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Climate and landmanagement accelerate the
Brazilian water cycle

Vinícius B. P. Chagas 1 , Pedro L. B. Chaffe 2 & Günter Blöschl 3

Increasing floods and droughts are raising concerns of an accelerating water
cycle, however, the relative contributions to streamflow changes from climate
and land management have not been assessed at the continental scale. We
analyze streamflow data in major South American tropical river basins and
show that water use and deforestation have amplified climate change effects
on streamflow extremes over the past four decades. Drying (fewer floods and
more droughts) is aligned with decreasing rainfall and increasing water use in
agricultural zones and occurs in 42% of the study area. Acceleration (both
more severe floods and droughts) is related to more extreme rainfall and
deforestation and occurs in 29% of the study area, including southern Ama-
zonia. The regionally acceleratingwater cyclemayhave adverse global impacts
on carbon sequestration and food security.

Floods and droughts cause more damage worldwide than any other
natural hazard1,2 and their risks may be exacerbated by climate change
and socio-economic activities1,3,4. Often an increase in floods is aligned
with a decrease in droughts as a result of more abundant rainfall, and
the opposite is the case as rainfall becomes scarcer5,6. However, some
models suggest a joint increase in the severity of floods and
droughts1,7,8, a phenomenon referred to as acceleration of the terres-
trial component of the water cycle. This acceleration could lead to
large compound impacts9 on global food production10,11, ecosystem
health12,13, and infrastructure8.

There are a number of processes that potentially cause an accel-
eration of the water cycle. In a warming climate, the moisture carrying
capacity of the atmosphere is increased14 enhancing extreme
rainfall15,16 whichmay increase streamflowduring floods. Enhancement
of rainfall seasonality17 may decrease streamflow during hydrological
droughts. Additionally, the global atmospheric and oceanic circula-
tions are affected7,14,18. Weaker meridional pressure gradients in a
warmer climate may lead to the amplification of stationary waves
causing more persistent rainfall and drought periods19 and rapid shifts
between these two regimes20–22. Changes in monsoon patterns with
increasing contrasts between land and sea surface temperature7 can
similarly increase floods and droughts. Land management can also
accelerate the water cycle. Agricultural practices can reduce rainwater
infiltration into the soil which increases overland flow and thus floods,

and reduces groundwater recharge and thus low flows during
droughts23. River engineering8, urbanization24, and groundwater
pumping25 can have similar effects on streamflow. While there is some
evidence for the acceleration of the water cycle over the ocean18, there
is little such evidence over land26,27 because of insufficient streamflow
data and the confounding effects of the growinghuman interference in
the terrestrial water cycle8.

Here, we analyze a comprehensive hydrometeorological, land
cover, and human water use data set in Brazil and show that water use
and deforestation have amplified climate change effects on Brazilian
streamflow extremes over the past four decades. This region encom-
passes some of the world’s largest basins with mounting concerns of
changing floods and droughts6. Our analysis is based on daily
streamflow observations from 886 hydrometric stations (Supplemen-
tary Fig. 1) for the period from 1980 to 2015. For each station, we
compute annual time series of annual minimum 7-day streamflow as a
measure of drought flows, mean daily streamflow as a measure of
water availability, and annualmaximum daily streamflow as a measure
of flood flows. We quantify the trend magnitude of each time series
(i.e., local trend) with the Theil-Sen slope estimator, the significance of
each trend with the Mann-Kendall test, and obtain regional trends by
spatial interpolation with ordinary kriging.

For each basin, we consider three climate drivers of streamflow
change, computed from daily meteorological data from 1980 to 2015:
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(i) mean daily atmospheric water balance, computed as precipitation
(P) minus evaporation (E, including transpiration from plants); (ii)
annualminimum90-day P – E to indicate droughts caused by seasonal
variability; and (iii) annual maximum 14-day P – E because, as basin
response times range from less than a day in small basins to a few
months in large basins, the 14-day time scale is a compromise onwhich
basins are most sensitive. Additionally, we consider two non-climatic
drivers: (i) water use for irrigation and other purposes, and (ii) native
vegetation cover. All variables are analyzed in units of mm d−1 so that
they are independent of basin size, except for native vegetation which
is analyzed in % of basin area. Trends in streamflow and their climate
drivers are expressed in units of % per decade by dividing each trend
by the long-term average value of the same time series. We analyze the
links between streamflow changes and their drivers with panel
regressions, which allows us to investigate the hydrological variability
in space and time in a single framework. We set the regressions with
fixed effects for location and use logarithmic-transformed variables. In
addition, we explore the acceleration of the water cycle with bivariate
frequency distributions with respect to flood and drought flows.

