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Introduction

In flood management, there is a high demand for simulation tools
that are capable of providing accurate and fast flood predictions.

To deal with the risks, it is important to not only identify the regions
vulnerable to inundation, but also to estimate arrival times and
maximum water levels. Such detailed results of flood simulations
can provide valuable insights for practitioners. Unfortunately, flood
simulation models are still not in widely used by decision makers in
flood management. Leskens et al. (2014) give reasons for limited
use of models for decision-making. This is mainly because of the
discrepancies between what information is demanded and what can
actually be offered by models in terms of output and accompanying
uncertainties. There are also delays and constraints in the exchange
of model information through the network of participants. People
who develop new models are often not the ones who use them and
are unaware of the needs of the actual users. For real-world sim-
ulations, long computation times and inflexible model setup are the
main bottlenecks. Shallow-water models that overcome these ob-
stacles can be used to interactively provide real-time guidance for
decision makers (Waser et al. 2014). To study what if–scenarios,
dynamic changes in the model setup are necessary, e.g., removal
or insertion of flood protection measures. Typical use cases include
the investigation of levee failures, e.g., a breach that widens over
time. Furthermore, flows over complex terrains and overtoppings of
flood protection measures should be handled by the numerical
scheme. Thus, important requirements for a flood simulation tool
are reliability, speed, and stability of the underlying numerical
solver, as well as interactivity and flexibility when setting up the
model.

In most flood simulation tools [HEC-RAS (Brunner 2010),
TELEMAC (Galland et al. 1991) and Visdom (Visdom n.d.; Cornel
et al. 2015)] the shallow-water equations (SWEs) are the underlying
model equations. They are based on the assumption that the hori-
zontal length scale is large compared to the vertical length scale.
The SWEs can be derived by depth-averaging the Navier-Stokes
and continuity equations (Temam 1984). They provide plausible
and reliable results of water levels and wave arrival times for events
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such as river floods and dam breaks (Audusse et al. 2004; Brodtkorb
et al. 2012; de la Asunción et al. 2013; Hervouet and Petitjean 1999;
Liang and Marche 2009; Russo 2005). A common numerical
method for solving SWEs is the finite volume method (FVM)
(Godlewski and Raviart 1996; LeVeque 1992; LeVeque 2002; Toro
2001). For the FVM, a computational grid has to be chosen as a
basis for the spatial discretization, which is usually an unstructured
triangular mesh or a regular grid. Unstructured triangular meshes
are able to incorporate complex geometries at the expense of worse
performance because of additional complexity in both the mesh and
the implementation. In contrast, rectangular grids are not able to
exactly represent nonaligned topographic features. However, tech-
niques exist that allow us to overcome this limitation, e.g., cut-cells
(Liang and Borthwick 2008; Meinke et al. 2013). The striking ad-
vantage of Cartesian grids is their suitability for a straightforward
parallelization on GPUs (Brodtkorb et al. 2012; Horváth et al.
2016; Vacondio et al. 2016). The advent of GPU computing has
reduced computation times by a factor of up to 100 compared to
conventional models (Casulli and Stelling 2013; Horváth et al.
2016; Vacondio et al. 2016). This speed-up in computation time
does not only allow for smaller cell sizes and more accurate sim-
ulation runs, but also decreases model uncertainties as ensemble
simulation becomes a viable option.

In recent years, some properties were proven to be essential
for the stability of numerical schemes. The scheme should be
positivity-preserving, that is, water depths should remain nonneg-
ative at any point and any time. Furthermore, it should be capable
of handling wet–dry boundaries, which is a challenging task. To
simulate real-world floods over time periods of days or even weeks,
it is important for the solution to remain stable for the duration,
e.g., the scheme should not produce spurious velocity oscillations
at shoal zones. Problems characterized by strong discontinuities,
e.g., dam breaks or overtoppings of flood protection measures,
should be captured accurately. Finally, the scheme should be
well-balanced, i.e., it should be capable of balancing source and
numerical flux terms for simple stationary solutions such as a still
water. Most of the recently developed schemes are well-balanced
(Audusse et al. 2004, 2015; Bollermann et al. 2013; Durran 2010;
Horváth et al. 2015; Hou et al. 2014; Li et al. 2013; Noelle et al.
2006; Russo 2005; Xing and Shu 2005).

In this paper, we compare three state-of-the-art shallow-water
schemes: the first-order scheme of Chen and Noelle (CN) (Chen
and Noelle 2017), and the second-order schemes of Buttinger et al.
(BH) (Buttinger-Kreuzhuber et al. 2018) and Horváth et al. (HW)
(Horváth et al. 2015). The predecessor of the CN and BH schemes
presented by Audusse et al. (2004) is a popular scheme both in
the academic world and outside it, and it can also be found in the
TELEMAC-MASCARET system (Hervouet and Ata 2017). The
second-order scheme by Kurganov and Petrova, which is the pre-
decessor of the HW scheme, is also a popular scheme, especially
for GPU-based solvers. The CN, BH, and HW schemes presented
in this paper improve their predecessors by fixing the sources of
numerical instabilities due to error accumulation and make long
large-scale simulations possible.

