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Abstract: The event runoff coefficient (Rc) and the recession coefficient (tc) are of theoretical importance for under-
standing catchment response and of practical importance in hydrological design. We analyse 57 event periods in the pe-
riod 2013 to 2015 in the 66 ha Austrian Hydrological Open Air Laboratory (HOAL), where the seven subcatchments are 
stratified by runoff generation types into wetlands, tile drainage and natural drainage. Three machine learning algorithms 
(Random forest (RF), Gradient Boost Decision Tree (GBDT) and Support vector machine (SVM)) are used to estimate 
Rc and tc from 22 event based explanatory variables representing precipitation, soil moisture, groundwater level and sea-
son. The model performance of the SVM algorithm in estimating Rc and tc is generally higher than that of the other two 
methods, measured by the coefficient of determination R2, and the performance for Rc is higher than that for tc. The rela-
tive importance of the explanatory variables for the predictions, assessed by a heatmap, suggests that Rc of the tile drain-
age systems is more strongly controlled by the weather conditions than by the catchment state, while the opposite is true 
for natural drainage systems. Overall, model performance strongly depends on the runoff generation type.  
 
Keywords: Machine learning; Event runoff analyses; Event runoff coefficient; Recession coefficient; Runoff generation. 
 

INTRODUCTION 
 

The event runoff coefficient and the recession coefficient are 
important characteristics of hydrologic response at the event 
scale. Understanding their controls and their variability is 
essential for predicting runoff in ungauged basins and for 
extrapolating hydrologic response to extreme events (Blöschl et 
al., 2013; Sivapalan, 2003; Tarasova et al., 2018ab; Viglione et 
al., 2009).  

The event runoff coefficient Rc is defined as the portion of 
rainfall that becomes direct runoff during an event (Merz et al., 
2006). The spatial-temporal variability of Rc has been widely 
studied (e.g. Hayes and Young, 2006; Longobardi et al., 2003; 
Merz et al., 2006; Merz and Blöschl, 2009; Wainwright and 
Parsons, 2002). Previous studies show that the magnitude of Rc 
varies between the regions. While regional assessments of 
meso-scale catchments in Austria or Germany (Merz et al., 
2006, Tarasova et al., 2018ab) indicate the median of Rc be-
tween 0.18 and 0.43, Rc in small agricultural catchments tends 
to be lower and varies between 0.03 and 0.10 (Blume et al., 
2007; Tachecí et al., 2013) to more than 0.2 over cropland 
hillslopes in central Iowa (Chen et al., 2019). The controls on 
Rc generally depend on the runoff mechanisms. Precipitation 
intensity tends to be most important when the infiltration excess 
mechanism dominates, precipitation depth when the saturation 
excess mechanism dominates, and soil moisture is important for 
all mechanisms (Tian et al., 2012). Rodríguez-Blanco et al. 
(2012) and Palleiro et al. (2014) found that the event runoff 
coefficient in forested catchments in northwestern Spain de-
pended both on the soil moisture at the start of the event and on 
rainfall depth, whereas rainfall intensity was less important. 
They explained this finding by the dominant role of subsurface 
stormflow in event runoff generation. Based on a comparative 
study in the eastern Italian Alps, Norbiato et al. (2009) suggest-

ed that the effect of antecedent soil moisture on the event runoff 
coefficient might be largest in catchments with intermediate 
storage capacities. Besides climate and hydrological conditions, 
Norbiato et al. (2009) also verified that the ‘permeability index’ 
deduced from geology is another considerable control on event 
runoff coefficient in regions with mean annual precipitation less 
than 1200 mm. Gottschalk and Weingartner (1998) showed that 
moderate slopes and low geological permeability in the Swiss 
midlands basins generally lead to events with low event runoff 
coefficients. 

The recession coefficient, tc, is the parameter in a linear 

function of  1dQ Q
dt tc

− =  where  dQ
dt

−  is the time derivative of 

runoff Q (Brutsaert and Nieber, 1977; Tallaksen, 1995). Simi-
larly to the event runoff coefficient, the recession parameter has 
been widely studied (Biswal and Kumar, 2014; Krakauer and 
Temimi, 2011; Merz et al., 2006; Patnaik et al., 2015). Krakau-
er and Temimi (2011) identified soil infiltration capacity and 
forest cover as important controls on the recession coefficient 
in small catchments in the United States. Tague and Grant 
(2004) and Gaál et al. (2012) highlighted the important role of 
geology for the recession coefficient.  

One of the challenges in identifying the controls and predict-
ing Rc and tc is the typically non-linear nature of the relation-
ships between these two parameters and their controls (Merz 
and Blöschl, 2009; Krakauer and Temimi, 2011). It is therefore 
of advantage to use non-linear rather than linear analyses and 
predictive methods. Machine learning techniques based on 
regressions are able to capture the non-linearity in the relation-
ship between predictor and predictand (Cánovas-García et al., 
2017; Erdal and Karakurt, 2013; Naghibi et al., 2017; Şen and 
Altunkaynak, 2006). Three widely used methods are random 
forests (RF), Gradient Boost Decision Trees (GBDT) and Sup-
port vector machines (SVM).  
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RF (Ho, 1995) are a learning method for classification and 
regression that consists of a number of decision trees at training 
time and identifies the class that has the greatest number of 
votes (classification) or the mean prediction (regression) of the 
individual trees. Random forests have been applied in numer-
ous surface and subsurface hydrological studies (Baudron et al., 
2013; Naghibi et al., 2017; Zimmermann et al., 2014). 

GBDT make use of the gradient boosting framework to 
combine decision trees based on the RF algorithm. GBDT are 
usually composed of hundreds of decision trees with shallow 
depth. In this algorithm, every decision tree adjusts and modi-
fies the predicted value, finally resulting in the prediction. The 
trees are trained sequentially, which improves the prediction 
accuracy but involves a longer training time (Friedman, 2001, 
2002). Naghibi et al. (2016) compared boosted regression trees 
(BRT), classification and regression trees (CART), and RF in 
producing groundwater spring potential maps according to 
thirteen hydrological-geological-physiographical factors (Nagh-
ibi et al., 2016). Sachdeva et al. (2018) constructed wildfire 
susceptibility maps by combining evolutionary optimized gra-
dient boosted decision trees, and showed that they outper-
formed other machine learning models. 