Results
Detection and attribution of streamflow trends
Our data show that streamflowchanges have beenwidespread in Brazil
(Fig. 1). Further diminishing low flows (i.e., increasing severity of
hydrological droughts) can be found in southern Amazonia and
central-eastern Brazil (Fig. 1a) while increasing flood flows can be
found in Amazonia and in the southeast (Fig. 1b). Regional trends in
drought flows range from −37 to +16% per decade and those in flood
flows from −17 to + 10% per decade. Local trends in drought flows at
the hydrometric stations (Supplementary Fig. 2) range from −65 to
+ 59% per decade and those in flood flows from −39 to + 32% per
decade. The average trends over the entire domain are −5% and −1%
per decade for droughts and floods, respectively. Out of the 886 sta-
tions, 353 and 56 stations show significantly (α =0.05) decreasing and
increasing drought flows, respectively, and the corresponding figures
for floods are 104 and 51 stations.

The regression analysis suggests that streamflowchange is related
to the combined effects of climate variability and increasing water use

(Fig. 1c, d). Drought trends are driven primarily by changes in mean
daily P – E, with substantial effects of water use and minimum P–E
(Fig. 1c). Water use impacts are noticeable particularly in central-
eastern Brazil, where decreases in drought flow and increases in water
abstraction are the greatest (Supplementary Figs. 2–4). Flood changes
are related to maximum P – E andmean daily P – E (Fig. 1d), indicating
that the floods change in response to modified extreme precipitation
and antecedent soil moisture conditions.

To interpret our results, we focus on four hotspots of changewith
distinct streamflow regimes, land management, and in the upstream
areas of major South American basins with mounting environmental
concerns such as the Amazon, São Francisco, Paraná, Uruguay and
Iguaçu basins (Supplementary Figs. 2–4). In the southern Brazil and
northern Amazonia hotspots, drought flows are aligned with increas-
ing mean P – E and minimum P – E with little land management effect
on streamflow (Fig. 2). Floods in the southern Brazil hotspot, a sub-
tropical region, have increased in line with increasing maximum P – E
and mean P – E. In the Highlands hotspot, a region with intensive
agriculture, the reduction of drought flows is aligned with decreasing
mean P – E and increasing water use but, from the year 2000 onward,
drought flows have become dissociated from mean P – E with a rapid
increase inwater use (Supplementary Fig. 7). In the southernAmazonia
hotspot, drought flows have decreased substantially, even though the
climatic variables have barely changed, suggesting an effect of large-
scale deforestation of the tropical rainforest.

Four quadrants of streamflow change
Changes in the extremesmaynot always be synchronizedwith changes
inmean flows. For example, an increase inmean streamflow combined
with an increase in the variance of streamflow could lead to increasing
high flows but decreasing low flows. Here, we examine how both flow
extremes have changed in a single analysis by classifying the trends
into four quadrants (Fig. 3a). The northern Amazonia and southern
Brazil hotspots show increases in flood and drought flows (wetting
conditions), which implies that floods have becomemore frequent and
droughts less frequent. The Brazilian Highlands show decreasing flood
and drought flows (drying), and southern Amazonia increasing floods
anddecreasing drought flows (accelerating). Even though the trends in
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Fig. 1 | Observed streamflow trends and their drivers in Brazil (1980–2015).
aChange in annualminimum7-day streamflow (drought flows).bChange in annual
maximum daily streamflow (flood flows). Blue and red indicate increasing and
decreasing streamflow respectively (in % change relative to the long-term drought
or flood flow, per decade). c, d Contributions to streamflow change in terms of

coefficients of two panel regressions between streamflow (n = 25,682 for droughts
and 27,299 for floods) and mean daily P – E (precipitation minus evaporation),
annual minimum 90-day P – E, annual maximum 14-day P – E, and water use. A
coefficientof0.5 indicates that a 1% change in a particular driver leadson average to
a 0.5% change in drought or flood flows. Error bars represent the standard error.
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flood anddroughtflows are highly correlated (Spearman correlation in
the spatial variability of regional trends of 0.61, Fig. 3b), there is a
tendency towards an accelerating and drying water cycle. A total of
29% of the study area has been accelerating (Fig. 3b), which is double
the expected percentage of a standardized, bivariate normal dis-
tribution with a correlation of 0.61 (i.e., the correlation between
drought and flood flow trends; Eq. (5) in the Methods section). More-
over, 25% and 42% of the study area exhibit wetting and drying trends
respectively, whereas 35% would be expected in a standardized,
bivariate normal distribution. These figures are quite robust against
estimation uncertainty (Supplementary Fig. 9).

