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A Pedotransfer Function for Field-Scale 
Saturated Hydraulic Conductivity 
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Carla Saltalippi, Corrado Corradini, Peter Strauss, 
and Günter Blöschl
Classical experimental techniques to determine point values of saturated hydrau-
lic conductivity (Ks) are complex and time consuming; therefore, the development 
of pedotransfer functions, PTFs, to derive Ks from easily available soil properties 
is of great importance. However, PTFs have been generally developed at the 
local scale, while hydrological modeling requires Ks estimates at larger scales. A 
small Austrian catchment, where detailed soil characteristics were available, was 
selected to address this issue. Values of field-scale saturated hydraulic conductiv-
ity (<Ks

f>), observed in a number of catchment areas by double-ring infiltrometers, 
were used to develop two PTFs, one by multiple linear regression (PTFMLR) and 
one by ridge regression (PTFR). Training and validation of the PTFs in the moni-
tored areas indicate that the PTFR provides better outcomes with smaller average 
errors. This suggests that the ridge regression is a valid alternative to the classi-
cal multiple linear regression technique. Predictions of <Ks

f> by the PTFs in the 
remaining areas, where infiltration measurements were not performed, were 
also made to obtain a map of <Ks

f> for the whole catchment. Two alternative 
approaches were used: Method A—soil properties were first interpolated and 
then the PTFs applied; Method B—the PTFs were first applied to sites with avail-
able soil properties and then interpolated. The maps of <Ks

f> obtained by the 
PTFMLR are not representative of the <Ks

f> spatial variability. On the other hand, 
the map generated by the PTFR with Method A is consistent with catchment mor-
phology and soil characteristics.

Abbreviations: ANN, artificial neural network; FDF, frequency density function; GCV, generalized cross-
validation; GMER, geometric mean error ratio; MLR, multiple linear regression; PTF, pedotransfer function; 
VIF, variance inflation factor.

Saturated hydraulic conductivity, Ks, is a crucial soil property in most hydrologi-
cal models. Its accurate estimate is fundamental in the representation of local infiltration 
into both homogeneous (Philip, 1969; Te Chow et al., 1988; Corradini et al., 1997) and 
layered soils (Corradini et al., 2000; Morbidelli et al., 2014). The assessment of Ks is also 
essential at the field scale to properly represent the effect of soil heterogeneity on the 
infiltration process in distributed rainfall–runoff models. Smith and Goodrich (2000) 
presented a model that can simulate areal-average infiltration of rainfall in areas exhibit-
ing random variation in Ks through the point infiltration model of Parlange et al. (1982) 
and the Latin hypercube sampling method. Govindaraju et al. (2001) and Corradini et 
al. (2011) formulated two models for field-scale infiltration into vertically homogeneous 
and layered soils, respectively, characterized by a random spatial variability of Ks with a 
probability density function of the lognormal type. A study area was partitioned into a 
finite number of regions, each characterized by the areal-average value of Ks, <Ks>, and 
the associated coefficient of variation, CV(Ks). The expected field-scale infiltration rate 
in each region was expressed as a function of an expected time through the values of <Ks> 
and CV(Ks). The model by Govindaraju et al. (2001) was then extended to account for 
the run-on process (Morbidelli et al., 2006). These models for field-scale infiltration have 
in common the essential requirement of a spatial characterization of Ks, which in the 
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absence of sampled data can be synthetically approximated by a 
lognormal random field with values of <Ks> and CV(Ks) fixed in 
advance. Therefore, at least an experimental characterization of 
Ks is required to assess the last two quantities.

Measurements of Ks are often time consuming and exhibit 
a high spatial variability linked with land use or soil type 
(Papanicolaou et al., 2015; Baiamonte et al., 2017). Values of Ks 
observed in situ through classical devices are always influenced 
by local discontinuities in the soil matrix, such as cracks, worm 
holes, or roots, which often determine preferential flow paths for 
infiltration (Picciafuoco et al., 2019).

Recently, a global database of infiltration measurements, 
which is useful to investigate many problems linked with the deter-
mination of Ks, was assembled by Rahmati et al. (2018).

