dominated catchments showed substantially lower fractions (44% and 47%, 
respectively). For a global data set of semiarid and arid regions, Farquharson et al. (1992) noted less heavy flood 
tails in Iran and Jordan. They attributed this behavior to the dominant flood generation processes, arguing that 
floods in Iran are largely generated from snowmelt and that the flood regime in Jordan is damped by groundwater 
contributions. Data analyses of 321 catchments across the US by Berghuijs et al. (2014) suggest a link between 
the regional growth curve (i.e., the normalized flood frequency curve) and the seasonal water balance. Growth 
curves of snow-dominated catchments and of other clusters tend to show light tail behavior, whereas arid clusters 
exhibit growth curves with heavy tails.

Hence, there is some data-based evidence supporting hypothesis H2 that the dominant flood generation process 
determines the upper tail behavior. Regions, where floods are caused by snowmelt, tend to have lighter tails, and 
regions with stronger non-linearity in flood generation tend to show more pronounced tail heaviness.

5.3.  Mixture of Flood Event Types Generates Heavy Tails

In many environments, the basic assumptions of extreme value statistics, that is, that all floods are realizations of 
the same distribution, are little plausible. Hirschboeck (1988) introduced the concept of flood-hydroclimatology 
and suggested that unusually large floods may be related to specific large-scale atmospheric circulation anoma-
lies (Hirschboeck, 1988). In these and similar cases, the flood peak time series may be more meaningfully repre-
sented as a mixture of different flood types. Here, we evaluate the hypothesis that such mixtures tend to produce 
heavy-tailed flood distributions (H3). Although H2 (Section 5.2) and H3 are both related to flood types, they are 
formulated as separate hypotheses. H2 evaluates the evidence that the dominant flood generation process in a 
region determines the upper tail, whereas H3 investigates the effect of mixtures of flood types on the upper tail.

Floods have been classified into event types from a hydroclimatic (large-scale circulation patterns and atmos-
pheric state), hydrological (catchment-scale precipitation patterns and antecedent catchment state), and 
hydrograph-based perspective (Tarasova et al., 2019). Using the hydroclimatic perspective, Petrow et al. (2007) 
showed for the Mulde catchment in Germany that although the majority of floods were caused by westerly 
atmospheric flow, extreme floods were triggered by a specific atmospheric situation, Vb weather pattern, a 
slowly moving low-pressure field over the Gulf of Genoa, which can transport large amounts of moisture. Barth 
et al. (2017) found that annual maximum streamflow time series in the western United States often contained 
events generated from distinctly different hydrometeorological mechanisms. Smith et  al.  (2018) analyzed the 
Upper Tail Ratio for more than 8,000 US gauging stations. They found that often the flood-generating mechanism 
of strange floods, that is, floods that led to high values of Upper Tail Ratio, was rare and contrasted with the 
common flood-generating mechanism in these catchments. Warm season thunderstorms and tropical cyclones 
were identified as major flood types for record floods, whereas the broader population of annual floods was 
dominated by snowmelt floods and winter/spring storm systems. There is a clear contrast between the seasonality 
of record floods and the bulk of floods. The distribution of record floods has a maximum around mid-June and 
a secondary maximum around the beginning of September, corresponding to landfalling tropical cyclones on the 
east coast.

Using the hydrological perspective, Merz and Blöschl (2003) stratified a large set of catchments and flood events 
in Austria into five flood types. They found significant changes in the relative frequency of the flood types 
with magnitude. Large floods were frequently caused by short-rain events but rarely caused by rain-on-snow 
events and almost never by snowmelt events. The unit peak discharge values varied between different flood 
types, with rain-on-snow and snowmelt floods showing lower values. Mixed populations of flood types, that is, 
high winter-storm rainfall-driven floods and the more typical, smaller spring snowmelt floods, were found at 
high-elevation stations in the Sierra Nevada (Gotvald et al., 2012). Similarly, Tarasova et al. (2020) analyzed the 
variation of runoff generation event types from small events to large floods in 172 German catchments and found 
coherent spatial patterns of this variation. Using the hydrograph-based perspective, Fischer and Schumann (2020) 
identified three flood types with different hydrograph characteristics for catchments in the Harz region in 
Germany. Floods with high volumes and small peaks are mainly affected by snowmelt, whereas floods with high 
peaks and small volumes are often caused by intense summer thunderstorms. The latter type typically dominates 
the upper tail of the flood peak distribution.
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The findings of these studies suggest that, in many catchments, large floods are associated with flood types that 
are different from those of small floods. They do however not investigate explicitly how changes in process types 
with flood magnitude affect the upper flood tail. A direct association between the mixture of flood types and 
heavy flood tails has been proposed by Morrison and Smith (2002) for Appalachian catchments in the eastern 
United States. They found a regional differentiation, where the central region showed strong heavy-tail behavior. 
They attributed this behavior to the mixture of three flood types, that is, organized systems of thunderstorms, 
tropical storms, and extratropical cyclones. Similarly, Villarini and Smith (2010) analyzed the upper tail behavior 
of annual maximum streamflow from 572 stations in the eastern United States, where floods can be triggered by 
different storm types. They compared the shape parameter estimated for the full record against the estimate after 
removing the floods caused by tropical cyclones. Removing tropical cyclone floods significantly lowers the shape 
parameter, suggesting that anomalously heavy flood tails are linked to landfalling tropical cyclones.

In summary, mixtures of flood types can generate heavy tail behavior due to two effects. First, the mixture may 
contain a heavy-tailed distribution whose upper tail behavior then tends to dominate the upper tail behavior of the 
mixture distribution. For instance, in catchments with snow-related floods and rainfall-driven floods, the heavier 
tail behavior of rainfall-driven floods tends to dominate the mixture behavior. Second, there may be a different 
process that occurs very rarely but generate much higher flood peaks. An example is a landfalling hurricane, 
hitting a catchment on the east coast of the United States (Villarini & Smith, 2010). In this case, the mixture 
distribution can be heavy-tailed from the hydrological perspective, even when the distributions of both regular 
floods and hurricane-related floods are light-tailed (see Figure 3).

6.  Catchment
6.1.  Non-Linear Response to Precipitation Causes Heavy Flood Tails

Here, we hypothesize that the non-linear response of catchments to precipitation, including threshold processes of 
runoff generation, causes heavy tails of flood peak distributions even when precipitation is light-tailed.

The link between the upper flood tail and the non-linearity of runoff response has mainly been investigated by 
simulation studies, several of them using hypothetical catchments. Based on a derived flood frequency model, 
Gioia et al. (2008) explained the highly skewed flood distributions observed in 10 catchments in Southern Italy by 
threshold mechanisms. They suggested that, whereas ordinary floods were caused by rainfall events exceeding a 
threshold infiltration rate in a small source area, extremes occurred when a threshold storage value was exceeded 
in a large portion of the catchment. In a similar vein, Rogger, Pirkl, et al. (2012) related thresholds in catchment 
response to catchment storage capacity in two Austrian alpine catchments. They used detailed field surveys of 
hydro-geologic storage capacity and surface runoff generation to specify the parameters of a distributed continu-
ous runoff model and simulate soil saturation patterns. Their model results suggest that a sudden increase in the 
slope of the flood frequency curve is caused by the exceedance of the storage capacity, which generates surface 
runoff in large parts of the catchments (schematically illustrated in Figure 5). They also noted that this may occur 
more easily if the storage capacity is uniformly distributed within the catchments.

The partial area concept, that is, that only a fraction of the catchment area contributes to event runoff and that this 
fraction varies in time, is a plausible explanation for heavy flood tails. In this concept, a small contributing area 
generates ordinary floods. As the contributing area expands, the magnitude of runoff events increases, possibly 
leading to a steepening in the flood frequency curve, as demonstrated by field (e.g., Rogger, Pirkl, et al., 2012) 
and simulation studies (e.g., Fiorentino et al., 2007). Along these lines, the controls of some physically-based 
parameters underlying the partial area runoff generation on the skewness of the flood peak distribution were 
investigated by Gioia et al. (2012). Based on a derived flood frequency curve which accounts for two threshold 
mechanisms associated with ordinary (i.e., exceedance of a constant infiltration rate in a small area) and extreme 
(i.e., exceedance of a storage threshold over a large portion of the basin) events, they showed that light-tailed 
rainfall distributions can be transformed into heavy-tailed flood distributions by the catchment response.