SVM are supervised learning models with associated learn-
ing algorithms. Given a set of training examples, the training 
algorithm builds a model that assigns new examples to one of 
two categories (Basak et al., 2007; Ben-Hur and Weston, 2010; 
Vapnik et al., 1997). SVM have a number of advantages: they 
effectively solve the classification and regression problem for 
high dimensions; they solve various nonlinear classification and 
regression problems by means of different kernel functions; 
they are able to generalize well. However, computational costs 
are very high when the dimension of the mapping kernel func-
tion is large, and they are sensitive to missing data. They have 
been applied to surface flow, evaporation, droughts, soil mois-
ture and groundwater prediction (Asefa et al., 2006; Deka, 
2014; Hwang et al., 2012; Maity et al., 2010). 

The aim of this paper is (a) to identify factors which control 
variability of event runoff coefficient (Rc) and the recession 
coefficient (tc) in small agricultural catchment; (b) to evaluate 
the relative importance of the control in different subcatch-
ments representing different runoff generation mechanisms and 
(c) to compare three regression based machine learning tech-
niques, random forests (RF), Gradient Boost Decision Trees 
(GBDT) and Support vector machines (SVM), in terms of their  
 

ability to estimate the event runoff coefficient and the recession  
 

coefficient from their controls. 
 
STUDY CATCHMENT AND DATA 

 
The study is performed in the Hydrological Open Air 

Laboratory (HOAL). This is a small experimental catchment 
situated in Lower Austria (Blöschl et al., 2016; Exner-Kittridge, 
et al., 2016; Széles et al., 2018) (Figure 1). The land use is 
mainly agricultural (82%) and part of the catchment is tile 
drained. Runoff is recorded at a number of flumes within the 
catchment at a time step of 1 minute. In this study, eight flumes 
are used (Table 1). MW is the catchment outlet of the HOAL 
and has a catchment area of 65.8 ha. All the other flumes are 
nested in this catchment (Figure 1). The runoff generation 
mechanisms of the catchments drained by the flumes differ. 
Sys4 represents a piped stream and is considered as “natural 
subsurface drainage” here. Frau1 and Frau2 are tile drained. A1 
and A2 drain wetland areas. Sys2, Sys3 and Sys4 are classified 
as natural drainage here, although (Széles et al., 2018) 
classified them as tile drains. The reason for the different 
classification is that the drainage areas of these systems are not 
fully covered by underground tile pipes and most of the flow is 
drained from subsurface without tile pipes. All discharge data 
are processed to remove outliers caused by instrument 
malfunction and maintenance and aggregated to an hourly time 
step. Catchment boundaries are identified by analysing a digital 
elevation model (DEM) and account for the position of tile 
pipes (Széles et al., 2018). These are used for estimating 
specific runoff as the ratio of runoff and catchment area and for 
estimating catchment precipitation (Table 1). 
 
Table 1. Runoff generation mechanism and estimated drainage 
area of the gauged catchments in the HOAL. Figure 1 shows loca-
tions of the gauges. From (Széles et al., 2018). 
  
Gauge Runoff generation 

mechanism 
Estimated drainage 

area (ha) 
Tile pipe covered area 

percentage (%) 
A1 Wetland 2.1 6.5 
A2 Wetland 1.1 11.0 
Frau1 Tile drain 3.1 96.6 
Frau2 Tile drain 4.8 60.8 
Sys2 Natural drainage 2.4 8.7 
Sys3 Natural drainage 4.3 10.7 
Sys4 Natural drainage 37.4 4.3 
MW Outlet 65.8 12.9   

 
Fig. 1. HOAL catchment and its subcatchments. Locations of stream gauges, soil moisture sensors and piezometers used in the analyses. 
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Additionally, data from four rain gauges (N1-N4), four soil 
moisture sensors (ED14, ED15, ED21 and ED22) at 5, 10 and 
20 cm depth and four groundwater piezometers (H01, H02, 
H04 and H09) are used (see (Blöschl et al., 2016) for details). 
Soil moisture data are averaged over depth for extracting soil 
moisture related variables. Precipitation measurements are 
averaged by using Thiessen polygon method, and the catchment 
averages range from 0 to 21.5 mm/h (average: 0.09 mm/h). The 
higher and smaller precipitation intensities are observed in  
 

summer and in winter periods, respectively (Figure 2a). The 
mean annual precipitation in the study period is decreasing from 
937 mm in 2013 to 573 mm in 2015. Comparison of the frequen-
cy of daily maximum precipitation from the period 1946 to 2018 
indicates that selected study period represents well the frequency 
of precipitation intensities larger than 30mm/d or 50mm/d. Ob-
served air temperature ranges from –15.2 to 36.3℃ during the 
period from 2013 to 2015 and seasonal dynamics of potential 
evapotranspiration corresponds to the seasonal dynamics of air  
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Temporal variability of precipitation (panel a), air temperature and potential evapotranspiration (panel b), soil moisture and ground-
water level (panel c), event runoff coefficient (panel d) and recession coefficient (panel e) in HOAL in the period 2013 to 2015. 
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temperature (Figure 2b). The effect of increased air temperature 
and potential evaporation in summer is reflected by decreasing 
soil moisture and groundwater levels (Figure 2c). The seasonal 
dynamics of event runoff coefficient (Rc) and recession coeffi-
cient (tc) (Figure 2d, e) indicates smaller values of Rc and tc in 
summer and and their gradual increase towards winter season.  
 
METHODS 
Estimation of event runoff coefficients and recession 
coefficients 
 

The event runoff coefficients and recession coefficients are 
estimated for each of the eight stream gauges separately using 
the method of (Merz et al., 2006). The analysis is based on an 
hourly time step and consists of four steps:  

(1) Catchment rainfall estimation: For each of the eight 
stream gauges, catchment average rainfall is estimated at an 
hourly time step by spatially interpolating the measurements of 
four rain gauges using the Thiessen polygon method.  