An alternative approach to estimate Ks at the point scale 
relies on the use of pedotransfer functions (PTFs) (Bouma, 1987) 
that allow to predict hard-to-measure soil properties, such as Ks, 
from readily available information (e.g., soil texture or bulk den-
sity). Vereecken (1989) classified soil hydraulic function related 
PTFs into two groups: point-based PTFs that directly provide 
soil hydraulic properties and parametric PTFs that predict 
parameters involved in different hydrological models. The math-
ematical complexity of existing PTFs varies from simple tables 
that provide hydraulic parameters for particular textural classes 
(Wösten et al., 1995; Tietje and Hennings, 1996), hereafter called 
class PTFs, to linear-regression-based approaches (Minasny et al., 
1999; Pachepsky et al., 2001) and artificial neural network (ANN) 
models (Schaap et al., 2001; Parasuraman et al., 2006; Sedaghat et 
al., 2016). Wösten et al. (2001) and more recently Van Looy et al. 
(2017) provided a detailed review of the developed PTFs. Usually, 
PTFs are deduced from the relationships between input data 
available in soil databases (e.g., textural properties or topographic 
variables) and Ks. Schaap et al. (2001) developed an ANN-based 
software, ROSETTA, which allows estimation of Ks by application 
of five hierarchical PTFs generated with a large number of data 
obtained from three databases (Schaap and Leij, 1998). Wösten 
et al. (1999) developed a database of European soil properties 
(HYPRES) and used it to derive PTFs for Ks. Pedotransfer func-
tions for applications on spatial datasets with European coverage 
were also provided by Tóth et al. (2014). The use of large databases 
allows identification of a wide range of combinations and relation-
ships among soil properties, in principle making the obtained PTFs 
applicable in different scenarios. However, the PTFs available in 
the literature are not always applicable with acceptable accuracy to 
different regions (Tietje and Tapkenhinrichs, 1993; Kern, 1995; 
Cornelis et al., 2001; Wagner et al., 2001; Nemes et al., 2003). 
Therefore, attempts have been made to recalibrate published PTFs 
by adapting the parameters to soil conditions different from those 
used in their development (Abdelbaki, 2016).

As mentioned above, to apply models for estimating field-scale 
infiltration, Ks as a random variable can be represented through 

<Ks> and CV(Ks) of each catchment region. In principle, the last 
two quantities could be estimated using PTFs. However, the PTFs 

already developed allow Ks to be derived only at the local scale, and 
therefore one may need to use a procedure to upscale the point-
based Ks values to the field scale by taking into account the spatial 
resolution of the available soil properties. Alternatively, different 
types of PTFs should be formulated to provide a direct estimate 
of <Ks>. In addition, criteria useful to predict CV(Ks) at the field 
scale by PTF should be defined.

The upscaling would give higher errors in predictions 
because of the inability to allow for all the elements that pro-
duce Ks spatial variability such as local discontinuities in the soil 
matrix. Therefore, the main objective of this study was to for-
mulate PTFs to deal with a direct estimate of <Ks> at the field 
scale. Two PTFs able to predict values of <Ks> representative 
of the different areas belonging to a particular catchment were 
developed. In this context, the basic element is represented by Ks 
measurements performed by double-ring infiltrometers at a suf-
ficient number of plots as defined by Picciafuoco et al. (2019). A 
small Austrian watershed with known detailed soil characteristics 
was selected. The PTF development relied on both the classical 
technique of multiple linear regression and the ridge regression 
approach. The latter approach is sometimes applied in statistical 
analyses with different issues (Hoerl and Kennard, 1970a, 1970b). 
The developed PTFs were used to predict <Ks> throughout the 
catchment, including areas where infiltration measurements were 
not performed. Finally, maps of <Ks> were derived investigating 
two alternative spatial interpolation approaches of the variables 
involved. Additional objectives of this study were understanding 
the possible benefits of the ridge regression compared with the 
widely used multiple linear regression and the role of the spatial 
interpolation on the resulting <Ks> maps.