Using a stochastic rainfall model coupled with a deterministic rainfall-runoff scheme, Kusumastuti et al. (2007) 
and Struthers and Sivapalan (2007) suggested that a change in the dominant runoff generating mechanism mani-
fests itself as an inflection point in the flood frequency curve. The return period at which this transition occurs 
tends to increase with increasing catchment storage capacity (e.g., deeper soil) and increasing catchment aridity 
(Kusumastuti et al., 2007; Struthers & Sivapalan, 2007; Rogger, Kohl, et al., 2012; Rogger, Pirkl, et al., 2012; 
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Rogger et al., 2013). The spatial heterogeneity of rainfall and runoff generation also plays an important role. 
Struthers and Sivapalan (2007) showed that varying soil depths within the catchment can mask the effect of stor-
age thresholds. In addition, the magnitude of the step change decreases with enhanced temporal variability of the 
amount of water stored in the catchment prior to rainfall events, and for heterogeneous spatial distributions of  the 
storage deficit. It instead grows with the increasing size of the variably saturated region (Rogger et al., 2013). 
Hence, the appearance of a step change is related to the fraction of areas where fast runoff is generated at the 
same time.

Using a simplified conceptualization of rainfall-runoff processes, Basso et al. (2015) explained the emergence 
of heavy tails of flow distributions by highly non-linear storage-discharge relationships. In a follow-up study, 
Basso et al. (2016) also showed that this non-linearity contributes to heavier tails in the distributions of seasonal 
flood maxima. They suggested that the non-linear storage-discharge relationship could arise from the hydraulics 
of surface flow draining a hillslope (Guerin et al., 2019; Rupp & Selker, 2006), the expansion of the stream 
network contributing to flow (Biswal & Marani, 2010; Mutzner et al., 2013), and the spatial heterogeneity of 
hydraulic properties between hillslopes (Harman et al., 2009). The latter explanation challenges the idea that 
spatial heterogeneity thins streamflow tails due to smoothing of threshold effects, as proposed by Struthers and 
Sivapalan (2007) and Rogger, Pirkl, et al. (2012).

The superposition of precipitation and non-linear catchment response can be linked to the statistical perspec-
tives S1 and S3. In the first case, flood runoff is expressed as a multiplicative process of rainfall and catchment 
response. In the second case, the actual water storage in a catchment is a random variable that plays a key role 
in determining the catchment runoff. In the case of non-linear catchment response, streamflow results from a 
non-linear (e.g., power law) transformation of this random variable, which can produce heavy-tailed flow distri-
butions. In both cases, that is, assuming S1 (multiplicative processes) or S3 (non-linear transformation), we may 
expect heavy-tailed flood behavior caused by the catchment response to rainfall.

In summary, the available studies provide clear evidence that the catchment response plays an important role in 
the emergence of heavy-tailed flood peak distributions. However, there are contrasting answers to the question of 
whether spatial variability in runoff generation enhances or dampens the tail heaviness, and several studies focus 
on step changes in the flood frequency curve and not directly on the upper tail behavior.

6.2.  Drier Catchments Have Heavier Flood Tails Due To Interaction of Water Balance Processes

Several studies analyzing observed flood time series have found that flood frequency curves of catchments 
subject to drier climatic conditions have heavier tails than wetter catchments. Farquharson et al. (1992) combined 
flood frequency curves of 162 catchments around the world into regional curves and noted that the tails in the arid 
regions such as South Africa or Saudi-Arabia were much heavier than the tail of the humid region of Great Brit-
ain. A follow-up study consisting of many catchments in sub-tropical and tropical regions (Meigh et al., 1997), 
as well as a recent study comparing semi-arid and Mediterranean catchments (Metzger et al., 2020), support the 
conclusion that drier regions are associated with heavier tails. Merz and Blöschl (2009) found the skewness of 
annual maximum floods in 459 Austrian catchments to be negatively correlated with mean annual precipitation 
and positively correlated with evapotranspiration. Molnar et al. (2006) found heavy-tailed power law distributions 
to better fit daily discharges greater than 20% of the flood of record than exponential distributions for 159 catch-
ments across the US and noted that the parameter of the power law decreases with increasing aridity suggesting 
increasing heavier tails. A link between the shape of the flood frequency curve and the annual water balance 
has also been identified by Guo et al. (2014) for 266 catchments across the US. By pooling flood growth curves 
according to aridity, they showed that the pooled growth curves were distinct for each aridity class and that the 
tail heaviness increased with aridity. Berghuijs et al. (2014) supported this conclusion by grouping 321 catch-
ments across the continental U.S. into clusters with similar seasonal water balance behavior and finding heavier 
flood tails for the arid clusters. Studying about 8,000 catchments in the US, Smith et al. (2018) found that the 
Upper Tail Ratio was somewhat larger (median ≈ 2.1) in the regions with less than 650 mm annual precipitation 
compared to more humid regions (median ≈ 1.5).

Although data-based studies have consistently found that drier catchments tend to have heavier flood tails, the 
mechanisms responsible for enhanced tail heaviness are less clear. Guo et al. (2014) suggested that the higher 
non-linearity in the rainfall-runoff transformation in drier catchments caused heavier flood tails compared to wet 
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catchments. This suggestion is derived from their observation that the upper tails of the regional growth curves 
vary more between different aridity classes for annual maximum streamflow compared to annual maximum 
rainfall. Similarly, Merz and Blöschl  (2009) suggested that runoff generation was responsible for the higher 
skewness of annual maximum floods in drier catchments in Austria. While in wet regions, runoff coefficients 
were typically large and did not increase much with flood magnitudes, they were smaller in dry catchments but 
increased substantially with flood magnitudes thus resulting in large flood skewness. Figure 6 illustrates that the 
sharp increase in runoff coefficients in the drier catchment (760 mm annual rainfall) is aligned with an upward 
curvature of the flood frequency curve on a semi-logarithmic plot while the consistently high runoff coefficients 
in the wetter catchment (1,800 mm annual rainfall) are aligned with a downward curvature of the flood frequency 
curve. As flood peaks can be described as the product of two random variables, that is, runoff coefficient and a 
representative rainfall (e.g., Gottschalk & Weingartner, 1998), statistical perspective S1 suggests that flood peaks 
in drier catchments tend to show heavier tails as their runoff coefficient distributions tend to be more skewed.

The data-based conclusion of Merz and Blöschl  (2009) and Guo et al.  (2014) is supported via simulation by 
Viglione et  al.  (2009). They found that the ratio between the return periods of maximum floods and rainfall 
depended on the average wetness of the catchment. In a dry system, where large runoff coefficients rarely occur, 
a single event with a high runoff coefficient can produce a flood with a return period that is hundreds of times 
larger than the one of the corresponding rainfall but low runoff coefficient. By contrast, the return period of 
floods never exceeds a few times that of the corresponding rainfall in a wet system, where runoff coefficients are 
always high.

Another contribution, besides runoff generation, to heavier flood tails in drier areas may result from heavier-tailed 
rainfall distributions in these areas. When analyzing hourly rainfall extremes of over 4,000 stations across the 

Figure 6.  Flood frequency curves (a), (b) and runoff coefficients for annual maximum streamflow (c), (d) in two Austrian catchments. The drier catchment (right) 
displays a larger variation of runoff coefficients and a heavier upper tail of the flood peak distribution (Taken from Merz & Blöschl, 2009).
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United States, Papalexiou et al. (2018) found clear spatial patterns of the tail indices. These patterns show simi-
larities with the main Köppen-Geiger climate classes with heavier tails in regions classified as arid.

Besides heavier rainfall tails and more non-linear runoff generation in drier catchments, also the interaction of 
rainfall, evapotranspiration, and runoff generation contributes to heavier flood tails. Focusing on this interaction, 
a mechanistic explanation of the higher skewness of streamflow (which translates into higher skewness of annual 
maximum peaks; statistical perspective S3) observed in drier catchments is provided by Botter (2010). Consider-
ing the stochastic character of the catchment water balance, he showed that the skewness is inversely proportional 
to the streamflow-producing rainfall frequency, which is lower in drier catchments due to more erratic rainfall 
regimes and higher evapotranspiration rates (and hence a higher threshold beyond which rainfall produces floods 
streamflow). Similarly, the physically-based theoretical derivation of flood frequency curves proposed by Basso 
et al.  (2016) suggests that the tail of the seasonal flood distributions is controlled by the ratio (called persis-
tency index) between the frequency of streamflow-producing rainfall (i.e., rainfall frequency suitably reduced by 
the effect of evapotranspiration) and the average catchment response time. Catchments with lower persistency 
index (named erratic regimes) display heavier tails. Dry climates (i.e., reduced runoff frequency caused by small 
rainfall frequency or high evapotranspiration) favor erratic regimes. This conclusion resonates with statistical 
perspective S3. In summary, data-based and mechanistic modeling studies conclude that drier catchments tend to 
show heavier flood tails due to heavier rainfall tails, more pronounced non-linear runoff generation, and the more 
erratic interaction between rainfall, evapotranspiration, and streamflow.