We focus on schemes that are suitable for efficient GPU im-
plementation, since in addition to accuracy, run time is of key
importance in interactive decision support. Today’s GPUs are
very powerful, but they are still very limited by the available re-
sources. On GPUs, the work is subdivided among several smaller
computation units, each of which has limited resources. With this
information in mind, we have to select schemes and design
algorithms that do not overuse the available resources to avoid
performance degradations. The chosen schemes are satisfactory
from this computational point of view, while providing important

stability properties at the same time, i.e., they are well-balanced and
positivity-preserving.

The advantages and disadvantages of the schemes are demon-
strated by simulating three historical flood scenarios of the Danube
in Austria. We discuss in detail the set up of each case and the un-
certainties that can affect the solutions. The presented real-world
validation cases have different terrain features, ranging from rela-
tively flat lowlands to river valleys with highly varying bottom
topography. We validate the schemes using the Danube river flood-
ing of 2011 in the Lobau national park, the Danube river flooding
of 2013 in the Wachau valley, and in the same flooding of 2013 in
Marchfeld.

The paper is organized as follows. First, we discuss the SWEs
and the numerical schemes. Then, we present the numerical results
obtained with the three different schemes and compare them with
measured data. Finally, we conclude by sharing our findings.

This paper goes beyond the existing literature with the following
key points:
• assessment of the accuracy of flood extent predictions resulting

from the CN, BH, and HW schemes,
• comparison of the CN, BH, and HW schemes regarding perfor-

mance in large-scale scenarios,
• validation of shallow-water schemes on historical floods.

Model and Numerical Methods

In this section, we summarize the underlying numerical theory of
the SWEs that we compare and validate. The hyperbolic conserva-
tion law described by the two-dimensional SWEs, also called the
Saint-Venant system, can be written as
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where h = water height; hu = discharge along the x-axis; hv =
discharge along the y-axis; u and v are the average flow veloc-
ities along the respective axes; g = gravitational constant; and
B = bathymetry. The Chézy friction coefficient C is defined as
C ¼ h1=6=n, where n = Manning roughness coefficient. Subscripts
represent partial derivatives, e.g., Ut stands for

∂U
∂t . In vector form

the system can be written as

Ut þ FðUÞx þGðUÞy ¼ SðU;BÞ þ SfðUÞ ð2Þ

where U ¼ ½h; hu; hv�T is the vector of conserved variables,
F and G are flux functions. S is the bed slope source term and
models the fluid’s acceleration due to the gravitational forces.
To provide realistic water flow, a bed friction source term Sf is
included.

Discretization

The FVM is chosen for the spatial discretization on top of a uniform
grid with cell sizeΔx ×Δy. The starting point for an FVM scheme
are cell averages Ūj;k ¼ ½h̄j;k; w̄j;k; ūj;k; v̄j;k�T of the conserved var-
iablesUj;k for a finite volume cell Cj;k [Fig. 1(a)]. For the numerical
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solution of the SWEs [Eq. (2)], the discretized fluxes Fjþ1
2
;k and

Gjþ1
2
;k at the interfaces and an appropriate source term discretiza-

tion Sj;k need to be specified [Fig. 1(d)]. We choose the Harten-
Lax-van Leer (HLL) flux (Harten et al. 1983) as a flux function.
The HLL flux function Fj�1

2
;kðU−

jþ1
2
;k
;Uþ

jþ1
2
;k
Þ approximately solves

a Riemann problem given by the two interface states:
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jþ1

2
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¼ ½hjþ1

2
−;k; hjþ1

2
−;kujþ1

2
−;k; hjþ1

2
−;kvjþ1

2
−;k�T
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2
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2
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Care has to be taken when deriving those interface values to
ensure nonnegativity of the water depths. To obtain interface point
values, reconstruction steps need to be applied to the cell averages
and the bathymetry. Also the bed slope source term discretization
Sj;k needs to be tailored to the reconstruction to achieve balance.
Both the reconstruction and bed slope source terms depend on the
scheme and are discussed in detail in “Schemes.”

Time Integration

For the first-order CN scheme, an explicit Euler time integrator is
used:

ŪE;nþ1
j;k ¼ Ūn

j;k þΔtðRðŪnÞj;k þ SðŪn; B̄Þj;kÞ ð4Þ

RðŪÞ ¼
FðŪÞj−1

2
;k þ FðŪÞjþ1

2
;k

Δx
− GðŪÞj;k−1

2
þGðŪÞj;kþ1

2

Δy
ð5Þ

where R = flux residual. For the second-order HW and BH
schemes, we use the Heun method, which is a second-order strong-
stability-preserving Runge-Kutta time integrator (Bouchut 2007;
Gottlieb et al. 2001):
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j;k ¼ 1

2
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j;k þ
1

2
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where Ū�
j;k ¼ ŪE;nþ1

j;k The Courant-Friedrichs-Lewy (CFL) condi-
tion (Courant et al. 1967) restricts the time step Δt ¼ tnþ1 − tn
and is given by