66Materials
Study Area

The study area is the Hydrological Open Air Laboratory 
(HOAL) catchment, which is located in Petzenkirchen, in the 
western part of lower Austria. The basin has an elevation that 
ranges from 268 to 323 m asl, an area of 0.66 km2, and a mean 
slope of 8%. The catchment mostly comprises arable lands (87%), 
and the remaining is covered by forested lands (6%), paved areas 
(2%), and pasture (5%). The climate can be characterized as humid 
with a mean annual temperature of 9.5°C and a mean annual pre-
cipitation of 823 mm yr−1 from 1990 to 2014 (Blöschl et al., 2016).

Winter wheat (Triticum aestivum L .), winter barley 
(Hordeum vulgare L.), maize (Zea mays L.), and rapeseed 
(Brassica napus L.) are the main cultivated crops in the catch-
ment. Crop rotation is associated with green manure to ensure 
natural fertilization of the ground. However, N and natural fer-
tilizers, e.g., pig manure, as well as plant protection agents such as 
plant growth regulators, fungicides, and broad-spectrum insec-
ticides are also applied. The harvest of the winter crops usually 
occurs in July, while tillage and seedbed preparation are usually 
scheduled in late August or September.
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A soil survey campaign of 300 cores, sampled on the nodes 
of a 50- by 50-m grid (light-gray squares in Fig. 1), mapped the 
soil textural composition of the catchment, providing information 
about organic matter (OM), clay (CL), silt (SI), and sand (SA) con-
tents at multiple depths. According to the USDA soil classification, 
the topsoil of the catchment is constituted of 75% silty loam, 20% 
silty clay loam, and 5% silt. Furthermore, a high-resolution digital 
terrain model was used to derive elevation (EL) and local slope 
angles (S) across the catchment. Table 1 summarizes the informa-
tion available in the grid nodes.

Training and Testing Datasets
An infiltration measurement campaign was performed 

between March and September 2017 in the HOAL catchment. 
A total of 131 point measurements of Ks in 12 different plots 
(dark-gray circles in Fig. 1) were collected using double-ring infil-
trometers (DRIs). The DRI was chosen considering the ease of 
installation and the low cost of the equipment. Simultaneous 
measurements to reduce operation time were performed using 
four DRIs. Picciafuoco et al. (2019) proposed a methodology 
to identify the minimum number of measurements required 
for estimating <Ks> as geometric mean of Ks in a plot of given 
dimensions. Specifically, through an uncertainty analysis, they 
found that the width of the 95% confidence interval of <Ks> 
experienced little reduction with increasing the number of 
measurements beyond a specific threshold, making further 
measurements unnecessary. For an area of 80 m2, this analy-
sis suggested a minimum number of six measurements with an 
uncertainty interval equal to <Ks>.

Following Picciafuoco et al. (2019), in the selected plots, sub-
areas of approximately 80 m2 were considered. In each subarea, six 
of the observed Ks values out of those available were used to derive 
the geometric mean at the field scale that is henceforth denoted by 

<Ks
f>. Furthermore, the values of OM, CL, SI, SA,  S, and EL avail-

able for the sampled nodes (Fig. 1) were weighted to estimate their 
average value in each subarea. These average values along with the 

<Ks
f> data were used as a database for developing and validating 

the PTF. Table 2 summarizes the basic statistics of this database. 
The average value of <Ks

f> across the subareas is 13.2 mmh−1, and 
the associated average error with respect to <Ks

f> deduced using 
all the available measurements is 6.6 mm h−1. This error is consid-
ered acceptable because it produces deviations within the observed 

<Ks
f> domain.

Because spatially averaged quantities are considered, the varia-
tion in SI, CL, OM, and SA is small, with CVs ranging from 1.7 to 
10%, and only  S and EL have moderate variability across the mea-
surement subareas. Despite the small changes in soil characteristics, 

<Ks
f> exhibits a large variability, with a minimum of 2.7 mm h−1, 

a maximum of 48.6 mm h−1, and a CV of 71.8%.
Training and testing of the PTF required splitting the data-

base, where two-thirds of the data constituted the training dataset 
used to develop the PTF, while the remaining data constituted 
the testing dataset. The split required the presence in the training 
dataset of at least one observation from each measurement plot 
and considered the data frequency distribution.

6Methods
Development of the Pedotransfer Function for 
Areal-Average Saturated Hydraulic Conductivity

Due to the absence of information on parameters frequently 
involved in the definition of local PTFs for Ks such as bulk density 

Fig. 1. Plots with available data in the 
catchment (dark-gray circles) and survey 
campaign locations of soil texture (light-
gray squares). The catchment location in 
the Lower Austria region is also shown.