6.3.  Smaller Catchments Have Heavier Flood Tails Due To Less Pronounced Spatial Aggregation Effects

Flood frequency curves may differ between catchments of different sizes for a number of reasons. For instance, 
in small catchments local, high intensities rainfall bursts of convective origin can be the main cause of flooding, 
while in large catchments such effects may be averaged out while other processes, such as flood routing, may 
become more important (Merz & Blöschl, 2009; Rosbjerg et al., 2013).

The data-based evidence for the hypothesis that smaller catchments have heavier flood tails is mixed. Meigh 
et al. (1997) stratified regional flood frequency curves in tropical and sub-tropical countries according to catch-
ments size which suggested heavier tails in smaller catchments. For instance, for the Philippines, the GEV shape 
parameter increased steadily from 0.07 to 0.29 when going from the group of largest catchments (>2,500 km 2) to 
the smallest catchments (<25 km 2). Villarini and Smith (2010) found a decreasing shape parameter with catch-
ment size (decrease by 0.07 per order of magnitude) of the annual maximum flood series in 572 basins of the 
eastern US. St. George and Mudelsee (2019) detected the 10 largest ratios of the flood of record to the second 
largest flood in 2,790 US catchments in rather small catchments; seven out of 10 catchments have areas smaller 
than 1,000 km 2. Merz and Blöschl (2009) found a weak (Spearman's correlation r = −0.17) negative correlation 
between skewness of maximum annual flood records and catchment area in 459 Austrian catchments. For 813 
catchments with areas from 4.6 to 131,488 km 2 in Austria, Italy, while Slovakia, Salinas et al. (2014) reported a 
decrease of L-skewness with increasing catchment size for drier and medium wet catchments with mean annual 
precipitation up to 860 and 1,420 mm/yr, respectively, while for wetter catchments they observed no dependence. 
Other studies have not detected such an association. Morrison and Smith (2002) and Northrop (2004) found that 
the GEV shape parameter did not depend on the catchment area for the Appalachian Mountains and for 1,000 
catchments in the UK, respectively. Similarly, the analysis of more than 5,500 flood series across the US, with 
approved stationarity according to the Mann-Kendall test, did not show a catchment size effect of the shape 
parameter (Smith et al., 2018). Finally, a non-monotonic relation between the upper tail behavior and spatial 
scale has been found by Pallard et al. (2009). They investigated the relationship between the drainage density, 
which tends to be inversely proportional to catchment area (Murphey et al., 1977), and the skewness of the annual 
maximum flood series. Simulation studies and data from 44 catchments in the Po River Basin suggest a U-shape 
scaling, with high skewness for small drainage densities and increasing skewness with increasing density beyond 
the local minimum.

These studies which analyze how the tail behavior of observed flood time series changes with spatial scale do 
neither provide a clear statement on this hypothesis nor do they provide a clear process explanation. However, 
they point to the possibility that the less heavy tails in larger catchments, identified in some of these studies, are 
a consequence of spatial aggregation. This effect can work via aggregation of precipitation and aggregation of 
runoff generation.
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Overeem et  al.  (2010) investigated changes in the upper tail behavior of rainfall with increasing area using 
weather radar data in the Netherlands. The regionally estimated GEV shape parameter decreased with increasing 
rainfall area, from 0.17 for 6 km 2 to 0.07 for 1,700 km 2. They suggested that this decrease is a consequence of the 
decreasing spatial dependence with increasing scale. Similarly, Skaugen et al. (1996) argued that the distribution 
of extreme areal precipitation results from the sum of positively skewed and spatially correlated point precipita-
tion within the area. For perfect spatial correlation, the distributions of the areal and point precipitation are iden-
tical, whereas in the absence of spatial correlation and for sufficiently fast decaying spatial correlation the spatial 
rainfall will converge to a Gaussian distribution because of the central limit theorem, assuming the variance 
exists (statistical perspective S1). In reality, rainfall lies between these two limits and areal rainfall characteristics 
depend on the spatial dependence of rainfall (Skaugen et al., 1996). Dyrrdal et al. (2016) found decreasing GEV 
shape parameters of areal precipitation with increasing area in the southwest of Norway (from around −0.05 at 
1 km 2 to around −0.15 at 14,000 km 2). For the southeast of Norway, however, the behavior was more complex 
with an increase in shape parameters from around 0.1 at 1  km 2 to around 0.25 at 6,000  km 2, followed by a 
decrease to 0.20 at 14,000 km 2. This more complex behavior and the substantial variability in the relation of the 
shape parameter of the areal precipitation distribution and the aggregation area suggest that this relation depends 
on many factors including prevailing precipitation types and orographic enhancement of precipitation.

Spatial aggregation of runoff generation may also contribute to lighter flood tails in larger catchments. Heavy 
flood tails in the form of step changes in the flood frequency curve have been attributed to runoff generation 
threshold processes (see Section 6.1). Rogger, Pirkl, et al. (2012) argued that the catchment scale plays a role in 
the occurrence of such step changes for catchments where direct runoff is generated by storage excess. As the 
catchment size increases, the storage tends to become spatially more heterogeneous. Simultaneous saturation of a 
large part of the catchment is, therefore, less likely than in a small catchment. This argument can be extended to 
other flood generation processes with non-linear behavior. Distinct non-linear behavior at small scales tends to be 
averaged out at larger scales when increasingly different areas and processes are involved in the runoff generation.

This hypothesis can be linked to the statistical perspective S1, as the streamflow in large catchments can be inter-
preted as the spatial aggregation of rainfall and runoff generated in many small subareas of the catchment. The 
mean of a large number of random variables tends toward the normal distribution if the variables are uncorrelated 
or the decay of the correlation is sufficiently fast.

In summary, this hypothesis is only weakly supported by observed data. Spatial aggregation of precipitation and 
runoff generation may contribute to less heavy flood tails in larger catchments. However, the emergence or the 
shifting dominance of processes with increasing scale, such as precipitation types and runoff generation mecha-
nisms, may inhibit a clear change of upper tail behavior in the catchment area.

7.  River Network
7.1.  Construction of Reservoirs Increases Tail Heaviness

Reservoirs regulating river flows may differently affect small and large floods and thus change the shape of the 
flood peak probability distribution (Volpi et al., 2018). The impact of reservoirs on floods is strongly related to 
their function. All reservoirs have a limited storage capacity. This capacity in relation to the volume of the inflow-
ing flood determines the retention effect. The reduction of the peak depends also on the flood management strat-
egy, the shape of the flood hydrograph, the options to consider flood forecasts, and the technical characteristics 
of the reservoir. The majority of reservoirs affect small floods strongly but do not reduce substantially the peak of 
extreme floods (Figure 7a). As a consequence, the construction of reservoirs may transform the flood frequency 
curve toward a heavier tail compared to the pre-reservoir situation.

Only a few data-based studies are available to evaluate this hypothesis. Assani et al. (2006) found higher skewness 
values for the annual maximum flows of 60 rivers regulated for hydropower production compared to 88 pristine 
catchments in Quebec (Canada). Similarly, Botter et al. (2010) found that damming of rivers in the Italian Alps 
increased the skewness of streamflow as compared to the pre-dam period. Mei et al. (2017) analyzed data from 
38 rivers across the United States for which extensive records of pre- and post-damming annual flood peaks exist. 
The probability distributions of post-damming flood peaks exhibit heavier tails compared to the corresponding 
natural discharges.
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Maheshwari et al. (1995) analyzed the effects of the operation of weirs, diversions, and reservoirs on the flood 
regime of the Murray river in Australia based on a hydrological model. Their results suggest heavier tails of the 
distributions of annual maximum flows for the regulated cases as compared to the natural conditions, resulting 
from a decrease in peaks lower than the 2-year flood whereas peaks larger than the 20-year flood are little affected. 
By coupling a stochastic rainfall generator, a rainfall-runoff and a reservoir routing model for a hypothetical reser-
voir at the outlet of a small catchment, Ayalew et al. (2013) found that the flood frequency curves of unregulated 
and regulated flows converged for low probability events (i.e., the distribution of regulated flood peaks is more 
skewed as the high probability floods are smaller in the regulated case), and that a break in the regulated curve 
occurred when different release structures (i.e., sluice gate and spillway) were activated. Although tails of flood 
peak distributions are not explicitly mentioned in the study by Wang et al. (2017), their material suggests that 
heavier tails might result from reservoirs with intermediate values of the ratio between storage capacity and mean 
annual streamflow volume.