In order to analyze the causes of the acceleration of the terrestrial
component of thewater cycle, we computed the average trend of each
driver from the locations associated with the bins of the bivariate
histogramof Fig. 3b (Fig. 4).Mean P – E trends are strongly positive (on
average + 5% per decade) and negative (on average −3% per decade) in

the wetting and drying quadrants, respectively (Fig. 4a), while they are
less important in the other quadrants. Increasing water use has
amplified the decreasing trends in the drying quadrant (Fig. 4c). Vir-
tually all areas where water use has increased by more than +0.5% of
the long-term mean flow per decade are in the drying quadrant. The
accelerating quadrant is dominated by two factors. The first is
increasing trends inmaximumP – Ewhich has increased on average by
+ 2% per decade. The second factor is decreasing native vegetation
cover. A total of 60% of all areas where native vegetation cover has
decreased by more than 2 percentage points per decade are in the
accelerating quadrant.

Discussion
While in the past some of the drivers of streamflow change such as
climate28–35 and land management36–42 have been analyzed individually
in SouthAmerica, hereweare showing a clear, spatially coherent signal
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of streamflow changes that can be interpreted in terms of the com-
pound effects of these drivers. Drying trends are the largest in central
and northeastern Brazil (Fig. 5). One possible explanation for the
change is the southward shift of the South American Convergence
Zone (SACZ), a major source of precipitation, which has moved away
from central Brazil29. The drying trends may also be related to a
northward displacement of the Intertropical Convergence Zone
(ITCZ), which has moved the equatorial precipitation band farther
away fromnortheasternBrazil30. Even though the average temperature
has been increasing in central and northeastern Brazil over the past
four decades31, evaporation trends have been mostly not significant
(Supplementary Fig. 5) possibly because of reduced precipitation
water supply. An expansion of irrigated agriculture from 15 to 70
thousand km2 (i.e., by 367%)36 from 1980 to 2015 has led to a rapid
growth of water abstraction, which in 2017 constituted 68%of the total
Brazilian water use37. Increases in crop productivity and water
demands due to a drier climate have boosted agricultural water use
even further38. Water abstraction occurs mainly from May to
September36 during the dry season in most of central and eastern
Brazil, which is linked to a substantial reduction in drought flows.

The northward shift of the ITCZ that has contributed to the
reduced precipitation in northeastern Brazil has also contributed to
the wetting trends in northern Amazonia32,33, even though average
temperature31 and evaporation have increased. On the other hand, the
wetting trends in southern Brazil might be associated with stronger
effects of the El Niño-Southern Oscillation climate mode34 and the
strengthening and southwards shift of the SACZ29.

An acceleration of the terrestrial water cycle has occurred
extensively in southern Amazonia (Fig. 5). The northward shift of the
ITCZ is linked to an expansion of dry season length33 and warmer
temperatures, which have increased evaporation particularly in
southwestern Amazonia. Extreme wet-season precipitation and floods
have increased as a result of the intensified ascending airmasses of the

Walker circulation since the 1990s28. This intensification has been
associated with warming trends of sea surface temperatures (SST) in
the North Atlantic and cooling trends of SST in the tropical Pacific28.

Another factor contributing to the acceleration trend of stream-
flow is deforestation, i.e., the substitution of tropical native vegetation
by croplands and pasture, which has caused widespread land degra-
dation in southern Amazonia39,40. Land degradation is associated with
reduced soil infiltration capacity through soil compaction by agri-
cultural machinery or grazing, reduction of soil fauna, and continued
exposure of bare soil23,43. Consequently, surface runoff might increase
and groundwater recharge decrease, thus both increasing floods and
reducing the baseflow thatmaintains droughtflows in the dry season23.
This effect is particularly pronounced where streamflow is highly
seasonal and drought flows depend on baseflow44,45, as in southern
Amazonia. Additionally, deforestation may increase extreme pre-
cipitation by triggering convection due to warmer land surface tem-
peratures and increased patchiness41. On the other hand, deforestation
may increase dry season length due to reduced moisture recycling42

thus further extending hydrological droughts. Annual streamflow to
rainfall ratios in three small southern Amazonian basins cultivatedwith
soy beans was found to be twice that of neighboring forested basins,
flows in the dry season were lower and those in the wet season were
higher46 similar to the present study. In contrast, analyses of stream-
flow in about 50 basins in Amazonia suggest that deforestation has
increased low flows, likely because of decreasing transpiration, but
without an effect on high flows35,47, indicating that deforestation may
potentially mask the effects of climate change on the water balance.