Table 1. Information available at the 300 nodes of the catchment grid.

Statistic
Organic 
matter Clay Silt Sand Slope Elevation

—————————— % —————————— ° m asl

Min. 0.5 6.6 48.6 3.4 0.5 257.6

Max. 8.4 39.7 87.6 26.8 27.7 324.6

Mean 2.2 21.8 70.7 7.4 5.9 291.7

SD 0.7 6.4 6.8 2.5 4.0 14.4

CV, % 33.1 29.2 9.7 34.2 68.0 4.9
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and total or effective porosity (Ahuja et al., 1984; Jabro, 1992; 
Spychalski et al., 2007), only the quantities OM, CL, SI, and SA 
were used. These quantities were incorporated in both linear and 
quadratic forms, in accordance with many published local PTFs 
(Brakensiek et al., 1984; Saxton et al., 1986; Wösten et al., 1999; 
Rahmati, 2017). This choice could introduce a certain degree of 
collinearity among the independent variables, a condition that was 
checked as described below.

To develop a PTF to estimate an unknown quantity (depen-
dent variable) using a training dataset composed of both dependent 
and independent variables, regression techniques are often used.

Consider the standard model for multiple linear regression:

= +y Xb e   [1]

where the matrix of regressors X has dimensions (n ´ p) and rank 
p, the unknown parameter vector b is (p ´ 1), the vector of depen-
dent variables y is (n ´ 1), and the error vector e is (n ´ 1).

The objective is to find the b that minimizes the sum of 
squared errors:

2
2min -y X

b
b   [2]

where the subscript 2 indicates the L2-norm of the vector. 
Assuming that e is normally distributed, with E(e) = 0 and 
Var(e) = s2, and that the errors are uncorrelated, the ordinary 
least squares estimator b̂  of b is

( ) 1ˆ - ¢= ¢X X X yb   [3]

The (X¢X)−1 matrix always exists if the regressors are lin-
early independent, that is, if no column of the X matrix is a linear 
combination of the other columns. It is also known that the vari-
ance–covariance matrix of the regression coefficients is

( ) ( ) 12Var ˆ -
=s ¢X Xb   [4]

If we let C = (X¢X)−1, the variance of the ˆ
jb  coefficient is 

s2Cjj and the covariance between ˆ
ib  and ˆ

jb  is s2Cij. Finally, the 
vector of fitted values ŷ  corresponding to the observed values y is

ˆˆ =y Xb   [5]

Inferences such as those illustrated can be easily per-
formed when the regressors are orthogonal, i.e., there is no 

linear relationship among them. However, when there are near-
linear dependencies among the regressors, the inferences can be 
misleading or erroneous and the model is said to be affected by 
multicollinearity. In such circumstances, the C matrix tends to 
infinity, while the regression coefficients (Eq. [3]) and their vari-
ance–covariance matrix (Eq. [4]) become very large and may 
change erratically in response to small changes in the model or 
the data. According to Wold et al. (1984), the ridge regression is 
one of the methods that can be used to accomplish a stabiliza-
tion of the regression estimates. To stabilize the parameter and 
to control the general instability associated with the least squares 
estimates, one can use

1ˆ *  k -é ù= +ë û¢ ¢X X I X yb  [6]

where I is the identity matrix (p ´ p), ˆ *b  is the ridge regression 
estimator of b, and k > 0 is a positive quantity added to the diag-
onal of X¢X. The ridge estimator can also be considered as the 
solution of the least squares problem with penalty k||b||2

2:
2 2

22min k- +y X
b

b b    [7]

where the parameter k is the Lagrange multiplier used to resolve 
the minimization problem. It represents the bias introduced to 
reduce both the variance associated with the regression coeffi-
cients and the magnitude of the coefficients themselves, and as 
such it is named the shrinkage parameter. To account for possible 
different units among the regressors, the components of the X
matrix are often standardized by subtracting from each xi,j the 
corresponding column means (mj) and dividing the results by the 
column standard deviations (SDj). This is particularly helpful 
when the selection of k is performed by observing the ridge trace 
plot because, as explained below, all the coefficients assume the 
same magnitude.