The dissimilar attenuation for different return periods is caused by the non-linear relation between outflow and 
volume of water stored in the reservoir. The retention storage and the reservoir's spillways, which might be 
activated when the retention storage approaches saturation, impose a non-linear transformation of the random 
variable incoming flow (through the water level in the reservoir) resulting in different attenuation of small and 
large floods which enhances flood tail heaviness (statistical perspective S3).

The position of the reservoir within the catchment also plays an important role in the enhancement of flood tail 
heaviness by reservoir construction (Volpi et al., 2018). Ayalew et al. (2015) showed that the interplay between 
the spatial configuration (i.e., single vs. multiple reservoirs placed in series or parallel), the storage and release 
capacity of the reservoirs, and their location in the drainage network controls the divergence between natural 
and regulated flood frequency curves and the return period at which the slope of the latter breaks, which in turn 
affects the tail behavior. Ayalew et al. (2017) showed that 133 small dams built in the Soap Creek watershed in 
Iowa, USA produced heavier tails compared to natural conditions, due to varying degrees of attenuation of flows 
with different exceedance probability. The effect fades moving downstream as the ratio between overall storage 
capacity and drainage area decreases.

7.2.  Confluences Lead to Downstream Heavy-Tail Behavior

Flood hydrographs often show substantial changes at confluences. When the upstream flood waves arrive at the 
same time at the confluence, the downstream peak will be the sum of the two, while temporal decoupling leads 
to a weaker superposition (Blöschl et al., 2013; Geertsema et al., 2018; Vorogushyn & Merz, 2013). For instance, 
the devastating floods in 1988 and 1998 in Bangladesh were characterized by the synchronous arrival of the 
peaks of the Brahmaputra and Ganges Rivers (Mirza, 2002). The flood peaks downstream of a confluence can be 
interpreted as the superposition of the peaks of the two upstream river branches. Hence, this hypothesis is linked 

Figure 7.  Schematic of the river network hypotheses. (a) H7: Construction of reservoirs tends to reduce small floods strongly but not the peak of extreme floods, 
leading to heavier flood tails for the period after dam construction. (b) H8: The relative timing of the two upstream peaks controls the superposition at the river 
confluence. Coincidence of the two upstream flood peaks for large floods but not for smaller ones will cause heavier tails downstream. (c) H9: Construction of dikes 
along rivers tends to increase flood peaks downstream. When dike breaches occur during extreme floods, and large water volumes are abstracted from the main channel, 
the flood peaks are capped, reflecting the original conditions prior to dike construction. Flood frequency curves sketched with a logarithmic axis for return period.
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to the statistical perspective S1, that is, the sum of two random variables, which propagates heavy-tail behavior 
depending on the correlation. The relative timing of the two upstream peaks plays a major role as it controls 
the superposition of the peaks of the tributaries. If the temporal coincidence of floods from the upstream rivers 
does not depend on the flood magnitude, one would not expect a systematic effect on the upper tail of the flood 
frequency curve downstream of the confluence, while a coincidence for large floods but not for smaller ones will 
cause heavier tails downstream (Figure 7b).

There are a number of approaches to estimating the flood frequency distribution at river confluences, for instance 
using copulas (Bender et al., 2016; Wang et al., 2009). However, only a few studies investigate the mechanisms 
that can lead to flood coincidence at river confluences via simulation approaches (Pattison et al., 2014; Seo & 
Schmidt, 2013; Skublics et al., 2014) and past event analysis (Geertsema et al., 2018; Guse et al., 2020). The main 
factors that control whether flood waves arrive at the same time at the confluence are the space-time distribution 
of event precipitation and the lateral flow in the catchment and river network. These factors, in turn, depend on 
the spatial correlation of event precipitation and antecedent catchment wetness, the spatial organization of the 
confluence catchments, and the distribution of flow path lengths and flow velocities, as illustrated by Seo and 
Schmidt (2013) using a stylized model. For rivers with long flood wave durations, for example, larger lowland 
rivers, the exact timing of the arrival of discharge peaks is of smaller relevance, and the magnitude and duration 
of the flood waves play a more important role in enhanced flood peaks at confluences (Geertsema et al., 2018).

Guse et al.  (2020) analyzed flood wave superposition for 37 river confluences in Germany by comparing the 
event characteristics of three flood time series, that is, at the downstream station and at the two upstream stations. 
For most confluences, the tributary peak typically arrived earlier than the main river peak. It is conceivable that 
specific atmospheric situations lead to a delayed arrival time of the tributary peak and/or an earlier arrival time 
of the main river peak, and that these situations occur differently for small and large floods. However, at most 
confluences, Guse et al. (2020) did not find systematic differences in the relative timing of the upstream peaks 
between floods of different magnitudes, so flood wave superposition was not found to cause heavy-tail behavior 
downstream in this dataset. At a few confluences, there is potential for a high impact of flood wave superposition. 
In the case of the Inn/Danube and Mosel/Rhine confluences, floods in the two upstream sub-basins are gener-
ated in areas far apart from each other and possibly by different storms or snowmelt events. If both regions are 
impacted by high precipitation or snowmelt, a flood coincidence may occur, possibly leading to a heavy flood 
tail downstream.

In summary, the few available studies and the related statistical perspective S1 do not suggest that flood wave 
superposition at river confluences is a relevant aspect for enhancing the upper-tail behavior of flood peak distri-
butions downstream.

7.3.  Dikes Increase the Tail Heaviness up to Certain Point (Dike Failure)

When rivers are embanked by dikes cutting off floodplain retention areas, flood hydrographs are affected by 
decreasing river cross section area, increasing water levels, and flood wave celerity. This, in turn, increases flood 
discharges downstream. When dike breaches occur during extreme floods, and large water volumes are abstracted 
from the main channel and retained in the floodplain storage, the flood peaks are capped, reflecting the original 
conditions prior to dike construction. Hence, the construction of dikes tends to transform the flood frequency 
curve toward heavier tails. This effect occurs, however, only up to a certain point, namely the point when dikes 
fail (Figure 7c). This point will often be the return period of overtopping, although other failure mechanisms can 
lead to breaches at lower return periods (Vorogushyn et al., 2009).

Observation-based and model-based extrapolation of the flood frequency curve rarely includes dike breaches 
and their system effects on downstream locations (Vorogushyn et al., 2018). This negligence can lead to wrong 
estimates of tail heaviness, that is, estimating heavier tails than in reality, for the range of return periods when 
dikes fail.

Several studies have shown that river flows downstream are influenced by upstream dike failures (Apel et al., 2004; 
de Bruijn et al., 2014; Curran et al., 2019; Vorogushyn et al., 2012). The effect of dike failures on the down-
stream flood frequency curve was formally studied by Apel et al. (2009) by simulating the propagation of flood 
waves along the Lower Rhine. For extreme floods, the model simulates substantial retention effects due to dike 
breaches, significantly decreasing flood peaks downstream of breach locations. The downstream flood frequency 
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curves derived from their simulation model and an extreme value statistical approach differ substantially beyond 
return periods of around 1,000 years. The GEV shape parameter decreases from 0.24 for the statistical approach 
which neglects dike breaches to 0.17 for the simulation approach which includes breaches. The magnitude of this 
mechanism depends on several factors, such as the ratio of flood wave volume above the threshold to the retention 
capacity of the dike hinterland. Also, the time point of dike failure is decisive whether the peak flow is capped or 
the hinterland is filled prior to the arrival of the peak flow. In the latter case the effect on downstream upper tail 
behavior is limited (Skublics et al., 2014).

8.  Synthesis
8.1.  Assessment of the Nine Hypotheses

Table 3 summarizes the key findings of our review. We also assign a degree of plausibility and evidence to each 
hypothesis, visualized in Figure 8. This assignment is to some extent subjective, but we provide a justification for 
each assignment in Table 3. We define the degree of plausibility to represent the consistency of the hypothesis 
with known process reasoning. Specifically, we assign a hypothesis:

•	 �High plausibility, if process knowledge highly supports the hypothesis, meaning that there is a clear mecha-
nistic understanding of the emergence of heavy flood tail behavior.

•	 �Medium plausibility, if process knowledge tends to support the hypothesis, but does not provide unambiguous 
mechanistic explanations of the emergence of heavy tail behavior.

•	 �Low plausibility, if there is no clear mechanistic understanding supporting this hypothesis, or if process 
reasoning opposes the hypothesis.

The degree of evidence represents the number and types of studies (based on observations, simulation, and statis-
tical perspectives) and the level of their agreement. Specifically, we assign a hypothesis:

•	 �Robust evidence, if there are several studies of relevance for this hypothesis which include, as a whole, all 
three types (observations, simulations, statistical perspective), and which all agree on the hypothesis.