Δt ≤ CFL · min

�
Δx
a

;
Δy
b

�
ð7Þ

where a and b represent the wave speeds at the interfaces parallel
to the x- and y-axes. To ensure the stability of a second-order
finite volume scheme, the CFL constant is not allowed to be
greater than 0.25 in the two-dimensional case (Bouchut 2007;
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Fig. 1. Schematic view of a shallow water flow, definition of the variables, reconstruction and flux computation for the CN, BH, and HW schemes:
(a) the conserved variables U are discretized as cell averages Ūj;k. The bathymetry function B is discretized at cell centers Bj;k for the CN and
BH schemes and at cell interface midpoints Bj−1

2
;k and Bjþ1

2
;k for the HW scheme; (b) for the BH and HW schemes, left- and right-sided point

values are computed at cell interface midpoints using a second-order reconstruction; (c) for the CN scheme, a hydrostatic reconstruction is applied
that computes first-order point values from cell averages. For the BH scheme, hydrostatic reconstruction updates the second-order point values from
the previous step; and (d) point values are used to compute the fluxes using the HLL flux function at the cell interfaces.
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Buttinger-Kreuzhuber et al. 2018). For first-order schemes CFL
can be increased to 0.5.

We evaluate the friction term in a semi-implicit manner
(Brodtkorb et al. 2012), which in the case of a first-order time in-
tegration is given by

SfðŪnþ1
j;k Þ≈ Ūnþ1

j;k
~SfðŪn

j;kÞ; with ~SfðUÞ ¼ −gn2
2
64

0

h−4
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p

h−4
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p

3
75

ð8Þ

Schemes

In this section, we discuss the similarities and the differences
between the schemes, starting with the CN scheme.

The CN scheme (Chen and Noelle 2017) is based on the hy-
drostatic reconstruction (HR) scheme of Audusse (Audusse et al.
2004). The original HR (Audusse et al. 2004) uses an upwind
evaluation of the adjacent cell-centered bathymetry values for the
interface bathymetry values. The first-order HR-based schemes
(Audusse et al. 2004; Chen and Noelle 2017) use a piecewise-
constant bathymetry approximation. Thus, interactive bathymetry
modifications are easily incorporated into the simulation. In the
CN scheme, the bottom interface values need to be recomputed at
every time step, which causes a higher workload compared to the
HW scheme, e.g., where the bathymetry can be precomputed. It is
known that the original HR scheme does not properly account for
the acceleration of shallow-water downhill flow (Delestre et al.
2012). This results in incorrect predictions for the water depths
and velocities downstream stemming from an unreliable approxi-
mation of the bed slope source term for large cell sizes (Morales
de Luna et al. 2013). In the HR scheme (Audusse et al. 2004) the
source term was designed for near hydrostatic situations, which is
also where the name HR comes from. The authors of the CN
scheme (Chen and Noelle 2017) present a remedy to this issue and
improve the solution by means of a subcell reconstruction in the
case of shallow downhill flow. In contrast to the original HR
scheme, the authors account also for the acceleration of the flow
when reconstructing the bathymetry. This is for the cases when
the water level of a downstream cell is lower than the adjacent bot-
tom value. Together with an appropriate source term approxima-
tion, comprising both the HR water depths and bathymetry values,
the CN scheme is well-balanced and positivity-preserving.

A second-order extension to the original HR scheme exists and
is presented by Audusse et al. (2004) and Audusse and Bristeau
(2005). Recently, Buttinger et al. (BH) (Buttinger-Kreuzhuber et al.
2018) successfully extended the HR technique of Chen and Noelle
(Chen and Noelle 2017) to second-order accuracy. The BH scheme
improves the numerical approximation of shallow flows over
complex terrain by using a second-order reconstruction tailored to
handle abrupt topography changes. To ensure a physically correct
solution, care has to be taken when reconstructing the interface
bottom values at shoal zones over rapidly changing terrain. Such
situations occur in the case of shallow flow over bottom steps,
e.g., if the water level on the adjacent cell is lower than the bottom
value of the current cell. In this case, the BH scheme reconstructs
the interface bathymetry values from the second-order slopes of the
bathymetry and the water depth. Otherwise, water level and depth
slopes are reconstructed to achieve good balance (Audusse et al.
2004). Moreover, the computational burden was lowered by using
a simplified quadrature for the bed slope source term. After the hy-
drostatic reconstruction, both the CN and the BH schemes delegate
the actual work of dealing with wet–dry fronts to the HLL flux,
which is capable of handling dry states.

The basis for the HW (Horváth et al. 2015) scheme is a second-
order scheme developed by Kurganov and Petrova (KP) (Kurganov
and Petrova 2007). The former KP scheme is especially suitable for
GPU implementation because of its simplicity. However, the KP
scheme exhibits some drawbacks. The most crucial one is that it
is not well-balanced. Spurious waves can emerge in shoal zones.
In long simulation runs it causes the velocities to grow at the
wet–dry boundaries, which leads to restricting the time steps to-
ward very small values (Horváth et al. 2015). Another issue is
the drying behavior. If a cell gets wet, it will never get completely
dry again. To tackle these issues, the HW scheme introduces a new
reconstruction technique inspired by Bollermann et al. (2013), that
improves the solution at wet–dry boundaries. In the reconstruction
procedure, a dimension-wise separation point is generated based on
the intersection of the horizontal water line and the bathymetry. In
the partially flooded cells, dimension-wise waterlines are generated
and used to reconstruct the water height at the cell interfaces. This
technique does not resolve the problem completely. Depending on
slope configurations of the bathymetry and the water surface, the
scheme might develop temporal instabilities when wetting or dry-
ing. However, they do not greatly affect the overall solution and
they cease to exist once the cell dries or gets flooded again.