(2) Baseflow separation: Baseflow is estimated for each 
stream gauge using the Chapman and Maxwell (1996) filter. 
More details about the filter are given in Merz et al. (2006). 

(3) Identification of runoff events: An event peak is iden-
tified, if the direct flow is more than double of the baseflow at a 
certain time step and larger runoff is not observed 5 hours be-
fore and after the peak. Around these peaks, the beginning and 
end times are estimated. An example of an identified event in 
May of 2014 is shown in Figure 3a. This event is driven by a 
late spring precipitation event with a peak of 7.0 mm/h, which 
is larger than 80% of identified events. The event runoff coeffi-
cient in a tile drain system Frau2 is about 0.06 higher than at 
the main catchment outlet MW. Figure 3b shows the dynamics 
of the ratio of cumulative direct runoff to cumulative precipita-
tion as a function of time during an event for different gauges. 
The ratio gradually increases and approaches a stable value at 
the end of the event, which is the Rc of that event. There is a 
large difference between Frau1 and Frau2 due to differences in 
the controls. A total of 57 event periods are identified at MW 
outlet (Table 4). At the tributaries slightly fewer are identified, as 
they do not always respond to rainfall. The number of identified 
events in individual subcatchments and main outlet are 30 (A1), 
38 (A2), 21 (Frau1), 30 (Frau2), 32 (Sys2), 39 (Sys3), 51 (Sys4) 

and 57 (MW outlet), respectively. This results in a total of 298 
event hydrographs from 2013 to 2015 to be further analysed. 

(4) Fitting a linear reservoir model: In order to reduce the  

effect of the selection of the end time of the runoff events, a 
linear reservoir model is fitted to the direct flow by minimizing 
the root mean square difference between observed and simulat-
ed runoff for each event and stream gauge separately. The event 
runoff coefficient Rc (–) and the recession coefficient tc (hrs) 
are the optimised model parameters. 
 
Ensemble learning techniques for regression 

 
For the purpose of the study, three learning techniques are 

used to build regression models. Ensemble learning techniques 
have been proved in the past to describe and learn various non-
linear relationships (Dietterich, 1997). The main advantage of 
ensemble learning approaches is that they learn in a hierarchical 
fashion by repeatedly splitting input dataset into separate 
branches that maximize the information gain of each split. The 
challenge with their application is, however, that for the selec-
tion of an optimal approach, evaluation of performance of 
different algorithms is recommended (Shen, 2018). Thus the aim 
of our study is to test three different approaches (i.e random 
forest, gradient boost decision trees and support vector machines) 
individually in four different settings represented by four runoff 
generation systems (wetland, tile drainage, natural and outlet) 
which are termed as Classified regression model in our study, 
and in an aggregated system that combines all runoff generation 
systems termed here as Unclassified regression model. 
 
Random Forests (RF)  

 
Random forests consist of a number of tree predictors. As 

the number of trees increases, the mean squared error of out of 
bag data (OOBError) in prediction decreases until it reaches a 
constant, low level (Ho, 1995). There are two main steps:  

(a) Random sampling from the entire database to train a 
decision tree. The input subsets are different from each other to 
avoid over-fitting. Out of bag data (OOB) is the remaining 
subset, which is not used in building a tree. At each node of the 
trees, the feature that produces the best split in sub-sampling 
from all features is used for splitting. 

 

 
 

Fig. 3. Example event in May 2014. Line colours according to runoff generation mechanisms (wetland runoff is blue; tile drainage is  
purple; natural discharge is dark pink and outlet flow is black). (a) Hydrographs. Vertical lines indicate start and end of the event. (b) Ratio 
of cumulative direct flow to cumulative precipitation during the event. 
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(b) Splitting at each node: Each decision tree is complete-
ly split until all samples belong to one class or the leaf node can 
not be further divided. The feature importance outputs of the 
RF model with good predictions are used to evaluate the influ-
ence of the variables on Rc and tc. 
 
Gradient Boost Decision Trees (GBDT) 

 
A Gradient Boost Decision Tree GBDT regression model is 

established by integrating multiple decision trees (DTs) in an 
iterative process (Friedman, 2001, 2002). In every iteration 
(adding a new tree to the model), model losses are reduced. A 
Gaussian distribution is chosen as a loss function L for mini-
mizing the squared error,  

 

( )( ) ( )( )21, i i i
ii

L y f x y f xω
ω

=  −


    (1) 

 
where ωi is the weight of sample i, yi are the objectives and f(xi) 
are the predictions. 
 
Support Vector Machines (SVM) 

 
For a support vector machine (SVM) regression to represent 

non-linear problems, a proper kernel function needs to be cho-
sen by projecting the data to a high-dimensional space where 
one can use a linear decision boundary to separate classes 
(Osuna, 1998). A radial basis function, K, is used here which 
can be expressed for an infinite dimensional space (Horn, 1985) 
as (2) 

 

( )
2

, e γ u vK u v − −=     (2) 
 

where u and v are two vectors, 2u v−  is the squared Euclidean 
distance of these two vectors, and γ influences the number of 
support vectors. Larger γ results in fewer support vectors.  

The ε regression option is adopted here for better controlling 
model error. Errors beyond the specified ε are penalized in 
proportion to C, which is the regularization parameter. The ε 
insensitive loss function L 

ε proposed by Chapelle and Vapnik 
(2000) is used according to (3) 

 

( )
( )

0                            if  

                    otherwise

y f x
L

y f xε
ε

ε

 − <= 
− −

   (3) 

 
For brevity, only the variable importance of the SVM model, 

Ii,SVM which can reflect the level of variable influences to model 
objectives (Rc and tc in this study), are presented in the study. 
In order to quantify such importance of variables, we take ad-
vantage of the Average Absolute Deviation (AAD) from the 
median in the theory of 1-D sensitivity analysis (Cortez and 
Embrechts, 2013). Ii,SVM is estimated according to the following 
function 

 

1

/
L

j
j

y y L
=

−               (4) 

 
where y  is the baseline of the objectives (median) and yj is the 
prediction related to the jth level of input (totally L = 7 levels).  