•	 �Medium evidence, if neither robust nor limited evidence applies.
•	 �Limited evidence, if there are very few studies available or if the available studies do not agree.

We assign high plausibility to the five hypotheses ‘Mixture of flood types generate heavy flood tails’ (H3), 
‘Non-linear response to precipitation causes heavy flood tails’ (H4), ‘Drier catchments have heavier flood tails 
due to interaction of water balance processes’ (H5), ‘Construction of reservoirs increases tail heaviness’ (H7), 
and ‘Dikes increase the tail heaviness up to a certain point (dike failure)’ (H9). This does not mean that those 
catchments, where we find these potential sources of heavy flood tails, have necessarily heavy-tailed flood peak 
distributions. The hypotheses rather state conditions that are favorable for the emergence of heavy tails.

Our review assigns low plausibility to the hypotheses ‘Heavy flood tails are inherited from heavy rainfall tails’ 
(H1), ‘Smaller catchments have heavier flood tails due to less pronounced spatial aggregation effects’ (H6), and 
‘Confluences lead to downstream heavy tail behavior’ (H8). Concerning H6 and H8, the low plausibility is a 
consequence of the fact that we could not identify clear mechanistic explanations, although some hints and possi-
ble explanations are found in the literature.

From the low plausibility of H1, based on robust evidence, one shall not conclude that the tail behavior of 
rainfall can be neglected. Rather it has to be seen as a kind of pre-disposition. If the flood-producing rainfall 
is heavy-tailed, then the upper flood tail tends to be heavy-tailed. However, the catchment and river network 
processes are able to strongly modulate the upper tail behavior, and they can easily transform light-tailed rainfall 
distributions into heavy-tailed flood peak distributions. Further, we reiterate here that our assignment of low plau-
sibility for H1 is limited to the range of return periods where catchment response exerts a substantial influence 
on flood peaks. This range is typically the focus of flood design and risk management. However, in the extreme 
case, for instance, when the catchment is saturated, the catchment response loses influence and the flood behavior 
is dictated by the precipitation characteristics.
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Hypothesis Key findings Plausibility Evidence

Atmosphere

  H1 – Heavy flood tails are inherited 
from heavy rainfall tails.

Although tail heaviness of precipitation 
matters, it is often not the 
dominant factor for the flood tail, 
as catchment and river network 
processes strongly modulate the 
rainfall control. For given rainfall 
characteristics, a wide range of 
flood tail behavior is possible in 
the range of return periods that 
are of typical interest to flood risk 
management. For very high return 
periods, catchment response loses 
its influence and the flood tail 
tends to be dominated by the tail of 
the rainfall distribution.

Low Robust
Several relevant studies; including 

observations, simulations, and 
statistical perspective; all studies 

agree.

Clear mechanistic understanding: 
runoff generation strongly 

influences upper tail behavior of 
floods.

  H2 – The characteristic flood 
generation process shapes the upper 
flood tail (e.g., rain vs. snowmelt).

Catchments, where flood generation 
is dominated by snowmelt, tend 
to show lighter tails compared to 
catchments with rainfall-driven 
floods. Climatic regions whose 
flood generation processes 
are characterized by stronger 
non-linearity tend to show heavier 
flood tails.

Medium Medium
Several relevant studies; based on 

observations only; all agree that 
characteristic flood generation 
process may affect upper tail.

Studies do not provide clear process 
explanations, but rather hint to 

possible mechanisms.

  H3 – Mixture of flood types 
generates heavy flood tails.

Can work through 2 effects. (1) If one 
of the component distributions 
is heavy-tailed, then the mixture 
distribution tends to be heavy-
tailed. (2) There is a different 
process that occurs very rarely, 
but generates much higher peaks. 
In this case, the distribution of the 
superposition can be heavy-tailed, 
even when distributions of both 
regular floods and rare floods are 
light-tailed.

High Limited
Hardly any studies that explicitly 
investigate the relation between the 

mixture of flood types and flood 
tails.

Clear understanding how mixtures can 
generate heavy tails.

Catchment

  H4 – Non-linear response to 
precipitation causes heavy flood 
tails.

Catchment response plays an 
important role in emergence of 
heavy flood tails. Non-linearity 
in runoff generation, either as 
non-linear, gradually increasing, 
or as threshold response, can 
enhance tail heaviness. Threshold 
mechanisms in runoff generation 
cause inflection points and step 
changes in flood frequency curve. 
Light-tailed precipitation can 
be transformed by non-linear 
catchment response into heavy-
tailed flood time series.

High Robust
Several relevant studies; including 

observations, simulations, 
statistical perspective; all agree 
on statement that non-linearity 
enhances upper tail heaviness.

Several mechanisms identified how 
non-linearity of catchment response 

causes heavy tails.

Table 3 
Summary of Key Findings for the Nine Hypotheses, Including a Justification for the Assigned Degree of Plausibility and Degree of Evidence
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Table 3 
Continued

Hypothesis Key findings Plausibility Evidence

  H5 – Drier catchments have heavier 
flood tails due to interaction of 
water balance processes.

Supported by data-based studies 
at global scale (arid vs. humid 
catchments) and regional scale 
(drier vs. wetter catchments). 
Suggested to result from heavier 
rainfall tails and from interplay of 
climatic conditions and catchment 
response. Dry catchments have 
heavier tails as precipitation falls 
on wide range of soil moisture 
conditions determined by intense 
evapotranspiration and longer 
interevent periods, which in turn 
leads to highly variable runoff 
coefficients. Rainfall in wet 
catchments occurs on a narrow 
range of soil moisture conditions, 
reflected in more constant runoff 
coefficients.

High Robust
Several relevant studies; including 

observations, simulations and 
statistical perspective; all studies 

agree.

Several mechanisms are suggested.

  H6 – Smaller catchments have 
heavier flood tails due to less 
pronounced spatial aggregation 
effects.

Only weakly supported by observed 
data. Spatial aggregation of 
precipitation and runoff generation 
may contribute to less heavy flood 
tails in larger catchments. Shifting 
dominance of processes with 
increasing scale may impede a 
clear change of upper tail behavior 
with catchment area.

Low Limited
Several relevant studies; almost 

all based on observations; no 
agreement.

No clear mechanistic explanation 
available.

River system

  H7 – Construction of reservoirs 
increases tail heaviness.

Majority of studies suggest heavier 
flood tails in regulated rivers. 
The actual effect of a reservoir 
depends on its main purpose, 
operation rules, location within 
the catchment, and its volume 
compared to the flow volume 
contributed by the upstream 
catchment.

High Medium
Several relevant studies; including 

observations, simulations, 
statistical perspective; mostly 

agreement.

Clear mechanistic understanding.

  H8 – Confluences lead to 
downstream heavy-tail behavior.

Available studies and statistical 
perspective do not conclude that 
flood wave superposition at river 
confluences enhances tail heaviness 
of flood peak distributions 
downstream. This would only be 
the case if the arrival of flood 
waves from the upstream branches 
would coincide for large floods but 
not for small floods.

Low Limited
Very few studies available.No clear mechanistic understanding 

provided why and under which 
conditions confluences should 

enhance tail heaviness.

  H9 – Dikes increase the tail 
heaviness up to certain point (dike 
failure).

As dike breaching is threshold process, 
it only affects events the far upper 
tail of flood peak distribution. 
Neglecting breaches, as typically 
done, can lead to overestimation 
of tail heaviness, as breaches can 
restore the original conditions prior 
to dike construction.

High Limited
Very few studies are available.Clear mechanistic understanding.

Note. The plausibility of each hypothesis is assessed as low, medium and high, and the degree of evidence is characterized as limited, medium and robust. Plausibility 
represents the consistency of a hypothesis with process reasoning. Degree of evidence represents the amount, types and agreement of studies.
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The degree of evidence varies from limited to robust. It is particularly limited to the hypotheses assigned to the 
river system. Obviously, in terms of heavy flood tails, the flood literature has focused more strongly on atmos-
pheric and catchment processes compared to river processes, including river training.

Figure 9 shows the relations between the nine hypotheses. For four of them, that is, the three hypotheses assigned 
to the river network (H7-H9) and hypothesis H4 on the role of the non-linearity of runoff generation, the factors 
are directly linked to the enhancement of flood tail heaviness. The latter plays a particularly important role as a 
modulator of the effects of the hypotheses linked to the atmosphere and catchment (H1-H3, H5, H6). ‘Rainfall tail 
heaviness’ (H1) is directly linked to H4, as together they represent the rainfall-runoff processes.