According to Hoerl and Kennard (1970a, 1970b), the best 
method for achieving a better estimate of ˆ *b  is using the ridge 
trace plot to select a single value of k and a unique ˆ *b . The 
ridge trace is the plot of ˆ *jb  for increasing k, and the selec-
tion criterion should consider that (i) coefficients should not 
have unreasonable absolute values (this is why standardizing X
is important), (ii) coefficients with apparently incorrect signs 
at k = 0 should be changed to have the proper sign, and (iii) 
coefficients should not significantly change their values beyond 
the selected k. Furthermore, Golub et al. (1979) suggested the 
generalized cross-validation (GCV) method as an alternative 
approach to estimate k. In particular, the optimal k value is the 
one that minimizes the GCV statistics, which can be calculated 
as (Liu and Jiang, 2012):

( ) ( ) ( )
( ) 2

* *
GCV *

t

ˆ ˆ
ˆ

rn

¢- -
=

é ù-ë û

y X y X

H

b b
b   [8]

where H = X(X¢X)−1X¢.
To establish if a problem of multicollinearity among the 

independent variables exists, it is possible to derive the variance 
inflation factors (Marquardt, 1970) defined for the jth regressor as

Table 2. Basic statistics of the complete database, including the experi-
mental field-scale saturated hydraulic conductivity (<Ks

f>).

Statistic
Organic 
matter Clay Silt Sand Slope Elevation <Ks

f>

———————— % ———————— ° m asl mm h−1

Min. 1.9 18.2 69.3 6.3 3.5 263.6 2.7

Max. 3.2 22.8 73.7 10.2 8.9 314.7 48.6

Mean 2.6 20.3 70.8 8.9 6.1 272.7 13.2

SD 0.3 0.9 1.2 1.0 0.8 14.2 9.5

CV, % 9.6 4.2 1.6 10.9 13.3 5.2 71.8
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( ) 12VIF 1j jj jC R
-

= = -  	 [9]

where Rj
2 is the coefficient of determination obtained when xj 

is regressed on the remaining p − 1 regressors; when xj is nearly 
linearly dependent on some subset of the remaining regressors, 
Rj

2 is near unity and Cjj is large. Because the variance of the 
jth regression coefficient is s2Cjj (Eq. [4]), we can view VIFj 
as the factor by which the variance of ˆ

jb  is increased due to 
near-linear dependencies among the regressors. According to 
Montgomery et al. (2012), one or more large VIFs indicates mul-
ticollinearity, and practical experience suggests that values >10 
are an indication that the associated regression coefficients are 
poorly estimated.

In this study, two PTFs were developed. The first PTF, hence-
forth designed as PTFMLR, was derived by performing a multiple 
linear regression (MLR) analysis on a subset of independent vari-
ables whose selection is a step of fundamental importance in the 
regression procedure. In this context, Puckett et al. (1985), for 
example, performed a correlation analysis and computed correla-
tion coefficients between pairs of variables; those properties with 
correlation coefficients r > 0.7 were selected for the regression. 
Ferrer Julià et al. (2004) performed a correlation analysis and chose 
as independent variables those that presented the best correlation 
values with the dependent variable. In this study, the indepen-
dent variables used to derive the PTFMLR were those presenting 
at least a moderate correlation with the dependent variable <Ks

f> 
(Evans, 1996). Once the regressors were selected, after testing of 
the normal distribution of the errors and an absence of multicol-
linearity based on the Shapiro–Wilk test (Shapiro and Wilk, 1965) 
and the VIF, respectively, MLR was performed.

The second PTF, henceforth designated as PTFR, was derived 
considering all the examined independent variables as regressors. 
As a consequence, multicollinearity in the matrix of regressors was 
detected by the VIF inspection. Multiple linear regression could 
not be applied and, therefore, the ridge regression technique was 
chosen to develop the PTF.