If the observed changes of extreme streamflow continue into the
future in an unabated way, they will have substantial impacts in South
America and on the global scale, some of which are already manifest-
ing themselves. The impact will differ depending on where the
region falls in the quadrant classification. In the Brazilian Highlands,
for example, which lies in the drying quadrant, the drought flow of a
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10-year return period has become a 1-year drought (90% CI 1, 2) over
the past four decades (Supplementary Fig. 10). Such an increase in
drought risk threatens agricultural productivity and global food
security11. During the 2012–2013 drought in Brazil and the U.S., global
soybeanprices soared to $550permetric ton48 and it is likely that these
types of events will happen more frequently in the future. In wetting
regions, floodhazards will increase and events such as the 2008 floods
in São Paulo city, which caused damages on the order of 110 million
USD49, may becomemore frequent. In the urban areas of southeastern
South America, those changes may exacerbate the coastal hazards
resulting from sea level rise50.

In regions with an accelerating water cycle, the situation of both
droughts and floods will deteriorate if current changes continue. In
Amazonia, where most of the hydropower potential is still untapped51,
future reservoir construction will have to account for the increased
flood risk as the average 100-year flood in 1980 in the region has now
become a 25-year flood (90% CI 5, 190) (Supplementary Fig. 10).
Enhanced floodingmay increase treemortality through the inundation
of floodplain forests52, the “Achilles heel” of the Amazonian rainforest53

and this process may be exacerbated by more intense droughts in the
same region12. Reduced tree longevity could accelerate the transfor-
mation of Amazonia froma global carbon sink, currently sequestrating
0.4 Petagramsof carbon per year (25%of the terrestrial world total), to
a global carbon source12,13. Reduced vegetation health can further
reduce moisture recycling, increase the duration of dry spells and
extreme precipitation events, potentially leading to a tipping point of
forest dieback42.

Given the evidence for the acceleration of the terrestrial water
cycle demonstrated here for Brazil and by global climate model
projections1,54, similar climate and land management changes can also
occur in other regions. It would therefore be advisable to conduct
observation-based mapping studies globally. The evidence for the

acceleration found here also provides an opportunity for Earth System
models to attribute the joint changes in floods and droughts to cli-
mate, deforestation andwater use. In the face of still increasing carbon
emissions and agricultural expansion, climate mitigation efforts need
to go hand in handwith the adaptation of landmanagement practices,
in order to maintain food security and infrastructure safety through
the compound risk management of floods and droughts.

Methods
Streamflow data
We used daily streamflow data from 886 hydrometric stations
obtained from the CAMELS-BR dataset (Catchment Attributes and
Meteorology for Large-sample Studies – Brazil)55. The hydrometric
stations cover most of the largest river basins in tropical South
America (Supplementary Fig. 1). The data have been collected follow-
ing similar measurement protocols as the average of two daily staff
gauge readings converted to streamflow through stage-discharge
relationships. We selected the study period (1980 to 2015) as a trade-
off between the number of stations and consistent record length since
most hydrometric stations in the northern and western parts of Brazil
were established in the second half of the 1980s. Only the stations that
satisfied the following criteria were included in the study: (i) at least 25
years with less than 5% of data missing; (ii) with data starting before
1990; (iii) with data ending after 2005.