Both (H1, H4) are affected by the remaining factors. Hence, the effects of ‘Characteristic flood generation’ (H2) 
and ‘Mixture of flood types’ (H3), but also ‘Aridity’ (H5) and ‘Catchment area’ (H6) are considered as higher 
order effects. For instance, the dominant flood generation process (H2) can affect the tail heaviness of rainfall 
(H1) and catchment response (H4). Regions where floods are caused by heavy, often convective, rainfall tend to 
have heavier rainfall tails and more non-linear catchment response compared to regions with snow-dominated 
flood regimes (Bernardara et al., 2008; Smith et al., 2019). Catchments, where floods are generated by a mixture 
of flood types (H3), tend to show heavier flood tails. This can work through mixtures of meteorological processes 
(H3 affects H1) or through mixtures of catchment processes (H3 affects H4). An example of the first case is 
the mixture of floods caused by extratropical rainfall systems and landfalling tropical cyclones (Villarini & 
Smith, 2010). An example of the latter case is a mixture of subsurface stormflow for long-rain winter floods and 
infiltration excess runoff for high-intensity summer floods. Similarly, ‘Aridity’ (H5) and ‘Catchment area’ (H6) 
can influence ‘Rainfall tail heaviness’ (H1) and ‘Non-linear catchment response’ (H2). Drier regions tend to show 
more non-linear runoff generation (H5 affects H4), which in combination with more erratic rainfall regimes and 
probably heavier rainfall tails (H5 affects H1) tends to increase the tail heaviness of floods. Larger catchments 
tend to show less non-linear runoff generation (H6 affects H4) and lighter rainfall tails (H6 affects H1).

Figure 8.  Degree of plausibility and degree of evidence supporting the nine hypotheses. Plausibility is assessed as low, 
medium, and high, based on the consistency of each hypothesis with process reasoning. Degree of evidence is characterized 
as limited, medium, and robust, based on the amount, types, and agreement of studies. Justifications for each classification are 
given in Table 3.
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The fact that several inter-related factors that apply simultaneously in a given catchment may explain, besides the 
uncertainty in estimating heavy tail behavior, why observation-based studies have been limited in understanding 
the generation of heavy flood tails.

8.2.  Implications for Estimating the Flood Tail Behavior

In this section, we discuss the potential avenues of taking advantage of process knowledge for the estimation 
of tail heaviness. This task is required when estimates of flood discharges of large return periods are needed. 
Examples are the design of structural flood defense measures with protection standards in the order of 100 or 
1,000 years, or flood risk assessments which comprise, in the ideal case, flood scenarios from frequent events to 
the worst-case scenario. Based on our review, we recommend four guiding questions when confronted with the 
challenge of estimating tail heaviness. The level of detail and the specific approaches to answer these questions 
will vary strongly between assessments based on the specific circumstances, such as the purpose of the assess-
ment, data availability, available expertise, and resources.

�1.	� Which processes lead to floods and affect flood peaks in the catchment under study? Do these processes favor 
heavy-tailed flood peak distributions?

Figure 9.  Relations between the nine hypotheses. + and − arrows represent positive/negative cause-effect relations. ± represents an effect that can work positively 
or negatively. The arrows should not be understood as equally substantiated. Colors denote the compartments atmosphere (blue), catchment (green) and river network 
(brown). Details are given in the respective hypotheses' sections.
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Our review has identified a range of factors that favor heavy flood tails. We recommend identifying the flood 
generation processes aiming at understanding whether factors that favor heavy tails apply in the catchment under 
study. This is, in the first instance, the non-linearity of runoff generation (H4). Examples are a non-linear increase 
in the contributing area with increasing rainfall or a more rapid transfer of direct runoff during extreme rainfall 
events leading to much higher flood peaks compared to more frequent rainfall events. Runoff generation has to be 
analyzed in combination with the rainfall regime and the upper tail of the flood-triggering rainfall (H1), as more 
erratic rainfall and runoff behavior can signal heavier flood tails. We also recommend identifying the flood types, 
as the mixture of types can favor heavy-tailed behavior (H3), particularly if one type occurs in rare cases only. 
If the catchment is characterized by a single flood type, this specific type can also support the estimation of the 
upper tail behavior, as for instance, snow-related types tend to show lighter tails (H2). In the case of the presence 
of reservoirs (H7) and dikes (H9) in the catchment, their possible influence on flood peaks should be considered 
as well. This guiding question about the flood processes resonates with the call of Merz and Blöschl (2008) to 
enhance flood frequency analysis by causal information expansion.

�2.	� Are large floods different from small floods? Might there occur processes in extreme cases which we do not 
see in the observations?

Heavy flood tails can emerge in two, principally different, ways: First, the processes that cause heavy tail behav-
ior work across the entire spectrum of events, and small and large events show the same system dynamics. For 
instance, a highly non-linear catchment response enhances the tail heaviness of floods, and this non-linearity  is 
already manifest in frequent rainfall-runoff events. In that case, the estimation of flood tail heaviness can use 
much larger sets of observations including small floods, and even ordinary streamflow values following the 
meta-statistical approach (Marani & Ignaccolo,  2015; Tarasova et  al.,  2020). Second, heavy flood tails are 
produced by the emergence of processes that do not occur during small events. Examples are threshold processes 
in runoff generation that occur only in rare cases, unseasonal floods, such as an unusually intensive rainfall in 
winter on the frozen ground (Wendi et al., 2019), or rare meteorological phenomena, such as landfalling hurri-
canes in the eastern United States (Villarini & Smith, 2010). Smith et al. (2018) coined the term ‘strange floods’ 
for events for which the flood-generating mechanism is rare in the given catchment and contrasts markedly with 
the common flood-generating mechanisms.

We recommend analyzing whether the flood processes, identified under guiding question 1, occur across the 
whole spectrum of events. To this end, flood processes and flood characteristics, such as flood-causing storm 
tracks, flood types, flood timing, runoff coefficients, or flood routing characteristics should be compared 
between small and large floods (e.g., Nakamura et al., 2013; Smith et al., 2018; Tarasova et al., 2020). Further, 
we recommend reflecting whether processes might occur in extreme cases which are not included in the observa-
tions. Neglecting such processes could lead to an underestimation of tail heaviness. Merz et al. (2015) discussed 
unexpected incidents in flood risk assessments and provide recommendations to better understand and reduce 
the potential for surprise. One approach is, for example, the development of downward counterfactuals. These 
are alternative realizations of past events with a worse outcome than in reality (Woo, 2019). In relation to H8, for 
example, one could investigate how past floods would have developed in case the flood waves of the upstream 
rivers would have arrived at the confluence at the same time.

�3.	� How can this process knowledge be used to inform the estimation of the upper tail behavior?

Typically, flood discharges of large return periods and the upper tail behavior of flood distributions are estimated 
in three ways: at-site extreme value statistics based on observed flood peaks and extrapolation of the local flood 
frequency curve, regional approaches based on observed peaks, and derived flood frequency using simulation 
models. When using at-site flood frequency analysis, the answers to guiding questions 1 and 2 help to understand 
whether we can safely extrapolate from small floods to floods of large return periods and whether the fitted 
distribution shows plausible upper tail behavior. Merz and Blöschl (2008) provide examples of how hydrological 
reasoning and soft data, for example, landforms from maps, and hydrological activity from field trips, can support 
formal flood frequency analysis. If process reasoning suggests that processes can occur that are not or very 
rarely included in the observations, then one should consider enhancing the analysis by regional and simulation 
approaches. For instance, in the case of embanked rivers, the process of dike failure is typically not included in 
the observations. A simulation approach can assist in understanding how this process affects the upper tail.
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When using regional flood frequency analysis, guiding questions 1 and 2 can help decide how to group catch-
ments, for example, whether the shape of the flood frequency curve or its growth curve can be assumed as 
constant within a region. When the tail-influencing processes vary slowly in space, assuming a constant shape 
value throughout the region is a plausible strategy. This is particularly the case for climatic factors. An exam-
ple is the distribution of flood types, for example, whether floods are only caused by midlatitude cyclones or 
also by tropical cyclones, is a regional phenomenon. Other processes can vary rapidly in space. An example 
is the non-linearity of the runoff generation, which is often determined by local characteristics. Rogger, Pirkl, 
et al. (2012) pointed to this difference in their discussion about step changes in flood frequency curves. When 
such step changes are triggered by climatic controls, then pooling catchments in a climatic homogeneous region 
seems valuable. When they are caused by local characteristics, pooling can mask the variability of the upper tail 
behavior and lead to the over-/underestimation of floods with large return periods.