The detailed procedures of building the SVM regression 
models are introduced by Cortes and Vapnik (1995). 

Calibration and validation performance of the non-linear 
regression models 

 
In order to compare the performance of the three machine 

learning methods, two types of validations are performed. The 
first type is the analysis of temporal performance which is 
evaluated by the coefficients of determination (R2) 

 

( )( )
( )

2
2

21
i ii

ii

y f x
R

y y

−
= −

−




    (5) 

 
where f(xi) is the prediction of Rc or tc for event i, yi is the ob-
served value, and y  is the mean of the observed values over all 
events of a particular runoff generation type. R2 is regarded as 0 
when it is negative. 

The second type is the validation in space by using leave-
one-out cross-validation. Here, the regressions fitted separately 
to one of the subcatchments representing wetland (A2 station), 
tile drainage (Frau2 station) and natural drainage (Sys3 and 
Sys4 stations) are validated in the other stations representing 
the same runoff generation type, i.e. A1 (wetland), Frau1 (tile 
drainage), Sys2 (natural drainage). The performance is evaluat-
ed by R2, similarly to (5). 
 
RESULTS 
Evaluation of the observed runoff coefficients and recession 
time constant and their potential controls 

 
In order to analyse the potential controls on Rc and tc, 22 

hydrological variables are considered for each stream gauge 
(Table 2). Event precipitation (VolP), precipitation peak during 
the event (PeakP) and precipitation duration during the event 
(DurP) are estimated from the catchment precipitation time 
series with hourly temporal resolution. Antecedent soil mois-
ture (PreSM), average soil moisture during the event (AverSM), 
soil moisture at the end of the event (EndSM), soil moisture at 
the time of peak rainfall (PeakPSM) and soil moisture peak 
during the event (PeakSM) are estimated from the soil moisture 
data. Depending on the stream gauge, different soil moisture 
sensors are used (ED15 for Sys2 and Sys3; ED22 for Sys4; 
ED21 for Frau1 and Frau2; ED14 for A1 and A2; and the aver-
age of all sensors for MW). Soil moisture peak delay to precipi-
tation (DelaySM) is estimated as the time difference between 
the precipitation peak and the soil moisture peak. Pre-event 
groundwater level (PreWL), average groundwater level during 
the event (AverWL), groundwater level at the end of the event 
(EndWL), groundwater level at the time of peak precipitation 
(PeakPWL) and peak groundwater level (PeakWL) are estimat-
ed from the average groundwater level of all four piezometers, 
as no separate piezometer data are available for the individual 
catchments. Groundwater level peak delay to precipitation 
(DelayWL) is estimated as the time difference between the 
precipitation peak and the groundwater peak. Potential evapo-
transpiration (EP) on the day of the event is estimated by the 
Penman-Monteith equation. Additionally, the month of the 
event occurred (Month), the Normalized Difference Vegetation 
Index (NDVI) and the runoff generation type (Type: 1-wetland; 
2-tile drainage; 3-outlet; 4-natural drainage) are considered as 
variables. NDVI represents the mean catchment or subcatch-
ment value and it is estimated by linear interpolation between 
57 Landsat 7 and 8 scenes available in the period 2013-2015. 
Finally, drainage area (Area), percentage of piped area  
(AreaPipes) and forest cover (AreaForest) are also used.  
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Table 2. Event based hydrological variables examined as potential controls on Rc and tc. While the variables differ between stream gauges, 
the combined statistics of all stream gauges are shown here. 
 

Variables Explanation Min 25% 50% 75% Max
VolP  Volume of precipitation during event (mm) 3.5 12.7 17.5 27.5 99.3
PeakP Precipitation peak during event (mm/hr) 0.2 2.8 3.7 6.7 21.5
DurP Precipitation duration during event (hrs) 2.0 9.0 17.0 29.8 102.0
PreSM Antecedent soil moisture (%) 20.5 30.2 35.5 38.6 42.4
PeakSM Peak of soil moisture during event (%) 24.9 34.2 38.2 40.0 43.2
PeakPSM Soil moisture at the time of peak precipitation (%) 20.5 30.2 36.9 39.3 43.0
AverSM Average soil moisture during event (%) 22.6 31.7 37.0 39.2 42.6
EndSM  Soil moisture at the end of event (%) 23.6 33.6 37.9 39.4 42.6
DelaySM Soil moisture peak delay to precipitation (hrs) (positive value indicates earlier 

flow peak than soil moisture) 
–13.0 2.0 7.0 11.0 63.0

PreWL  Pre-event groundwater level (m) 262.6 263.3 263.4 263.5 264.7
PeakWL  Peak groundwater level (m) 262.7 263.3 263.5 263.5 264.9
PeakPWL  Groundwater level at the time of peak precipitation (m) 262.7 263.3 263.4 263.5 264.7
AverWL Average groundwater level during event (m) 262.7 263.3 263.5 263.5 264.7
EndWL Groundwater level at the end of event (m) 262.7 263.3 263.5 263.5 264.8
DelayWL Groundwater level peak delay to precipitation (hrs) (positive value indicates 

earlier flow peak than groundwater table) 
–12.0 13.0 18.0 27.0 103.0

EP Potential evapotranspiration during the day of event (mm/d) 0.0 0.9 1.7 2.7 5.1
Month Month when event occurred (month) 1 5 7 9 12
NDVI Normalized Difference Vegetation Index 0.1 0.2 0.3 0.3 0.5
AreaPipes Piped area relative to drainage area (%) 4.3 6.5 10.7 12.9 96.6
AreaForest Forest covered area percentage to drainage area (%) 0.0 4.6 9.6 14.2 18.8
Area Drainage area of subcatchment (ha) 1.1 2.4 4.3 37.4 65.8
Type Runoff generation type (1-wetland; 2-tile drainage; 3-outlet; 4-natural drain-

age) 
1 2 3 4 4

 
Table 3. Statistics of the event runoff coefficients Rc and recession coefficients tc, including minimum, quartiles and maximum, for the 
eight stream gauges based on 40 events which can be observed at least at 5 stations.  
 