Unfortunately, there is one more drawback that affects not only
the KP but also the HW scheme. It is not straightforward to modify
the cell-centered bathymetry values for these schemes. The reason
for this is the dependency on the vertex values. These values are
averaged to compute the bathymetry values at cell centers and inter-
face midpoints. However, the conserved variables, e.g., water depth
and discharges, are defined at cell centers. Thus, interactive modi-
fication of the bathymetry is highly complicated. It is only possible
by adjusting the four vertex values, which affect the bathymetry
values in the adjacent cell centers. Instead of applying a local
change, one has to modify the surrounding cells as well.

To summarize, we perform a second-order reconstruction of the
water levels, water depths, and the velocities using the minmod
limiter [Fig. 1(b)] in the second-order BH and HW schemes. By
choosing the minmod limiter we ensure that no high velocity spots
can occur inside the domain, which is important for fast and robust
flood simulations. In the next step, we apply the hydrostatic recon-
struction for the CN and BH scheme. For the CN scheme, the cell
averages are used to compute the hydrostatic point values as it is
first-order only. For the BH scheme, the already computed second-
order point values are used and updated [Fig. 1(c)]. All three
schemes delegate the actual work of dealing with dry states to the
numerical flux, the HLL flux, which is capable of handling wet–dry
fronts. Additionally, interface velocities are clamped to zero in
the reconstruction step if the water heights are below a defined
threshold. In our real-world simulations, we set the threshold to
0.1 mm. For the second-order schemes, we perform the slope
reconstruction on the velocities instead of the discharges, which
improves the speed estimates at wet–dry fronts. The HW scheme
is capable of drying cells by limiting the time step of nearly dry
cells, in contrast to the BH and CN schemes, where a thin water
layer remains. The more accurate drying feature comes at a price.
Because of this, the HW scheme has a more complicated recon-
struction and time integration procedure that directly leads to an
increased computational demand. The main difference between
the second-order schemes is the bathymetry reconstruction at the
cell interfaces and the reconstruction for wet–dry fronts. Since
the HW scheme requires an averaging of the bathymetry for inter-
face midpoints, sharp features of the terrain, such as dams or dikes,
are smoothed [Figs. 1(a and b)]. In the BH scheme, abrupt changes
in the topography are handled better, as a result of the upwind
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reconstruction of interface bathymetry values and the adaptive
slope reconstruction.

From an implementation point of view, the schemes differ in the
size of the computational stencil, which describes the number of
neighboring cells that have to be accessed when advancing a cell.
For CN, the size of the stencil is four cells, i.e., one neighboring cell
in each direction, for BH eight cells, and for HW 12 cells. A larger
computational stencil requires more data to be processed and leads
to slower reconstruction.

Boundary Treatment

For simulating river floods, boundary conditions play an essential
role. Typically, for real-world floods, hydrograph data consist of
time series of water levels and/or discharge values, which are then
prescribed as upstream and downstream boundary conditions (BCs)
at the inlet and outlet locations. Usually, hydrograph data are mea-
sured at gauging stations and are available as scalar values for the
cross-sectional area at the gauge, i.e., total discharge Qg and the
water level wg.

For water-level data, the application is straightforward: the same
level has to be prescribed to each cell. For discharge hydrographs,
we distribute discharge values on the rasterized hydrograph inter-
faces assuming a constant velocity vector ū ¼ ðū; v̄ÞT that is nor-
mal to the cross-section. For each hydrograph interface I, we
prescribe a discharge qI ¼ QgpI , where pI is the proportional share
of this interface with respect to the total discharge Qg. The propor-
tion pI depends on the cross-sectional area of flow at this interface
pI ¼ AI=A, where A is the overall cross-sectional area and AI is the
contribution area of the cell interface I (Fig. 2). The value of pI is
then re-evaluated every time step according to the current water
level. To guarantee that the mass influx equals the prescribed dis-

charge, the inflow boundary flux has to satisfy Fð1Þ
I ¼ qI in the case

of the x-dimension and Gð1Þ
I ¼ qI for the y-dimension. The speci-

fied boundary flux is based on the solution of a linearized Riemann
problem with prescribed interface discharges ðhuÞI ¼ qI and a con-
tinuous extension of the y- discharge in the case of the y-dimension
[for details see Pankratz et al. (2007)].

In urban regions, buildings and other structures can completely
block water flow. In such cases, so-called wall BCs are used to
incorporate these fluid–solid interfaces. For walls and water-level
hydrographs, the essential idea is to find a boundary flux FðUIÞ
whose interface state UI satisfies certain BCs based on numerical
and physical grounds. At a wall boundary, there is no discharge
through the boundary interface, so the normal velocity vanishes
at the interface: huI ¼ 0. In a similar way, a boundary flux is de-
duced for a prescribed water depth hI at each interface given by
hI ¼ wg − BI . In our simulations, we use the procedure of Ghida-
glia and Pascal (2005) to derive these boundary fluxes for specified
water heights and walls.