When using simulation to estimate the flood frequency curve, guiding questions 1 and 2 can inform the model 
development. It should be secured that the processes that shape the upper tail are included in the model. For 
example, the incorporation of reservoirs and dikes and their potential failures into hydrological and hydro-
dynamic models can increase the robustness of tail estimation (Apel et al., 2009). Often knowledge and data 
about these processes are scarce, yet one should reflect on whether the model is a plausible representation of 
these processes. This requires going beyond the comparison of simulated and observed hydrographs via model 
performance measures. Model calibration and validation could focus on the replication of factors relevant to 
tail-heaviness. For instance, hydrological models could be tested to whether they adequately reproduce flood 
types and their frequencies, when their mixture is deemed to affect flood tails. Complex model structures and 
overparameterization should be avoided, as they add uncertainty without assuring the capability to mimic key 
elements to estimate flood tails, such as the catchment response and recession behaviors (Biswal & Singh, 2017). 
Simplified descriptions of catchment dynamics (Kirchner, 2009), whose parameters are easily constrained by 
means of daily flow series, could be used instead and their emerging tail properties studied. Well-established 
knowledge on the role played by physical watershed attributes, such as the dendritic structure of rivers (Biswal 
& Marani, 2010; Rinaldo et al., 2006) for the runoff response, which is commonly used to estimate event-based 
peak flows, could be as well leveraged to assess flood probabilities and their tails.

Irrespective of the selected approach one needs to carefully consider whether the flood processes or the under-
lying drivers can be assumed to be constant in time. Sources of time-varying flood peak distributions, such 
a climate-related flood-rich and flood-poor periods or construction of reservoirs, should be considered in the 
estimation of the upper tail behavior.

�4.	� What could be the consequences of erroneous estimation of the flood tail heaviness?

Answering the three guiding questions above does not guarantee that the flood tail heaviness is estimated 
correctly. There will still be cases where the tail heaviness is strongly underestimated, that is, the probability 
of a large flood discharge occurring is much higher than estimated. The final guiding question thus attempts to 
understand the consequences of a possible underestimation of tail heaviness. They will vary strongly from case 
to case and depend on the exposure and vulnerability of the flood-prone areas and on the purpose of the assess-
ment. An underestimation of the tail heaviness when designing the flood defense of a major infrastructure leads, 
for instance, to more severe consequences than a similar underestimation when designing a dike for agricultural 
areas. The answer to this question is thus essential information for developing risk management strategies (Merz 
et al., 2015).

8.3.  Recommendations for Further Research

Based on our review, we propose the following research strands to better understand the generation of heavy-tailed 
flood distributions with the final aim of improved upper tail estimates.

�1.	� Clarifying the hypotheses where clear mechanistic understanding is missing or evidence is limited

Our review assigns low and medium plausibility to four hypotheses (H1, H2, H6, H8) due to the lack of a clear 
mechanistic understanding. We recommend further clarifying these hypotheses with carefully designed studies 
to improve the mechanistic understanding of flood tail heaviness. Simple correlation analyses between flood tail 
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indicators and catchment indicators representing potential drivers of tail heaviness do not suffice to unravel the 
underlying mechanisms, as several drivers work at the same time. The contributions of drivers that may be jointly 
responsible for heavy tail behavior (e.g., more likely heavy-tailed rainfall distributions in smaller catchments and, 
at the same time, higher non-linearity in runoff generation) should be assessed. Carefully designed studies should 
also help to enhance the degree of evidence for the hypotheses where it is limited (H3, H6, H8, H9). For instance, 
the effects of dikes and confluences, and the related role of the dendritic structure of river networks, on tail heav-
iness have not received much attention in the hydrological literature. Simulation experiments could be designed 
to systematically quantify the effects of dikes and their failures on tail heaviness and how these effects depend on 
the characteristics of the river-dike-floodplain system. For the river confluence problem, systematic simulation 
experiments could analyze the variability in catchment response time as a function of atmospheric conditions 
to clarify whether certain atmospheric constellations could produce temporal peak matching and enhance tail 
heaviness downstream of the confluence.

�2.	� Clarifying the role of changes in system dynamics with increasing flood magnitude

The question of whether the dynamics of the flood generation change from small to large floods is central to 
understanding flood tail heaviness. We recommend rigorously investigating whether and how processes, from 
atmospheric through catchment to river network processes, change with flood magnitude. Large-sample hydrol-
ogy, exploiting datasets of large sets of catchments, has the potential to derive robust conclusions and test hydro-
logical hypotheses across a variety of regions (Addor et al., 2020; Andréassian et al., 2009). It is thus a prime 
candidate for addressing the question of whether large and small floods are different.

Research on flood event classification would also help to answer this question. Flood events often show complex 
space-time dynamics which challenges their classification. To date, there is no agreement about the ingredi-
ents of a good flood event classification and hardly any attempt to compare or validate the results of different 
classifications (Stein et al., 2020; Tarasova et al., 2019). More rigorous testing including uncertainty analysis 
and extending classification methods to include indicators of space-time dynamics of flood events are required 
(Tarasova et al., 2019). Improved flood type classification would help in understanding whether small and large 
floods belong to different flood types.

However, if the system dynamics are the same for small and large floods and even for daily streamflow oscilla-
tions, the flood tails could be derived from the tail behavior of daily flows. Besides process studies, the statis-
tical literature offers novel concepts in this regard including metastatistical approaches for which only singular 
applications in hydrology exist (e.g., Miniussi, Marani, & Villarini, 2020). It has been shown that interactions 
of stochastic fluctuations occurring at different timescales (e.g., daily and interannual) lead to heavier tails in 
the distribution of the considered random variable (Porporato et al., 2006). The Metastatistical Extreme Value 
(MEV) distribution (Zorzetto et al., 2016) acknowledges the existence of these stochastic fluctuations in rainfall, 
streamflow, and the resulting floods and provides a rigorous approach to considering them for the estimation of 
extremes (Marra et al., 2018, 2019, 2020; Schellander et al., 2019; Miniussi & Marani, 2020; Miniussi, Marani, 
& Villarini, 2020, Miniussi, Villarini, & Marani, 2020; Zorzetto & Marani, 2019, 2020).

�3.	� Clarifying the geography of heavy flood tails

Observation-based analyses of upper tail flood behavior show rather erratic spatial patterns. Although it is clear 
that these spatial patterns are disturbed by large sampling uncertainty when estimating the upper tail behavior, 
a question is whether geography of heavy flood tails can be established which is able to inform flood design 
and risk management. Such geography would map the upper tail behavior across regions and would identify the 
hotspots of heavy tail behavior.

A way forward would be to identify the dominant factors of flood generation within regions and catchments and 
to investigate their upper tail behavior and how they combine to generate extreme floods. For instance, Su and 
Smith (2021) investigated annual maximum values of precipitable water and of vertically-integrated water vapor 
flux across the conterminous US, arguing that these factors are key ingredients for extreme precipitation. They 
found spatial clusters and larger regions of heavy-tailed behavior for precipitable water and water vapor flux, 
respectively. These areas of heavy tail behavior could be linked to tropical cyclones and extratropical systems. 
Studying Upper Tail Ratios across China, Yang, Yang, and Smith (2021) found large upper tail ratios mainly 
distributed north of the Yangtze River, with a striking concentration in the middle reach of the Yellow River. 
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These record floods were caused by anomalous moisture transport, for example, zonal moisture transport associ-
ated with tropical cyclones, and/or synoptic configurations, for example, blocking, and interaction with complex 
terrain. The interaction between storm properties, for example, size, motion, convective intensity, and moun-
tainous terrain has been identified as a decisive factor for ‘hotspots’ of extreme floods, for example, in Colorado 
(Smith et al., 2019) and the Blue Mountains of eastern Oregon (Smith et al., 2018).

�4.	� Investigating the events that dominate the upper tail

An improved understanding of heavy flood tails would particularly benefit from in-depth investigations of 
outstanding flood events. For instance, Rössler et al. (2014) analyzed an extreme flood in Switzerland that was 
caused by sustained snowfall followed by an atmospheric river, associated with exceptional moisture transport to 
the catchment, rapid temperature increase, and high rainfall intensities. The resulting rain-on-snow flood showed 
specific characteristics and could only be simulated by extensive changes to the hydrological model that had been 
used successfully for flood forecasting prior to this event. Similarly, analyses of record floods and ‘strange floods’ 
have shown that the largest floods are often caused by specific interactions or space-time variabilities of atmos-
pheric, catchment and river processes (e.g., Dettinger et al., 2004; Neimann et al., 2011; Smith et al., 2018, 2019; 
Yang et al., 2017). More systematic reconstructions and documentation of extreme floods, using the entire range 
of observational and simulation approaches, would contribute to unraveling the ingredients of the events that 
dominate the upper tail of flood peak distributions.