  Rc (–) tc (hrs) 
Gauge Runoff generation mechanism Min 25% 50% 75% Max Min 25% 50% 75% Max 
A1 Wetland 0.010 0.026 0.033 0.049 0.082 1.00 3.00 4.00 8.00 16.98 
A2 Wetland 0.006 0.028 0.048 0.068 0.222 0.50 2.00 3.89 7.57 21.90 
Frau1 Tile drain 0.001 0.016 0.033 0.181 0.297 0.50 3.00 4.00 6.00 10.00 
Frau2 Tile drain 0.0003 0.026 0.054 0.139 0.386 1.00 3.00 5.50 8.00 15.00 
Sys2 Natural drainage 0.006 0.010 0.034 0.058 0.089 1.00 4.00 5.00 7.00 17.00 
Sys3 Natural drainage 0.001 0.005 0.018 0.026 0.094 0.50 1.63 4.20 7.60 14.67 
Sys4 Natural drainage 0.004 0.008 0.012 0.037 0.096 1.00 1.04 3.36 8.00 25.00 
MW Outlet 0.004 0.014 0.048 0.071 0.316 0.10 1.00 3.00 10.00 32.56 
All gauges  0.0003 0.012 0.032 0.063 0.386 0.10 2.00 4.00 8.00 32.56 

 
Table 4. Number of event hydrographs and number of event periods (in brackets) used for the calibration and validation for the Rc and tc 
regressions. The models are fitted for the four runoff generation types (wetland, tile drainage, natural and outlet) termed as Classified re-
gression model, and all together (Unclassified regression model). 
 

 Number of events for Classified regression model Number of events for Unclassified 
regression model 

Wetland (A1, A2) Tile drainage (Frau1, Frau2) Natural (Sys2, Sys3, Sys4) Outlet (MW) All 
Calibration 54 40 97 45 252 (40 event periods) 
Validation 14 11 25 12 46 (17 event periods) 
Total 68 51 122 57 298 (57 event periods) 
 

22 hydrological variables and Rc and tc are normalised to the 
range between 0 and 1 for all runoff generation systems together.  

The statistics and cumulative distributions of the resulting 
coefficients are respectively showed in Table3 and Figure 4. Rc 
varies from 0.0003 to 0.4. The tile drainage catchment Frau 2 
has the highest median (0.054), the natural subsurface drainage 
Sys4 the lowest (0.012). The tile drainage catchment Frau 2 has 
the highest median of tc (5.5 hrs), the outlet MW the lowest 
(3.0 hrs) but the 75% quantile is larger than that of the 
subcatchments (10 hrs). The correlation coefficient of Rc and tc 
over all 298 hydrographs is about 0.38. High Rc is usually 

associated with high antecedent flows which may result in 
slower runoff recession (Patnaik et al., 2015) because of large 
groundwater contributions (Exner-Kittridge et al., 2016).  
 
Parameter sensitivities of the three non-linear regression 
models 

 
The parameter sensitivities of the regression models are ex-

plored based on 252 event hydrographs, when events are ob-
served at a minimum of 5 stations (Figure 5, 6 and 7). Addi-
tionally 46 event hydrographs are used for validation (Table 4). 
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Fig. 4. Cumulative distribution of (a) event runoff coefficients and (b) recession coefficients for the four types of runoff generation 
mechanisms. 
 

 
Fig. 5. Sensitivity of the model error, MSE, to ntree and mtry in the RF models for Rc and tc regressions based on unclassified events  
(Table 4). The vertical black line indicates the ntree chosen, 63 for the Rc regression and 68 for the tc regression. 

 
RF model (ntree and mtry) 

 
The number of trees in the model, ntree, has a controlling 

function in the model performance (Figure 5 a and c). As ntree 
increases, OOBError, i.e. the mean squared error (MSE) based 

on out of bag data (OOB data), decreases up to a threshold. 
OOBError is calculated according to (7) 

 

( )2'
M

i ii
y y

OOBError
M

−
=      (7) 
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where M  is the number of out of bag data, iy  is thi  observa-

tion value of OOB and '
iy  is the model prediction of OOB 

based on trees that are not trained by the ith sample. 
OOBError stabilises at around 0.009 and 0.013 for Rc and 

tc, respectively. The model performance would be improved by 
diversifying regression trees, however, it is difficult to build a 
new diverse tree if the ensemble size is large. Therefore, 
OOBError tends to approach a constant level (Breiman, 2001).  

If the number of variables mtry randomly sampled as candi- 
 

dates at each split is close to the total number of variables, 
regression trees are more likely to be similar, which will reduce 
the predictive ability. In our case of only 22 variables, the re-
sults do not change much by mtry (Figure 5 b and d), as suggest-
ed by Liaw and Wiener (2002). 

Finally, for the unclassified models, ntree is set to 63 and 68 
for the Rc and tc regressions, respectively, by minimizing MSE 
of all 298 events, while mtry is automatically optimized. The 
parameters of the classified models are calibrated in the same 
way. The final values of ntree and mtry are listed in Table 5. 
 

 
Fig. 6. Sensitivity of the model error, MSE, to n.trees in the GBDT regression models for Rc and tc regressions based on unclassified 
events (Table 4). Vertical black line indicates n.trees chosen: 750 for the Rc regression and 125 for the tc regression.  
 

 
 

Fig. 7. Sensitivity of the model error, MSE, to different combinations of γ, ε and C for the SVM models based on unclassified events  
(Table 4). MSE is the squared error loss of 10 fold cross validation.  
 
Table 5. Parameters of ntree and mtry of the RF models stratified by runoff generation type. The models are fitted for the four runoff gener-
ation types (wetland, tile drainage, natural and outlet) termed as Classified regression model, and all together (Unclassified regression 
model). 
 