At the boundary of the computational domain, where the water
flow has to be truncated artificially, free outflow BCs are pre-
scribed. Usually, at these free outflows no data are available, hence
we use an extension by continuity. These outflow BCs correspond
to zero-order absorbing BCs, where the incoming characteristic is
set to zero (Ehrhardt 2010).

We remark that the BCs take into account the regime of the flow,
e.g., if the state at the boundary is subcritical or supercritical. In
other words, we set boundary values only on the characteristics that
are entering the computational domain.

Validation

In this section, we present three historical floods and validate
the presented schemes. In the simulation, we choose a finer 3 m
resolution to accurately capture the topographic features, like weirs
and dikes. A coarser 12 m resolution is used to show that in
some cases, there are large differences in the simulation results be-
cause of the different bathymetry reconstructions. Furthermore, we
show how and why the schemes might fail when using a coarser
resolution. Our implementation uses GPUs and the CUDA pro-
gramming model optimized for the NVIDIA Kepler architecture
(Horváth et al. 2016). All simulations were performed on NVidia
GPUs, namely Geforce GTX 1080. In the following plots, mea-
sured data from the events are annotated as ME. Table 1 contains
the overall simulation run-times for each case.

Lobau

The first case study involves the Lobau area, which is the alluvial
backwater and floodplain of the Donau-Auen National Park in
Austria. It extends on the left bank of the Danube River from river
kilometer (rkm) 1,918 to rkm 1,908 downstream of the city of
Vienna. It consists of floodplain forests and surface water bodies.
When the water level in the Danube rises, water flows from the
river into the floodplain causing regular flooding events. The
Lobau can only be flooded through a small weir, the Schönauer
Schlitz [Fig. 3(a)]. One can observe that the flow through the weir
changes its direction when the Danube begins to flood. Even
though Lobau is a rural area and does not contain any buildings,
this use case is challenging from the simulation perspective, since
it has a very complex bathymetry with lots of small channels and
steep slopes.

We reconstructed the flooding of January 2011 and simulated
the first four days. The size of the simulation domain is approxi-
mately 8.1 × 5 km2 and the resolution is set to 3 m. The upstream
and downstream boundaries are located in the Danube. The simu-
lation domain and the initial state along with the inflow, outflow,
and gauging locations are shown in Fig. 3(a). The shaded area is
marked invalid for simulation. Water level and discharge values for
the upstream and downstream boundary conditions are plotted in
Fig. 3(b). A nonuniform distribution of the Manning roughness co-
efficient is used based on the land use [Fig. 3(c)].

Fig. 2. Schematic view of a hydrograph that shows a rasterized hydro-
graph line.

Table 1.Overall simulation run-times of the CN, BH, and HW schemes for
the presented historical floods

Scheme (m)

Lobau Wachau Marchfeld

3 3 12 3 12

CN (s) 2,153 5,369 506 27,372 1,259
BH (s) 10,752 26,971 1,922 148,796 4,943
HW (s) 16,852 52,017 2,411 195,145 7,103
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Since all three schemes produce very similar visual images,
Fig. 3(d) shows only the maximum water depths computed using
the CN scheme. To show differences between the schemes, we
picked a smaller region, highlighted in Fig. 3(c) with a rectangular
box. This region is enlarged and visualized for each scheme at day

1.5 [Fig. 3(e)]. In the enlarged images, one can observe that there
are temporal differences between schemes, which are also visible
in the data recorded at the gauges. The differences are more pro-
nounced when looking at the evolution of the water levels and
water extents rather than the visualized water depths.
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Fig. 3. Lobau: (a) inflow and outflow locations, the gauge locations PD.LP1, PD.LP16, and PD.LP18, and the initial state; (b) hydrograph data for the
upstream and downstream boundaries; (c) roughness map based on land-use data; (d) maximum water depths computed using the CN scheme; and
(e) enlarged regions show the water depths computed by each scheme at day 2.
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We compare the simulated and the measured water level
time series at three gauging locations in Figs. 4(a–c), where day
zero on the x-axis corresponds to January 13, 2011, 12 a.m.
One may notice that the second-order schemes are able to predict
the correct arrival times at the gauging locations PD.LP1, PD.LP16,
and PD.LP18. Small discrepancies can be observed between the
simulated and measured water levels. Most likely, they are caused
by uncertainties in the input data, e.g., bathymetry, roughness, or
boundary condition data. The roughness values are not calibrated,
and the exact initial state before the flooding is unknown, which
may also explain the deviations from the observations.

The first-order CN scheme is unable to correctly predict either
the water levels or the wave arrival times. This is caused by a faster
wave energy dissipation compared to the second order schemes.
The wave arrival time is delayed [Figs. 4(b and c) at day 1]. The
second-order schemes produce higher water levels at gauge PD.
LP16 at day 1.5. This gauge is located near a manually operable
weir for which no data is available from the event. This can be
responsible for the discrepancies between the simulated and the
measured water levels. Overall, the BH scheme produces results
that match the measured values the most closely.