Evaluation Criteria
The developed PTFs were compared through an analysis of 

accuracy in the training and validation phases. The accuracy was 
assessed by matching the observed <Ks

f> and the corresponding 
predicted data for each dataset. It was quantified through the root 
mean square error (RMSE):

2f f
10 s,m 10 s,e

1

1
RMSE log log

n

i i
i

K K
n =

é ù= -ê úë ûå  	 [10]

and the geometric mean error ratio (GMER):

( )
1

1
GMER exp ln

n

i
in =

æ ö÷ç ÷= eç ÷ç ÷çè ø
å  	 [11]

where the subscripts m and e represent measured and estimated 
data, respectively, n is the number of data, and ei is the error ratio, 
expressed as

f
s,e

f
s,m

i
i

i

K

K
e =  	 [12]

An RMSE of 0 corresponds to a perfect match between 
observed and estimated values, while the optimal value of GMER 
is 1. A value of GMER <1 indicates underestimation of the predic-
tive model.

Generation of a Continuous Map
After the development of the PTFs, maps of <Ks

f> were gen-
erated at a resolution of 25 by 25 m to minimize the effect of the 
interpolation step and highlight the performance of the PTFs con-
sidered. Two alternative methods were adopted (Fig. 2): Method 
A, with the independent variables available on the 50- by 50-m 
grid (Fig. 1) first interpolated onto the 25- by 25-m grid and with 
a PTF then applied at the 25- by 25-m grid; and Method B, with 
a PTF first applied to estimate <Ks

f> in the locations where the 
independent variables were known and these values then interpo-
lated on the 25- by 25-m grid. The ordinary kriging interpolation 
approach (Matheron, 1963) was used in each method.

Finally, a qualitative comparison of the predicted <Ks
f> maps 

was performed, together with a comparison with the experimental 
<Ks

f>values. These comparisons were performed with the purpose 
of having a criterion to establish which combination of PTF and 
Method (A or B) provided better results in terms of <Ks

f> spa-
tial variability. A quantitative evaluation of the correspondence 
between experimental and predicted values was not possible 
because the spatial scales of the two quantities were different.

66Results
Pedotransfer Function Development 
and Validation

In spite of the limited spatial variability of the examined 
soil properties, slight trends in the observed <Ks

f> with respect 
to them can be deduced. According to Fig. 3, <Ks

f> is positively 
correlated with SI and EL, while a negative correlation exists with 
OM, SA, and  S. A minor link can be observed between <Ks

f> and 
CL. The presence of a link between the observed <Ks

f> values and 
the respective soil attributes suggests an in-depth analysis to derive 
an appropriate PTF.

The PTFMLR was developed through an analysis of the exist-
ing level of correlation between the dependent variable, <Ks

f>, 
and the examined independent variables. Figure 4 shows the cor-
relation among the different possible regressors: the color scale 
ranges from a very strong positive correlation (blue) toward zero 
correlation (white) down to a very strong negative correlation (red). 
According to Evans (1996), only OM2 presents a strong correlation 
with <Ks

f>, while moderate correlation can be detected in relation 
to SI, SI2, SA, and EL and weak or very weak correlation exists 
between <Ks

f> and OM, CL, CL2, SA2, and  S. On this basis, 
only the quantities at least moderately correlated (r > 0.4) with the 
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dependent variable were chosen as regressors in the development 
of the PTFMLR.

Estimates of the ˆ
jb  regression coefficients (Appendix A) 

were made by applying Eq. [3] to the training dataset and succes-
sively verifying the assumptions of normally distributed errors 
and absence of multicollinearity in the matrix X. Figure 5 shows 
the magnitude of the VIFs, i.e., the indices that quantify how 
much the variances associated with the ˆ

jb  estimated regression 
coefficients are affected by near-linear dependencies among the 
regressors. Because all the VIFs have values of the same order of 
magnitude and are equal to or less than the empirical limit of 10 
(Montgomery et al., 2012), it can be concluded that multicollinear-
ity did not affect the results.