�5.	� Clarifying the effects of temporal changes on upper flood tails

Detecting changes in flood time series and attributing them to the underlying drivers has developed into an 
active research topic. These studies often focus on climate change (e.g., Blöschl et al., 2017) and climate vari-
ability (e.g., Hodgkins et al., 2017), but there are also attempts to consider other drivers, such as reservoirs or 
land management (e.g., Yang, Yang, Villarini, et al., 2021), and to separate the effects of different drivers (e.g., 
Viglione et al., 2016). Almost all studies, however, do not distinguish between small and large floods and thus 
assume implicitly that small and large floods change in parallel. Approaches are required that allow understand-
ing whether the upper tail of flood peak distributions is affected differently than the bulk of the floods. To this 
end, the recently developed ‘Extreme Event Attribution’, which attempts to quantify how anthropogenic climate 
change has affected the likelihood of specific extreme (flood) events (e.g., Kay et al., 2018), is highly promis-
ing. Another promising research line is the attempt to detect and attribute changes that differentiates between 
small and large floods. Bertola et al. (2020, 2021) showed that the 100-year flood changed differently than the 
2-year flood in some European regions and that these changes can be attributed to different drivers. Similarly, 
recent studies have shown that small and large floods respond differently to changes in precipitation (Brunner 
et al., 2021; Wasko et al., 2019, 2021).

9.  Conclusions
We proposed nine hypotheses on the mechanisms causing heavy tails in flood peak distributions. Based on our 
review, we draw the following conclusions:

1.	 �‘Heavy flood tails are inherited from heavy rainfall tails’ (H1): Although the tail heaviness of rainfall matters, 
H1 is hardly plausible, as the transformation of rainfall to flood peaks strongly modifies the tail. However, in 
the extreme case, for example, when the catchment gets saturated, the catchment response loses its influence 
and the flood tail tends to be dominated by the tail of the rainfall distribution.

2.	 �‘The characteristic flood generation process shapes the upper flood tail’ (H2): Data-based studies have 
consistently reported that regions dominated by different flood generation processes often show differences in 
flood tail behavior. Snowmelt-dominated flood regimes tend to show lighter tails compared to rainfall-driven 
flood regimes, and there is a tendency toward heavier flood tails in regions where flood generation is charac-
terized by stronger non-linearity.

3.	 �‘Mixture of flood types generates heavy flood tails’ (H3): Mixing flood types propagates heavy tails of 
component distributions to the mixed distribution and is able to generate heavy tails. H3 is highly plausible, 
but there are hardly any studies on the relation between flood-type mixtures and tail heaviness.

4.	 �‘Non-linear response to precipitation causes heavy flood tails’ (H4): Highly plausible hypothesis, as there 
is a clear mechanistic understanding of how the non-linearity of runoff generation, in combination with the 
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rainfall regime, is able to produce heavy flood tails. For instance, non-linearity in catchment response, either 
as non-linear, gradually increasing, or as threshold response, can easily transform light-tailed precipitation 
into heavy-tailed flood time series.

5.	 �‘Drier catchments have heavier flood tails due to interaction of water balance processes’ (H5): Data-based 
studies at the global and continental scale, and to a lesser extent at the regional scale, support H5. There are 
some mechanistic explanations of how the interplay of rainfall, evapotranspiration, and runoff generation 
yields heavier flood tails in drier catchments.

6.	 �‘Smaller catchments have heavier flood tails due to less pronounced spatial aggregation effects’ (H6): Spatial 
aggregation of precipitation and runoff generation may contribute to less heavy flood tails in larger catch-
ments. However, H6 is little plausible as there is no convincing mechanistic understanding supporting it and 
only weak support by data. Rather, we assume that the emergence or shifting dominance of processes with 
increasing scale impedes a clear relation between catchment size and flood tail heaviness.

7.	 �‘Construction of reservoirs increases tail heaviness’ (H7): Highly plausible hypothesis given clear mechanistic 
understanding, that is, strong retention of small floods but small or no retention of large floods. Studies mostly 
agree that the construction of reservoirs tends to produce more skewed flood distributions, although there is a 
lack of studies that explicitly analyze the effects on the tail behavior. The actual effect of a reservoir depends 
on its purpose, the operation rules, its location within the catchment, and its volume compared to the flow 
volume contributed by the upstream catchment.

8.	 �‘Confluences lead to downstream heavy-tail behavior’ (H8): Little plausible hypothesis as there is no clear 
mechanistic understanding of why and under which conditions confluences enhance tail heaviness. There is 
also limited evidence for H8 due to a small number of studies on the relation between confluences and upper 
flood tails.

9.	 �‘Dikes increase the tail heaviness up to a certain point (dike failure); (H9): Clear mechanistic understanding 
supports H9, although there are only a few studies on this topic. Neglecting dike breaches in flood frequency 
analysis, as typically done, can lead to wrong estimates of tail heaviness beyond the threshold where dikes fail.

Our discussion of statistical perspectives helps to understand how heavy flood tails emerge through the aggre-
gation, mixture, or transformation of components. When confronted with the estimation of the tail behavior in 
a given catchment, however, we recommend identifying the processes to understand whether factors apply that 
favor heavy flood tails. To clarify the hypotheses where clear mechanistic understanding is missing or evidence 
is limited, we recommend carefully designed simulation and data exploration studies. Such studies should 
particularly investigate whether/how flood generation changes with increasing magnitude. Comparisons of flood 
generation processes between small and large floods should consider the entire spectrum of processes, from the 
atmospheric triggering mechanisms to catchment and river network processes.

Appendix A
A1.  Arithmetic Combination of Random Variables (S1)

X Y Additional constraints X + Y

Long-tailed Long-tailed Long-tailed

Long-tailed � � (�) = �
(

�� (�)
)

  Long-tailed

Sub-exponential Sub-exponential 𝐴𝐴 𝐹𝐹𝑋𝑋 and 𝐴𝐴 𝐹𝐹𝑌𝑌  are weakly tail-equivalent 1 Sub-exponential

Sub-exponential � � (�) = �
(

�� (�)
)

  Sub-exponential

Regularly varying Regularly varying Regularly varying

Stable (𝐴𝐴 𝐴𝐴 -stable) Stable (𝐴𝐴 𝐴𝐴 -stable) Stable (𝐴𝐴 𝐴𝐴 -stable)

Note. These results can be generalized to the sum of n variables. For details see Foss et al. (2011) and Embrechts et al. (1997)
 1 Two distributions F and G without upper bounds on their support are called weakly tail-equivalent if there exist c1 > 0 and 
c2 < ∞ such that for any x > 0: 𝐴𝐴 𝐴𝐴1 ≤

𝐹𝐹 (𝑥𝑥)

𝐺𝐺(𝑥𝑥)
≤ 𝑐𝑐2 .

Table A1 
Assumptions on Independent Random Variables X and Y, and Additional Constraints, in Order for Their Sum to Belong to 
a Specific Subclass of Heavy-Tailed Distributions
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A2.  Transformations of Random Variables (S3): Results for Selected Transformations That Are 
Relevant for Hydrological Purposes

Halliwell  (2013) investigates the impact of power and exponential transformations on the tails of positive, 
real-valued random variables and provides sub-categories for light-tailed distributions that he calls light- and 
medium-tailed distributions. Distributions which do not have all moments finite remain heavy-tailed under power 
and exponential transformations. Light- and medium-tailed distributions can become heavy-tailed or light-tailed 
depending on the exponent and on the distribution. Similarly, using an exponential function for the transformation 
preserves heavy tails, turns medium-tailed variables into heavy-tailed ones and has to be investigated more closely 
for light-tailed variables. Logarithmic transformations turn light- and medium-tailed variables into light-tailed 
and have to be more closely investigated for heavy-tailed variables. Examples are the normal distribution which 
can be transformed to the Lognormal distribution, a heavy-tailed distribution, or the Pareto distribution which is 
obtained by applying the exponential transformation to the exponential distribution.

For the reciprocal transformation T(x) = 1/x general statements are not available. However, if the density of X is 
greater than 0 in 0, T(X) does not have finite mean and hence not existing moments (Lehmann & Shaffer, 1988). 
A classic example is the Cauchy distribution which arises as the reciprocal of a normally distributed random 
variable.

Very general transformations for the generation of heavy tails from any random variable, the so-called 
Lambert-W-transformations, are given by Goerg (2015). These transformations have a tail parameter, determin-
ing the tail behavior, and can also be used to transform heavy-tailed data into a light-tailed distribution. They 
are directly connected to the Tukey-transformations which can generate heavier tails for the transformed random 
variables (Fischer, 2010).
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