Fig. 4(d) shows the simulated water extents. At the beginning,
the schemes produce similar extents with a minor delay. After 12 h,
the water levels produced by the HW scheme start to rise more

rapidly and even exceed the CN scheme. An explanation for this
is the averaged bathymetry that lowers the elevation in a critical
place that would otherwise hold back the water. On the second
day, the CN and BH schemes produce almost identical results.
However, as the CN is first-order accurate only, it does not correctly
resolve the peak. At the end time, water extents produced by the CN
and HW schemes are larger compared to the BH scheme. This hap-
pens because lower elevation areas get connected and flooded dur-
ing the peak and they cannot drain after the flood wave retreats.

In order to assess the performance, two indicators were mea-
sured. Fig. 5(a) shows the number of time steps needed to compute
1 s simulation time. Fig. 5(b) shows the wall-clock time needed to
compute 1 s simulation time. One can observe that the second-order
schemes produce almost identical results regarding the time steps
and they require approximately twice as many compared to the
first-order CN scheme. This difference comes from the CFL con-
dition that halves the time-step sizes for the second-order schemes
and thus doubles their number. Fig. 5(b) reveals differences in com-
putation times. First, in the second-order schemes, we have to use
second-order time integration which requires two half steps in time
doubling the number of computations. Second, the schemes require
different computational stencils, i.e., one cell for CN, two cells for
BH, and three cells for HW, making the reconstruction procedure
more expensive for larger stencils.
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Fig. 4. Lobau: (a–c) water level time series at different gauging locations PD-LP1, PD-LP16, and PD-LP18; and (d) computed water extents.
Discrepancy in water extents between the second-order BH and HW schemes is caused by different bathymetry reconstructions.
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Wachau

The second case study focuses on the Wachau valley located in
Lower Austria. The valley was carved out by the Danube over thou-
sands of years. It features a riverine landscape with a settled flood
plain bounded by steep slopes. This case study aims to reproduce a
100-year Danube river flood (Blöschl et al. 2013). The focus lies on
the correct prediction of water levels along the river. This case also
emphasizes the proper setting of inflow and outflow conditions at
the upstream and downstream boundaries of the simulated reach of
the Danube.

We reconstructed the flooding of June 2013. Fig. 6(a) shows the
initial state and the gauge locations. Measured data are available for
four gauging locations along the river, namely, near Stein-Krems
(rkm 2002,7), Loiben (rkm 2005,99), Dürnstein (rkm 2009,15),
and Kienstock (rkm 2015,21). The dataset of Kienstock and
Stein-Krems is used to prescribe the upstream and the downstream
BCs, respectively. Fig. 6(b) shows the corresponding hydrograph
data of the BCs. At the upstream boundary, we use a discharge
hydrograph with water level information, and at the downstream
we use only water levels. Roughness values were set according
to land use data [Fig. 6(c)].

We simulated 12 days, starting on May 30, 2013 at 5 p.m. with a
prefilled river of still water. Simulations were performed using two
different resolutions (3 and 12 m). The simulation domain size is
8.1 × 2.6 km2. All three schemes produced visually similar results,
hence in Fig. 6(d), we show the whole domain only for the CN
scheme where the water depths are visualized at 3 m resolution.
The rectangular box in the figure marks a region that is enlarged
to allow us to spot the differences between the solutions. The results
are captured for all schemes at day 3. Fig. 6(e) shows the water
depths for the 3 m resolution grid, and Fig. 6(f) shows the water
depths for the 12 m grid. As one can see, the biggest difference is
exhibited between the first-order and the second-order schemes at
12 m resolution. More water is present in the floodplain on the
southern side of the river. The second-order schemes produce vis-
ually identical results at both resolutions. Similar differences can be
observed also for the 3 m resolution, but they are less significant.

The recorded water levels at the two selected gauges for the finer
grid are presented in Figs. 7(a and c), and for the coarser grid in
Figs. 7(b and d). For both resolutions, the second-order schemes

(BH, HW) produce almost identical results. Both are able to capture
the peak accurately within a range of few centimeters. However,
discrepancies can be observed before and after peak. Their source
can be uncertainties in the hydrograph data, bathymetry, or rough-
ness values. The CN scheme also produces acceptable results for
the 3 m resolution where the error is less than 0.5 m on average.
However, for the 12 m resolution it overestimates the water levels
by about 1 m at both gauges for the whole duration. We also visu-
alize the water extents. However, we have no information regarding
the actual size [Figs. 7(e and f)]. By comparing the water extents
at different resolutions we see that they reduce in size significantly
for the 3 m resolution and there is less discrepancy between the
solutions.

We quantify these discrepancies in the water levels by the root
mean square error (RMSE) in Figs. 8(a and b). By increasing the
resolution, the RMSE of the water levels decreases up to a certain
cell size as the schemes better approximate the SWEs and the
bathymetry is better resolved. The first-order CN scheme improves
throughout the shown resolutions, ranging from 24 to 3 m.
Contrarily, the second-order schemes are not obtaining signifi-
cantly better results below 12 m cell size. At 12 m, they already
reach a point where only parameter optimization or more accurate
input data would improve the model results.