The final step was application of the PTFMLR to both the 
training and testing datasets and the evaluation of its accuracy. 
Figure 6a shows the results of the training procedure, with 
a remarkable accuracy of the PTFMLR for <Ks

f> lower than 
?20 mm h−1 and a tendency to underestimate the experimental 
values for <Ks

f> ranging between 20 and 40 mm h−1. The over-
all performance is quantified by a RMSE of 0.21 and a GMER 
of 1.09, which support the suitability of the MLR because they 
approximate the optimal values. Next, Eq. [A1] was applied to 
the testing dataset. The outcomes of the testing procedure (Fig. 
6b) are somewhat similar to those of the training dataset. The 

experimental <Ks
f> values are adequately predicted up to approx-

imately 20 mm h−1, whereas a clear tendency to underestimate 
them is shown for <Ks

f> between 20 and 40 mm h−1. In any case, 
the indices RMSE and GMER for the testing dataset have values 
(0.24 and 0.98, respectively) comparable to those obtained during 
the training stage.

The PTFR was developed considering all the available inde-
pendent variables. In this case, the MLR technique could not be 
applied because the conditions of a normal distribution of the 
errors and an absence of multicollinearity were not satisfied. This 
was suggested by an analysis of the VIFs associated with the matrix 
X (Fig. 7) that exhibited five (out of 10) values greater than the 
empirical limit of 10. In addition, because the factors associated 
with CL, SI, and SA were two orders of magnitude larger than 
the others, the application of an MLR would have produced coef-
ficients with large variances and thus poor prediction capability.

Therefore, ridge regression was used and both the methods 
suggested by Hoerl and Kennard (1970a, 1970b) and Golub et 
al. (1979) were applied to select the shrinkage parameter k. The 
ridge trace plot (Fig. 8a) was obtained by calculating (Eq. [6]) sev-
eral b̂*  values for multiple trial values of k in the range 0 to 10. 
Each line represents how a single coefficient ˆ *jb  changes for dif-
ferent possible shrinkage parameters. Similarly, the GCV–k plot 
(Fig. 8b) was generated by Eq. [8] using the same trial shrinkage 

Fig. 2. Qualitative illustration of interpolation types to derive saturated hydraulic conductivity (Ks): Method A with a PTF applied to interpolated 
independent variables of organic matter (OM), clay content (CL), silt content (SI), and sand content (SA); and Method B with a PTF applied first to 
the available independent variables and then interpolated at a smaller scale.
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parameters and thus the same ˆ *b . Finally, the selected k was the 
one that provided the smallest GCV and satisfied also the condi-
tions for k selection through the ridge trace plot set out by Hoerl 
and Kennard (1970a, 1970b).

The developed PTFR (Eq. [A2] in Appendix A) was then 
applied to the training dataset to evaluate its performance at this 
stage. Figure 9a shows a fairly good accuracy for experimental 

<Ks
f> values lower than ?30 mm h−1 and a slight tendency to 

underestimate values >30 mm h−1. The RMSE and GMER in the 
training step have values of 0.18 and 1.09, respectively. Similarly, 
Eq. [A2] was applied to the testing dataset (Fig. 9b). Many points 
are somewhat close to the 1:1 line and indicate a satisfactory rela-
tionship between experimental and predicted values. The indices 
RMSE and GMER of the validation phase have values of 0.18 and 
1.01, respectively, which are comparable to those obtained during 
the training stage.

Comparison of Field-Saturated
Hydraulic Conductivity Maps

The developed PTFs present similar performance in terms 
of RMSE and GMER in both the training and the validation 
stages, even though the PTFR produces errors which on average 
are smaller than those obtained with the PTFMLR. However, for a 

complete assessment of the two applied regression methodologies, 
a comparison of the maps generated for the whole catchment was 
also performed.

Both Methods A and B involve experimental variograms 
fitted by an exponential model (Oliver and Webster, 2014) because 
this provided the smallest residual squares sum. Figure 10 shows 
the catchment <Ks

f> map obtained by applying the PTFMLR with 
Method A to the interpolated independent variables. The majority 
of the predicted values are on the blue portion of the color scale, 
i.e., around 20 mm h−1, while a few values are >40 mm h−1 or 

<20 mm h−1. Table 3 summarizes the basic statistics evaluated for 
the <Ks

f> predicted values: the minimum is 10.7 mm h−1 while 
the maximum is 45.6 mm h−1, and the coefficient of variation 
is 12.7%, which is rather unusual for Ks even considering aver-
aged values. Figure 11 shows the results obtaining by applying the 
PTFR with Method A to the spatially interpolated independent 
variables. Even though the majority of the predicted <Ks

f> values 
are in the central portion of the color scale, the map is character-
ized by a higher spatial variability than that of Fig. 10. This larger 
spatial variability is also reflected in a CV of 36.8% (Table 3) and 
a wider variation range of <Ks

f>, characterized by a minimum of 
2.7 mm h−1 and a maximum of 43.9 mm h−1.