Parameters 
of Random 
Forest 
model 

Rc tc 
Classified regression model Unclassified 

regression 
model 

Classified regression model Unclassified 
regression 

model 
Wetland  
(A1, A2) 

Tile  
drainage 
(Frau1, 
Frau2) 

Natural 
(Sys2, 
Sys3, 
Sys4) 

Outlet 
(MW) 

All Wetland 
(A1, A2) 

Tile  
drainage 
(Frau1, 
Frau2) 

Natural 
(Sys2, 
Sys3, 
Sys4) 

Outlet 
(MW) 

All 

Ntree 94 52 28 83 63 86 100 60 58 68 
mtry 7 22 4 3 7 4 4 2 4 14 

 



Controls on event runoff coefficients and recession coefficients for different runoff generation mechanisms 

163 

 

GBDT model (n.trees) 
 
There are four main parameters needed for the GBDT mod-

el, shrinkage, n.minobsinnode, interaction.depth and n.trees. 
Reducing shrinkage, the learning rate, improves the perfor-
mance while increasing the computational cost, so shrinkage is 
set to a low value of 0.001 (Friedman, 2001, 2002). 
n.minobsinnode is the minimum number of observations in a 
tree’s terminal node, and interaction.depth represents the num-
ber of splits performed on a tree. Model performance is not 
sensitive to these parameters, so they were set to 10 and 6, 
respectively, by minimizing the cross validation errors. n.trees 
is the number of iterations, i.e., the number of trees in the 
GBDT model. Its sensitivity is analysed in Figure 6. The 
squared error loss of CV is calculated by averaging MSE of  
k = 5 across folders 

 

( )2
, ,1

1

'1Squared error loss of CV

n
k i j i jj

i

y y

k n
=

=

−
=


    (8) 

 

where n is the number of samples in the i th folder (a total of  
k = 5 folders),  y’i,j and yi,j are respectively the model prediction 
and the objective value of sample j in folder i. 

The squared error loss of CV in the Rc regression is slightly 
lower than that in the tc regression (Figure 6). Increasing 
n.trees provides a greater improvement of performance when 
n.trees is small. The optimum n.trees values for the Rc and tc 
regressions based on all unclassified events are manually set to 
n.trees = 750 and 125 respectively by minimizing the squared 
error loss of CV in calibration and by controlling the MSE 

reduction (e.g. 0.015) between calibration and validation to 
avoid overfitting. The values of n.trees are listed in Table 6. 
 
SVM model (γ, ε and C) 

 
When calibrating the Radial Basis Function (RBF) kernel of 

the SVM models, three parameters are needed, γ, ε and C. γ is 
the kernel coefficient of the RBF and reducing γ will increase 
the performance and reduce the bias, as the number of support 
vectors increases. ε is a parameter in the insensitive-loss 
function (Eq. 4). Reducing ε increases the number of support  
vectors. C is the cost of violating the constraints of the 
regularization term in the Lagrange formulation. Large C aims 
at a smaller margin with better prediction but may lead to 
overfitting.  

The squared error loss of 10 fold cross validation (Equation 
8 in which k is set to10) and the MSE reduction between cali-
bration and validation is used for optimizing the parameters, 
thus preventing overfitting. A "grid-search" on γ, ε and C is 
performed using the R tune.svm function. Various triples of 
values are tried and the one with the best cross-validation accu-
racy is selected. The test sequences of the parameters are γ =  
2(–7:2), ε = (0.003, 0.01, 0.03, 0.1, 0.3, 1.3) and C = 2(0:6) (Hsu et 
al., 2003). 3D sensitivity plots of the three parameters are 
shown in Figure 7. Table 7 gives the optimised parameter value 
for the classified regression models. There are many good 
combinations of three parameters resulting in the lowest 
squared error loss of 10 fold cross validation (Figure 7). The 
final parameter combinations are chosen by both minimizing 
the squared error loss of CV in the calibration and controlling 
the MSE reduction. 
 

 
Table 6. Parameter of n.trees of the GBDT models stratified by runoff generation type. The models are fitted for the four runoff generation 
types (wetland, tile drainage, natural and outlet) termed as Classified regression model, and all together (Unclassified regression model). 
 

Parameters 
of GBDT  
model 

Rc tc 

Classified regression model 
Unclassi-

fied regres-
sion model 

Classified regression model Unclassified 
regression 

model 
Wetland  
(A1, A2) 

Tile  
drainage 
(Frau1, 
Frau2)  

Natural 
(Sys2, 
Sys3, 
Sys4) 

Outlet 
(MW) 

All Wetland 
(A1, 
A2) 

Tile  
drainage 
(Frau1, 
Frau2) 

Natural 
(Sys2, 
Sys3, 
Sys4) 

Outlet 
(MW) 

All 

n.trees 20 665 180 100 750 20 45 35 80 125 
interaction.depth=6   n.minobsinnode = 10   shrinkage = 0.001   seed=537 

 
Table 7. Parameters of the SVM models stratified by runoff generation type. The models are fitted for the four runoff generation types 
(wetland, tile drainage, natural and outlet) termed as Classified regression model, and all together (Unclassified regression model). 
 

Parameters 
of SVM 
model 

Rc tc 

Classified regression model 
Unclassified 
regression 

model 
Classified regression model 

Unclassified 
regression 

model 

Wetland 
(A1, A2) 

Tile 
drainage 
(Frau1, 
Frau2)  

Natural 
(Sys2, 
Sys3, 
Sys4)  

Outlet 
(MW) 

All Wetland 
(A1, A2)

Tile 
drainage 
(Frau1, 
Frau2) 

Natural 
(Sys2, 
Sys3, 
Sys4) 

Outlet 
(MW) 

All 

γ 2–7 2–5 2–7 2–6 2–7 2–6 2–6 2–7 2–5 2–5 

ε 1.3 0.1 0.1 0.03 0.01 1.3 0.1 0.3 0.1 0.03 

C 2 2 25 26 26 1 1 1 1 23 
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Fig. 8. Estimates of the RF, GBDT and SVM regression models plotted against the observations of Rc and tc. Estimation is based on  
unclassified events (252 are used for calibration and 46 for validation). Colours indicate the regression models. Lines represent linear rela-
tion between estimation and observation. Panels a) and c): calibration. Panels b) and d): validation.  