Besides the water levels, performance and timing are also
very important in large-scale high-resolution simulations. For this
purpose, we record the number of time steps and the runtime of the
simulations. Figs. 9(a and b) show the numbers of time steps
needed to compute 1 ssimulation time for the 3 and 12 m resolution
domain, respectively. The second-order schemes required approx-
imately twice as many time steps compared to the first-order CN
scheme. Furthermore, we remark that, for the 3 m resolution, the
number is four times as high for all schemes. For both cases,
the reason is the CFL condition. To preserve stability, the first-
order CN scheme uses the CFL number 0.5. For the second-order
schemes the conditions are stricter and the CFL number has to be
set to 0.25, which in turn halves the time-step sizes. The CFL con-
dition also involves the resolution, which results in four times more
time steps when going from 12 to 3 m resolution.

The HW scheme has temporal instabilities, as can be seen in
Fig. 9. These instabilities come from high velocity spots that
can temporarily limit the time-steps sizes. Even though the HW
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Fig. 5. Lobau. Performance analysis: (a) number of time steps needed to simulate 1 s simulation time; and (b) wall-clock time needed to simulate
1 s simulation time.
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scheme produces spurious high velocity spots and hence spikes in
the plots, it is able to recover from these states and stabilize.

Marchfeld

The Marchfeld is a 900 km2-large plain north of the Danube, one of
the largest plains in Austria. It is a sedimentary basin located in

Lower Austria, between Vienna and Bratislava. The Marchfeld
is mainly used for agriculture and is dubbed the granary of
Austria. On the east, it is bordered by the March (Morava), which
is a border river between Austria and Slovakia, and on the south
by the Danube and its floodplains (e.g., Lobau). Since the area is
bordered by two rivers, it is prone to natural floods. To protect the
inhabitants and villages, a 26 km long dike (Marchfelddamm) was
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Fig. 6. Wachau: (a) upstream and downstream BCs, gauge locations, and the initial state; (b) water level and discharge data of the boundary
conditions; (c) roughness map; and (d) maximum water depth computed using the CN scheme at 3 m resolution. The rectangular box highlights
the area that is enlarged; and (e and f) enlarged views show the water depths at day 3 for all three schemes for both 3 and 12 m resolutions,
respectively.
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built. This dike serves as the main protection measure against
floods [Fig. 10(a)].

In this case study, we investigate the flood of June 2013
and simulate the whole Marchfeld area including both border
rivers, the Danube and the March. The simulation domain size is
17 × 19.5 km2. An overview of the area and the gauging locations
are shown in Fig. 10(a). The figure also shows the still-water initial
state and the protection lines, which are part of the Marchfeld-
damm. The initial water level is estimated from the BC. The val-
idation and BC data are the values measured during the actual
flood at six locations. Specifically, two upstream boundaries are
used, namely: Wildungsmauer (Danube) and Marchegg (March).

Furthermore, one outflow was prescribed at Wolfsthal (Danube)
using water level information [Fig. 10(a)]. The corresponding
hydrograph data is shown in Fig. 10(b). One may notice that dis-
charge data is provided only for one of the upstream boundaries
(Wildungsmauer); the other one (Marchegg) only has water level
information. We validate our simulations by comparing the results
against data from three gauge locations, namely, Bad Deutsch
Altenburg, Hainburg, and Thebnerstrassl [Fig. 10(a)]. Roughness
values are estimated from land use information and are not
calibrated [Fig. 1(c)]. Furthermore, the bathymetry is created by
merging multiple rasters of different resolutions to complement
the main raster.
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Fig. 7. Wachau: (a–d) measured and simulated water level time series at Dürnstein and Loiben with 3 and 12 m resolution; and (e and f) computed
flood extents at 3 and 12 m resolutions.
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Since all three schemes produce visually very similar images at
3 m resolution, Fig. 10(d) shows only the maximum water depths
computed using the BH scheme. To show differences between
the schemes, we picked a smaller region that is highlighted in

Fig. 10(d) with a rectangular box. This region is enlarged and visu-
alized for each scheme at day 2 [Fig. 10(e)]. We see that the so-
lutions computed by the second-order schemes, the BH and HW,
have a very similar temporal evolution, and the differences are
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Fig. 9. Wachau. Performance analysis: (a and b) number of time steps needed to simulate 1 s simulation time at 3 and 12 m resolutions; and
(c and d) wall-clock time needed to simulate 1 s simulation time for each scheme at 3 and 12 m resolutions.
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almost unnoticeable. However, the first-order CN scheme produces
a larger flood extent at the same time. Fig. 10(f) shows the results
computed at 12 m resolution. In this case, the differences appear
more pronounced. The dam did not fail during the event, which
is also the case for the simulations computed at 3 m resolution.
However, it is not the case for the simulations at 12 m resolution.
In one case, the CN scheme floods almost the whole Marchfeld and
produces the largest flood extent of all schemes. The HW scheme
also floods a large area behind the dam, but it is far smaller then
in the case of the CN scheme. The BH scheme also floods some
area behind the dam, but it is the one closest to the expected results.
Overall, we conclude that with the 12 m resolution grid, none of
the schemes could satisfactorily reproduce the event since the dam
failed for all of them.