We removed hydrometric stations with typographic errors and
unrealistically large discharges. Since we are interested in analyzing
trends at a large scale, we also removed from the analysis the stations
strongly affected by urban land cover (covering more than 10% of the
basin area) or reservoirs (stations with a degree of regulation, i.e., the
ratio of total reservoir storage capacity to total annual discharge,
above 25%). The reservoirs considered were those from the CAMELS-
BR data set, which is formed by a combination of data from the Global
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b Explanation of the color code of a. Accelerating water cycle has occurred in 29%
of the region (2.7million km2); deceleration in 4% (0.4million km2); drying in 42%
(3.9million km2); and wetting in 25% (2.4million km2).
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Reservoir and Dam database (GRanD)56, the Brazilian National Water
Agency (ANA - Agência Nacional de Águas) Dam Safety Report 201757

and water bodies identified from Landsat satellite images58. The
catchment boundaries were derived from the Global Streamflow
Indices andMetadata Archive (GSIM)59,60. Catchment areas range from
11 km2 to 5,120,000 km2 with a median of 2080 km2.

Climate and land management data
We used daily precipitation time series from CHIRPS v2.0 (Climate
Hazards Group InfraRed Precipitation with Station)61 from 1981 to
2015. CHIRPS has a spatial resolution of 0.05° and includes data from
rain gauges and satellite sensors. Our choice of using CHIRPS data was
based on a comparison of precipitation trends from several gridded
datasets (CHIRPS, MSWEP62, PERSIANN63, and CPC) with precipitation
trends of ANA weather stations64. For the comparison, we estimated
trends in the ANA dataset using daily precipitation data from 2315
weather stations with at least 25 years without missing values between
1980 and 2015. We interpolated the trends from the weather stations
with ordinary kriging and correlated the interpolation with the trends
of the griddeddatasets. The trendsof theCHIRPS andMSWEPdata had
the highest correlations with those of the weather stations (Supple-
mentary Table 1a) and the median trends of the CHIRPS data were
closest to those of the weather stations (Supplementary Table 1b).

Daily evaporation time series (including transpiration from vege-
tation) were obtained from GLEAM v3.3a (Global Land Evaporation
Amsterdam Model)65,66 from 1980 to 2015. GLEAM has a spatial resolu-
tion of 0.05° and is based on satellite soil moisture data and multiple
meteorological products. We also conducted an alternative analysis
using evaporationdata fromERA5-Land67,68 andobtained similar results.

We used global land cover data from ESA/CCI Land Cover v2.0.7
(European Space Agency/Climate Change Initiative) from 1992 to 2015
with a 300-meter spatial resolution and annual temporal resolution.
We merged the following land cover classes: forests, shrublands,
grasslands, sparse vegetation, and wetland. For simplicity, we denote
this merged class as native vegetation cover.

Consumptive water use (i.e., abstracted water that does not
directly return to the river basin) was extracted from the ANA’sManual
of Consumptive Water Use in Brazil37. The data set is composed of
monthly water use estimates for each municipality in Brazil from 1931
to 2015, classified into six categories: (i) irrigation, mapped from
satellite images and characterized using national agricultural censuses;
(ii) livestock, mapped from national agricultural censuses; (iii) house-
holds, estimated from the number of people in each municipality; (iv)
industry, estimated from the number of employees in each industrial
category; (v) mining, estimated from annual production; and (vi)
cooling water for thermal power plants, estimated from annual pro-
duction. Evaporation from reservoirs is not included in ANA’s esti-
mates, thus water use might be underestimated in some regions. We
assumed water use in each municipality to be spatially homogeneous
and converted the data to a 500-meter grid. Water use outside Brazil
was not considered since the data were not available, but the main
basins outside Brazil are in western Amazonia which has minor
anthropogenic interventions.

Trend analysis
For each hydrometric station we computed annual time series from
1980 to 2015 for the following variables: (i)minimum 7-day streamflow
(drought flows), as it is widely used in Brazilianwatermanagement and
trend analysis worldwide69–74; (ii) mean daily streamflow (water avail-
ability); (iii)maximumdaily streamflow (floodflows); (iv)minimum90-
day precipitation (P) minus evaporation (E, including transpiration
from vegetation); (v) mean daily P – E; (vi) maximum 14-day P – E; (vii)
native vegetation cover; (viii) consumptive water use. The meteor-
ological, native vegetation and water use variables are computed
considering the contributing basin area of their respective

hydrometric stations. The annual time series are computed in units of
mm d−1 so that their values are independent of basin size, except for
native vegetation, which is computed in % of the basin area. Changing
the time scales of maximum and minimum P – E did not modify the
conclusions; the minimum 90-day P – E had correlations of at least
0.79 with other time scales ranging from 60 to 120 days; and the
maximum 14-day P – E had correlations of at least 0.77 with other time
scales ranging from 7 to 30 days. Similarly, changing the minimum
7-day streamflow and maximum daily streamflow by the 5th and 95th
flow percentiles yielded similar results, as the Spearman correlations
between their local trends are 0.94 and 0.72 respectively. In order to
captureboth thedry andwet seasonswell,weused thewater year from
March to February for the minimum 7-day flow and minimum 90-day
P – E; and from September to August for the other variables.