 
Temporal calibration and validation performance of the 
non-linear regression models 

 
Figure 8 shows the estimates of Rc and tc for the RF, GBDT 

and SVM models based on unclassified events as in the last 
column in Table 4. The performances of the Rc regressions 
based on the GBDT and SVM algorithms are better than that of 
the RF model with R2 of 0.71 and 0.67 in validation, respective-
ly. The performances of the tc regressions based on the RF and 
SVM algorithms are better than that of the GBDT model with 
R2 of 0.44 and 0.45 in validation, respectively.  

Figure 9 compares the calibration and validation perfor-
mance of the regressions (as in Table 4). The performance of 
the SVM model is generally higher than that of the others, 
which may be due to the higher dimensional space of the SVM 
regression (Asefa et al., 2006). The performance of the tc re-
gression models is generally low for all methods. This may be 
due to the lack of subcatchment groundwater data that might 
improve the performance, particularly for wetlands and natural 
drainage runoff generation systems which are in HOAL closely 
related to groundwater level dynamics. On the other hand, the 
Rc and tc regressions of the natural drainage subcatchment and 
the unclassified events have a somewhat higher performance 
than the other systems, probably because of the larger number 
of events that are available. The models highlighted by boxes in 
the left of the figure have higher values of R2 than 0.6, both in 
calibration and validation. 

Spatial calibration and validation performance of the non-
linear regression models  

 
Table 8 lists the number of events used for calibration and 

validation in a spatial leave one out mode. The classified re-
gressions of Rc and tc including wetland, tile drainage and 
natural subsurface flow, are spatially validated. For the wetland 
regressions, 38 events from station A2 are used for calibration 
and 30 events from station A1 for validation; for the tile drain-
age regressions, 30 events from Frau2 are used for calibration 
and 21 events from Frau1 for validation; for natural subsurface 
flow, 90 events in Sys3 and Sys4 are used for calibration and 
32 events in Sys2 for validation. Additionally, a total of 252 
hydrographs during 40 events that are observed in at least 5 
stations, are used for building 8 Leave_one_out models in which 
the events of one of the subcatchments are used for validation 
and the rest for calibration. The SVM regression models general-
ly have a better performance (measured by R2) than the other 
models, which is similar to the temporal validation (Figure 10). 
 
Linear correlations of Rc and tc with the explanatory 
variables  

 
Pearson’s correlation coefficient r of Rc and tc with the ex-

planatory variables of Table 2 is evaluated for the entire set of 
298 events, i.e. for all stream gauges together (Table 9). Rc is 
positively correlated with DurP, VolP, AreaPipes and ground- 
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Table 8. Number of events used for spatial calibration and validation of the Rc/tc regressions by runoff generation type. The models are 
fitted for the four runoff generation types (wetland, tile drainage, natural and outlet) termed as Classified regression model, and all together 
(Unclassified regression model). 
 

Number of 
events 

Rc/tc regression 
Classified regression model Unclassified regression model 
Wet-
land 

Tile 
drainage 

Natural Leave_A1
_out 

Leave_A2
_out 

Leave_Frau1_
out 

Leave_Frau2_
out 

Leave_Sys2_
out 

Leave_Sys3_
out 

Leave_Sys 
4_out 

Leave_MW
_out 

Calibration 38 
(A2) 

30 
(Frau2) 

90 (Sys3, 
Sys4) 

223 216 233 224 223 220 213 212 

Validation 30 
(A1) 

21 
(Frau1) 

32 (Sys2) 29 (A1) 36 (A2) 19 (Frau1) 28 (Frau2) 29 (Sys2) 32 (Sys3) 39 (Sys4) 40 (MW) 

Total 68 51 122 252 252 252 252 252 252 252 252 

 

 
Fig. 9. Comparison of R² (coefficients of determination) of temporal calibration and validation between different regression methods  
(colours) used to estimate Rc and tc stratified by runoff generation type. Models with R² > 0.6 both in calibration and validation are high-
lighted by boxes at the left. 

 

 
 

Fig. 10. Performance, R2 (coefficients of determination), of the Rc/tc regression methods (RF, GBDT and SVM) with spatial calibration 
and validation as in Table 8. 
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Table 9. Correlation coefficient of Rc and tc with the explanatory variables according to Table 2. 
 

R VolP PeakP DurP PreSM PeakSM PeakPSM AverSM EndSM DelaySM PreWL PeakWL 

Rc 0.15 –0.29 0.50 –0.04 –0.02 –0.01 –0.01 –0.03 0.02 0.43 0.48 
Tc –0.04 –0.40 0.38 0.30 0.29 0.32 0.31 0.28 –0.01 0.19 0.14 

R PeakPWL AverWL EndWL DelayWL EP Month NDVI AreaPipes AreaForest Area Type 
Rc 0.47 0.47 0.50 0.30 –0.26 –0.32 –0.21 0.28 –0.17 0.08 –0.19 
Tc 0.16 0.15 0.14 0.33 –0.33 0.05 –0.22 –0.04 0.05 0.06 –0.002 

 
water related variables (PreWL, PeakWL, PeakPWL, AverWL, 
EndWL and DelayWL). The highest r are obtained for EndWL 
and DurP (r = 0.5), suggesting that groundwater and precipita-
tion are the two factors that are most strongly connected to Rc. 
It is also interesting that the rainfall duration (DurP) affects r 
more strongly than event precipitation volume (VolP). It seems 
that higher groundwater levels lead to more direct flow gener-
ated during an event. The groundwater level data reflect the 
catchment storage conditions, particularly those close to the 
stream, as most piezometers are close to the stream. The peak 
rainfall intensity (PeakP) is negatively correlated with Rc (but 
DurP positively), suggesting that saturation excess runoff tends 
to be more important than infiltration excess runoff.  

A clearly positive effect on tc can be found of the variables 
DurP, DelayWL and the soil moisture related variables (PreSM, 
PeakSM, PeakPSM, AverSM and EndSM). The largest abso-
lute r occurs for the precipitation variables (PeakP and DurP). 
Longer DurP and lower PeakP generally result in slower reces-
sions. Higher rainfall intensities lead to higher peak flows and 
thinner shapes of the hydrographs with faster recessions. The 
influence of soil moisture and groundwater on tc is somewhat 
lower than that of precipitation. In summer, higher precipitation  
 

intensity together with low soil moisture and groundwater 
levels generally come out with quick streamflow recessions 
with low tc, while in winter lower precipitation intensity and 
wetter conditions usually with higher tc.  
 