Figs. 11(a–f) show the water level time series recorded at the
three gauges. We compare the solutions computed at 3 and
12 m resolutions. At 12 m resolution, the second-order schemes
produce water levels very close to the ones measured at the gauges.
The CN scheme is off by more than a meter on average. When
switching to the 3 m resolution the second-order schemes improve
a bit and even the CN scheme produces acceptable results.

The CN matches the peaks well at Thebnerstrassl and Hainburg,
however it fails to predict the water level at low flow. Furthermore,
the simulated water levels are better estimated closer to the outflow
boundary, where a measured water level is prescribed. This ex-
plains why in Bad Deutsch Altenburg, the simulated water levels
differ the most from the observed water levels in this scenario, even
for the 3 m resolution.

By inspecting the water level validation plots only, one might
conclude that the second-order schemes also perform very well
for the 12 m resolution. However, by looking at the water extents
in Figs. 11(g and h), a significant difference becomes obvious.
This difference is also visible in the visualized water extents in
Fig. 10(f), where the dam fails and the water propagates toward
the Marchfeld.

For this particular case, the bathymetry resolution is simply in-
sufficient to correctly represent the dam. The reason the CN pro-
duces the worst results of all is its first-order accuracy. If comparing
the second-order schemes, a significant difference between them
can be still noticed. One would assume more similar water extents,
since they produce almost identical results at the gauges. However,
the HW scheme produces a larger flood extent at 12 m resolution.
This is because of the different bathymetry reconstruction of the
two schemes. The HW scheme cannot resolve correctly the approx-
imately 20 m-wide dike at 12 m resolution and hence floods the
area behind it. This is due to the fact that the bathymetry recon-
struction of the HW scheme has an averaging effect on the recon-
structed bathymetry so the dam is overtopped.

Finally, we compare the schemes from the performance
point of view. Figs. 12(a and b) show the number of time steps
needed to simulate 1 s for 3 and 12 m resolutions, respectively.
Figs. 12(c and d) show the wall-clock time needed to compute
1 s simulation time for both resolutions. By examining the plots,
one can notice that the CN scheme is the fastest for both resolutions
and no instabilities are observed. As explained earlier, the CN
scheme has to perform half the number of time steps compared
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Fig. 12. Marchfeld. Performance analysis: (a and b) number of time steps needed to simulate 1 s simulation time at 3 and 12 m resolutions; and
(c and d) wall-clock time needed to simulate 1 s simulation time for each scheme at 3 and 12 m resolutions.
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to the second-order schemes. The BH and the HW schemes per-
form similar numbers of time steps. For the HW scheme, local in-
stabilities can be observed at both resolutions. The BH scheme does
not produce any spikes in the plot but creates a temporal velocity
build-up at the downstream boundary at 3 m resolution around day
7, which vanishes later.

Conclusions

In this paper, we compare three numerical schemes for the shallow-
water equations for various study cases. The three schemes (CN,
BH, and HW) are well-balanced state-of-the-art schemes, chosen
because of their suitability for fast flood simulations on GPUs. The
comparison focuses on the prediction of flood wave arrival times
and water level series, since they are especially relevant for decision
makers. We reconstructed three historical flood events that hap-
pened on the Danube and compared the simulation results for dif-
ferent resolutions to reveal the strengths and weaknesses of the
presented schemes.

Regarding the choice of the minimal cell size, at least two cells
are required to resolve a topographic feature like a dam correctly
for the CN and BH schemes. For the HW scheme, because of its
averaging effect on the bathymetry, at least four cells are necessary.
This also leads to significant differences in water extents at coarser
resolutions, when comparing the two second-order schemes. All
three schemes improve their solutions on grid refinement up to
a certain resolution, where errors from uncertainty in the roughness
parameter as well as uncertainty in the input and boundary data start
to significantly affect the model results.

Regarding computational effort, the CN scheme is the most light-
weight scheme, as it is first-order in space and time. Compared with
second-order schemes, a CFL number two times higher can be set,
allowing a time step twice as big. Furthermore, no second half-step
in the time integration is required. Since the computational stencil is
smaller by one cell in each direction, the CN scheme is more than
four times faster than the BH scheme at the same cell size. Thus, it
enables rough but quick estimations. Looking at the second-order
schemes, the BH scheme outperforms the HW scheme as a result of
a less complex reconstruction procedure at wet–dry fronts.

The validation case studies show that the second-order BH and
HW schemes provide better estimates of the time-dependent water
levels than the first-order CN scheme, which overestimates water
levels in river scenarios, especially near the discharge-based boun-
daries. In fact, the water levels of the second-order schemes at the
lower resolution (12 m) are closer to the measurements than the
water levels of the first-order scheme at the higher resolution
(3 m). In terms of run-time, the CN scheme at 3 m cell size is slower
than the BH scheme on the 12 m grid.

Thus, considering the trade-off between accuracy and computa-
tional effort, the second-order BH scheme is our recommended
choice for computing risk maps for river flood simulations. Still,
the first-order CN scheme is useful for interactive decision support
systems as it offers the speed that is required to run real-time sim-
ulations at higher resolutions.
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