A linear trend magnitude in each annual time series (i.e., local
trend) was estimated with the Theil-Sen slope estimator75,76 (Supple-
mentary Figs. 2–5). We evaluated the statistical significance of the
trends with theMann-Kendall test77. We removed significant (at the 5%
level) lag-1 autocorrelation by trend-free pre-whitening78. We multi-
plied the trend magnitude by 10 to express it in terms of change per
decade. The estimated local trend in each series was divided by the
long-term average value of its own time series to transform it into units
of % change per decade. For example, the lower Madeira river in
southern Amazonia (gauge ID 15700000, latitude −5.8167, longitude
−61.3019) has a drought flow trend of −0.00588mmd−1 yr−1 and a long-
term average drought flow of 0.4398mm d−1, which results in a trend
of −13.4%per decade. There are two exceptions to this transformation:
(i) native vegetation cover, for which no transformation was necessary
because the data is already in % of the basin area, therefore its trends
are expressed in percentage points per decade; and (ii) water use,
which was instead divided by the long-term mean daily streamflow
because it is a more relevant index to relate to water abstractions.

We estimated regional trends (Fig. 1, Supplementary Figs. 2–5) by
spatially interpolating local trends with ordinary block kriging using
the gstat R package79,80 and the bestfit variogrammodels. The regional
trends of the drivers are estimated by interpolating the local trends
(which considers the contributing basin area of the hydrometric sta-
tions) so that it is consistent with the regional streamflow trends. The
blocks are sized4° by 4° (approximately445by 445 kmat the equator),
which allows for a robust analysis particularly in the Amazon (where
gauge density is the lowest) with on average three gauges in each
block. Interpolations using block sizes ranging from 1° by 1° to 6° by 6°
yield similar results. The uncertainties of the estimated local trends
(Fig. 3a) were evaluated with bootstrapping81 (α =0.34) and the
uncertainties of regional trends with kriging standard deviations (i.e.,
kriging errors) (Supplementary Figs. 2–4).We checked the correlations
between trends and catchment area topotentially account for its effect
in the interpolation82, but the Spearman correlationswere close to null.

To evaluate the possible inflated variance effects on the spatial
interpolation due to the spatial correlation between stations, which
could lead to an overestimation of regional trends, we repeated the
trend interpolation using two subsets of randomly selected stations: (i)
using only stationswith distances larger than0.5° fromeachother; and
(ii) using only stations with distances larger than 1° from each other
(Supplementary Fig. 6). The spatial patterns of the trends are similar to
those using all stations, with Spearman correlations of at least 0.93
between them. Additionally, we computed the regional Mann-Kendall
test83 for the trends in each hotspot of change. Changes in flood flows
and drought flows are statistically significant for every hot-
spot (P <0.001).

Trend attribution
We evaluated the potential causes of streamflow trends with panel
regressions (Fig. 1c, d), similarly to previous studies84–86. Panel
regression includes timeseries data acrossmultiple cross-sections (i.e.,
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basins) in a single regression framework, allowing us to investigate the
hydrological variability both in space and in time. We use fixed-effects
(for location) regressions as we are mostly interested in analyzing the
impacts of variables over time and as indicated by a significant
(P < 0.001) Hausman specification test87. We compute two panel
regressions, one for drought flows and another for flood flows. The
drought flows regression has the form:

ln Qmini,t

� �
=β1ln Pmi,t

� �
+ β2ln Pmini,t

� �
+β3ln Ui,t

� �
+β4Vi,t +αi +ui,t ð1Þ

where Qmini,t is the drought flow (i.e., minimum annual 7-day
minimum flow) of basin i at year t; Pmi,t is the mean daily P – E for
that basin and year; Pmini,t is the minimum annual 90-day P – E; Ui,t is
the mean daily consumptive water use; Vi,t is the percentage of native
vegetation cover; β1 to β4 are the coefficients of the independent
variables; and the last two terms are the error components, with αi
representing the intercept for basin i and ui,t representing the
idiosyncratic error. The flood flows regression has the form:

ln Qmaxi,t
� �

=β1ln Pmi,t

� �
+ β2ln Pmaxi,t

� �
+β3ln Ui,t

� �
+β4Vi,t +αi +ui,t ð2Þ

where Qmaxi,t is the flood flow (i.e., maximum annual daily flow) of
basin i at year t; and Pmaxi,t is themaximumannual 14-day P – E.Weuse
logarithms of mmd−1 units for all variables except native vegetation as
it is already expressed in percent coverage. Therefore, the regression
coefficients can be interpreted in relative terms. For example, a 1%
change in maximum annual P – E would lead to a β2% change in flood
flows assuming that the remaining independent variables are
unchanged. We computed the standardized errors of the regression
coefficientswith robust covariancematrix estimators88. The regression
analysis was performed with the R packages plm89, sandwich90,91 and
lmtest.

The panel regressions were computed in two steps. First, we
computed the regressions of Eqs. (1) and (2) for the years 1992 to 2015,
which is the period covered by vegetation data. Both regressions had
null and non-significant (P > 0.01) native vegetation coefficients. Thus,
we removed the native vegetation terms and computed the regres-
sions a second time including data from 1980 to 2015 (Fig. 1c, d). The
regressions are robust to changes in the analysis period, with similar
coefficients for the two time intervals analyzed (1992-2015 and
1980-2015).

We investigate the interannual variability of streamflow and its
drivers in four hotspots with mounting environmental concerns
(Fig. 2). The selected hotspots are located in the upstream areas of
major South American basins with distinct streamflow regimes, land
and water management. The Brazilian Highlands hotspot has wide-
spread water-intensive crops with increasing drought and water scar-
city issues92,93, which covers themost arid regions upstreamof the São
Francisco and Paraná basins. The Southern Amazonia and Northern
Amazonia hotspots have been under large-scale deforestation with
potential hydrometeorological impacts41,94,95, particularly in the south
where land cover change is the highest39,96. The Southern Brazil hot-
spot has been under increasing flooding in recent decades69,97, which
covers the upstream areas of the subtropical Uruguay and Iguaçu
basins.Wenote that the results are robust to variations in hotspot sizes
(by ± 20%) and orientations (by ± 20°).

Following the methodology of a previous study98, for each hot-
spot we standardized the annual time series at the stations of each
variable to zero mean and unit variance to make the time series
comparable within hotspots (Supplementary Fig. 7), for example:

Q0
i,k =

Qi,k � μQk

σQk

ð3Þ

where μQk
is the mean and σQk

is the standard deviation of the
streamflow time series for station k, fromwhichwe estimated the long-
term mean μQh for each hotspot and the square root σQh of the mean
temporal variance. We compared the results between hotspots by
denormalizing the series k of each hotspot h:

Q*
i,k = σQhQ

0
i,k +μQh ð4Þ

The hotspot time series (Supplementary Fig. 7) were smoothed
using the LOESS method with a smoothing parameter of 0.5.

Quadrant classification
We examine how both flow extremes have changed in a single ana-
lysis using the quadrant classification. We classified the trends into
four quadrants (Fig. 3): (i) wetting, when trends in drought flows and
flood flows were positive; (ii) drying, when trends in drought flows
and flood flows were negative; (iii) accelerating water cycle, when
trends in drought flows were negative but those in flood flows
positive; (iv) decelerating water cycle, when trends in drought flows
were positive but those in flood flows negative. To analyze the role of
the drivers in these changes we first computed a 2-dimensional his-
togram of regional trends in drought flows and flood flows (Fig. 3b).
Then, we identified the spatial coordinates included in each
2-dimensional bin of the histogram. For each bin, we computed the
average regional trends of the drivers at the associated spatial
coordinates and plotted them along with their relative frequencies
(Fig. 4 and Supplementary Fig. 8).

To determine the expected trend frequency in each quadrant, we
considered the standardized, bivariate-normally distributed variables
Z1 and Z2 evaluated with respect to regional trends in drought and
flood flows. The quadrant probability can be evaluated99 as

P Z1 ≤0,Z2 ≤0
� �

=P Z1 ≥0,Z2 ≥0
� �

=
1
4
+
sin�1ðρÞ

2π
ð5Þ

where ρ is the correlation of Z1 and Z2. A significant correlation
between changes in drought and flood flows is expected as they are
often consistent with each other and the entire flow distribution
moves either upward or downward5,6. Here, we set ρ to 0.61, corre-
sponding to the spatial correlation between the regional trends in
drought and flood flows found in the trend analysis in the present
study (Fig. 3b). According to Eq. (5), in a random set, 15% of the
trends would be expected to fall in each of the accelerating and
decelerating quadrants and 35% in each of the drying and wetting
quadrants.