Importance of explanatory variables for Rc and tc in the 
non-linear regression models 

 
The importance of the explanatory variables for estimating 

Rc and tc from the non-linear regression models was evaluated 
on the basis of Ii,SVM (section „Ensemble learning techniques for 
regression“). The heatmap (Figure 11) shows the relative im-
portance of the explanatory variables, where each column rep-
resents one model and the colour indicates the importance of 
the explanatory variables. The temporal non-linear regression 
models are used for this analysis because of the larger database 
(Table 4). 

For evaluating the effects of multicolinearity to variable im-
portance of regression model, the variance inflation factor 
(VIF) has been calculated for each variable. VIF of most varia-
bles are smaller than 5 apart from soil moisture (PreSM, 
EndSM, AverSM, PeakSM and PeakPSM) and groundwater  
 

 
 
Fig. 11. Heatmap of the variable importance Ii,SVM for the classified and unclassified models using the SVM regression method. The Y-axis 
represents 22 variables, the X-axis the models based on different subcatchment types. Left: Rc. Right: tc. Models with R² > 0.6 both in 
calibration and validation (Fig. 9) are highlighted by a blue box, and the variables with the best Ii,SVM performance are highlighted by black 
rectangles. Database as in Table 4. 
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related variables (PreWL, EndWL, AverWL, PeakWL and 
PeakPWL). Therefore the difference from five soil 
moisture/groundwater variables is difficult to be explained from 
Ii,SVM. Figure 11 suggests that both antecedent soil moisture 
(PreSM) and groundwater related variables (PreWL and 
AverWL) have a relative high importance for the Rc regression 
of natural subsurface flow. This is in line with Tarasova 
(2018ab) who found that catchment storage plays a 
considerable role in the prediction of event runoff response. In 
the wetland drainage area soil moisture is always high, in the 
tile drainage area soil moisture varies moderately, and in the 
natural drainage area the seasonal variability of soil moisture is 
largest, which is reflected in a larger effect on Rc. Precipitation 
duration (DurP) always shows a large influence on Rc in the tile 
drainage system and at the catchment outlet. Potential 
evaporation (EP) is another important variable for the Rc 
regression in the tile drainage systems. This suggests that Rc in 
the tile drainage systems is more affected by the weather 
conditions than the subsurface dynamics. Groundwater related 
variables are more important in the natural system and for the 
entire catchment. For the unclassified data set, two soil 
moisture related variables (PeakSM and EndSM) generally play 
an important role, which means that soil moisture is a good 
indicator of catchment storage affecting drainage condition 
during the events.  

The performance of the tc regressions is not as good as that 
of the Rc regressions (R² < 0.5 in validation mode). The precipi-
tation variables (DurP and PeakP) and groundwater peak delay 
to precipitation (DelayWL) are more important than other vari-
ables. Exner-Kittridge et al. (2016) has suggested that most of 
the HOAL baseflow stems from groundwater, so the time when 
groundwater starts to contribute to the recession compared to 
the precipitation peak (DelayWL) may have a controlling func-
tion on the discharge recession rate.   
 
DISCUSSION AND CONCLUSIONS 

 
This study addresses two main research questions. The first 

is the relative performance of three machine learning methods 
in estimating event runoff coefficients, Rc, and recession  
coefficients, tc. We use 22 event based explanatory variables in 
these methods representing precipitation, soil moisture, 
groundwater level and season. The regressions are performed 
for four, classified subcatchment groups (wetland, tile drainage, 
natural, outlet runoff) and for unclassified regressions using all 
event hydrographs from all subcatchments. Model performanc-
es, measured by the coefficient of determination R2, shows that 
the SVM algorithm generally gives more accurate Rc and tc 
predictions than the other two methods (RF and GBDT). This is 
due to the fact that the SVM algorithm can transform the 22 
dimensional variables to a higher dimensional space and it 
generally performs better for small sample sizes. The Rc regres-
sions using SVM for tile drainage, natural, outlet and unclassi-
fied events show good performances with R2 greater than 0.6, 
but the regression for the wetlands perform less well. The latter 
is presumably related to the lack of infiltration information in 
the wetland areas. The best tc estimates are obtained by the 
SVM model for unclassified events with R2 = 0.45 in calibration 
mode. Overall, the tc regressions perform less well than those 
of Rc which is likely related to the more complex nature of 
subsurface and surface routing as compared to runoff genera-
tion. New geophysical observations about the structure and 
connectivity of different groundwater storages and understand-
ing of the connections between shallow and deep aquifers will 
allow to improve model performance in the future. 

The second research question relates to the most relevant 
variables for the Rc and tc regression based on the models 
described above by different categories of runoff systems. The 
relative importance of the variables of the SVM model is as-
sessed by a heatmap. It suggests that precipitation duration 
plays an important role in predicting Rc for the tile drainage 
and outlet systems. This is in line with Merz et al. (2006) who 
concluded that the spatial patterns of median event runoff coef-
ficients are highly correlated with the spatial patterns of mean 
annual precipitation in this climatic region. Antecedent soil 
moisture only affects Rc for the natural system, but not for the 
tile drainage and wetland systems. Potential evapotranspiration 
(EP) is an important factor in the tile drainage systems. It can 
therefore be concluded that event based Rc of the tile drainage 
systems is more controlled by weather conditions than by the 
catchment state, while the opposite is true of the natural drain-
age systems. This behaviour of the natural drainage systems of 
the HOAL is similar to the results of Tarasova et al. (2018a; 
2018b), who found that the response of lowland catchments 
with substantial storage is driven by pre-event saturation in-
stead of rainfall properties. 

Overall, the paper shows that both the performance of esti-
mating Rc and tc and the relative importance of explanatory 
variables depends strongly on the types of the hydrological 
systems, i.e. the runoff generation mechanism. The paper pro-
poses three machine learning techniques as tools for predicting 
event based Rc and tc on the basis of weather and land surface 
characteristics.  
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