To demonstrate the robustness of the results, we examined the
sensitivity of trend frequency in each quadrant as a function of the
spatial uncertainty in regional trends (i.e., the kriging errors) (Sup-
plementary Fig. 9). Even if 30% of the locations with the highest
average kriging errors were not considered in the analysis, the areal
coverage of the accelerating quadrant would only change from 29% to
24%, which is still well above that of a random sample (i.e., 15%). The
drying quadrant becomes even more frequent and the wetting quad-
rant less frequent as the locations with the highest kriging errors are
not considered.

Changes in the return period
In evaluating observed changes in the return periods of drought and
flood flows (Supplementary Fig. 10), we followed a previous study98

where the location parameter of the probability distribution is allowed
to changewith time. For compatibility of streamflows in catchments of
different sizes, this analysis was made using streamflow per unit
catchment area. The probability density function f(x) of the annual
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maximum, x, was estimated for each station using a generalized
extreme value distribution (GEV)

f x ∣μt ,σ,ξ
� �

=
1
σ

1 + ξ
x � μt

σ

� �h i� 1
ξ + 1
� �

exp � 1 + ξ
x � μt

σ

� �h in o�1
ξ ð6Þ

where µ is the location, σ is the scale, and ξ is the shape parameter of
the GEV distribution. The location parameter, µt, changes linearly with
time t as

μt = a+bt ð7Þ

The parameters a, b, σ, and ξ were estimated from the maximum
flow series using Bayesian inference through a Markov chain Monte
Carlo (MCMC) with the Differential Evolution Adaptive Metropolis
(DREAM(ZS))

100,101. Non-informative uniform prior distributions were
used for a, b, and σ, whereas a normal distribution consistent with the
geophysical prior102 was used for ξ. We drew 12,000 parameter sam-
ples from the posterior distributions, from which 12,000 100-year
flood flows in 1980 were calculated for each station by inverting the
cumulative distribution function of the GEV and using Eq. (7) with t =
1980. The changed return period of these 12,000 flood flows in 2015
were computed using the cumulative distribution function of the GEV
and using Eq. (7) with t = 2015. Finally, themedian of the 12,000 return
periods was used as the 2015 return period of the 100-year flood flow
in 1980.

In the case of low flows, Eq. (6) was used after taking the negative
of the originalminimum7-dayflow series. The parameters a, b, σ, and ξ
were estimated using the same MCMC algorithm100,101 with non-
informative priors for all parameters in this case. We drew 12,000
parameter samples from the posterior distributions, from which
12,000 10-year minimum 7-day flows in 1980 were calculated. The
changed return period of these 12,000 drought flows in 2015 were
computed using the cumulative distribution function of the GEV and
using Eq. (7) with t = 2015. Finally, the median of the 12,000 return
periods was used as the 2015 return period of the 10-year drought flow
in 1980. Those stations for which the 5th and the 95th percentiles of
the uncertainty distribution agreed in the sign of change are plotted as
large points in Supplementary Fig. 10, whereas the remaining stations
are plotted as smaller points to indicate the uncertainty involved in the
estimation.

Data availability
Daily streamflow data are available at https://doi.org/10.5281/
zenodo.3709337 and http://www.snirh.gov.br/hidroweb/. Daily pre-
cipitation data from CHIRPS v2.0 are available at https://www.chc.
ucsb.edu/data/chirps. Daily precipitation data from MSWEP are
available at https://www.gloh2o.org. Daily precipitation data from
PERSIANN are available at https://doi.org/10.7289/V51V5BWQ. Daily
precipitation data from CPC are available at https://psl.noaa.gov/
data/gridded/data.cpc.globalprecip.html. Daily evaporation data
from GLEAM v3.3a can be downloaded from https://www.gleam.eu/.
Daily evaporation data from ERA5-Land can be downloaded from
https://doi.org/10.24381/cds.e2161bac. Global land cover data from
ESA/CCI v2.0.7 can be downloaded from http://maps.elie.ucl.ac.be/
CCI/viewer/download.php (© ESA Climate Change Initiative - Land
Cover led by UCLouvain, 2017).
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