Figure 12 shows the map generated by the PTFMLR with 
Method B. The minimum predicted value of <Ks

f> (Table 3) is 
7.4 mm h−1, which is smaller than that obtained by the same PTF 
with Method A. Similar evaluations can be made for the maximum 

Fig. 3. Field-scale saturated hydraulic conductivity, <Ks
f>, plotted against 

(a) organic matter content (OM), (b) clay content (CL), (c) silt content 
(SI), (d) sand content (SA), (e) slope angle (S), and (f ) elevation (EL).

Fig. 4. Correlation matrix among the different available quantities: 
field-scale saturated hydraulic conductivity (<Ks

f>), organic matter 
content (OM), square of the organic matter content (OM2), clay con-
tent (CL), square of the clay content (CL2), silt content (SI), square 
of the silt content (SI2), sand content (SA), square of the sand content 
(SA2), slope angle (S), and elevation (EL). The size of the circles is pro-
portional to the correlation coefficient r, while the color scale ranges 
from very strong positive correlation (blue) toward zero correlation 
(white) down to very strong negative correlation (red).



VZJ | Advancing Critical Zone Science p. 8 of 15

predicted value, which is 43.8 mm h−1 and smaller than that 
obtained by Method A. The map is also characterized by a 
higher spatial variability than the one shown in Fig. 10, with 
a less uniform color distribution and a greater CV of 20.5%. 
Finally, Fig. 13 is the resulting map achieved by the PTFR with 
Method B. The spatial distribution of the predicted <Ks

f>values 
appears to be more random and therefore less influenced by the 
catchment morphology than the map obtained by Method A 
(Fig. 11). The variation range of <Ks

f> is the widest among 
all the maps generated, with a minimum value of 1 mm h−1, a 
maximum of 56.7 mm h−1, and a CV of 42.4%.

6Discussion
A moderate correlation was detected between the 

observed <Ks
f> and soil characteristics. It was expected 

because of the close relationship between infiltration and soil 
composition. Texture alone has been reported to be a good 
predictor of Ks in sandy soils (Jaynes and Tyler, 1984; El-Kadi, 
1985), and clay content was the main parameter correlated 
with Ks by Puckett et al. (1985). However, in the present study, 
CL exhibited a scarce correlation with <Ks

f> and this made 
it unsuitable for the regression analysis. On the other hand, 
OM appeared to be a good predictor of <Ks

f>, as was also 
shown by Rawls et al. (1982, 1983), and Wösten et al. (1999), 
who successfully used this quantity as a PTF input. A strong 
relationship between OM and Ks was not always observed. For 
example, Ferrer Julià et al. (2004) detected almost no correla-
tion between them in their study to construct a Ks map of 
Spain. Nevertheless, they decided to use OM as input in the 
developed PTF because of the well-known influence of this 
soil characteristic on water movement. The negative correla-
tion between <Ks

f> and SA is unusual. However, it could be 
due to the fact that the measurement locations with low values 
of SA coincide with agricultural catchment areas. In the study 
area, land management operations produced a significant 
increase in the experimental values of <Ks

f> (Picciafuoco et 
al., 2019) and this accounts for the higher <Ks

f> values associ-
ated with low SA.

Soil texture and topographical characteristics were used 
for training and validating the developed PTFs. Soil texture 
has often been used as a predictor of Ks, as well as other soil 
properties such as effective porosity and bulk density (Saxton 
et al., 1986; Wösten, 1997; Suleiman and Ritchie, 2001; 
Spychalski et al., 2007). However, these latter quantities were 
not available in this study. Furthermore,  S was not generally 
used as a predictor despite its well-known influence on infil-
tration (Morbidelli et al., 2015).

For both the PTFMLR and PTFR, the training pro-
cedure (Fig. 6a and 9a) was found to be accurate to some 
extent for <Ks

f> values lower than ?30 mm h−1. Due to 
the lognormal shape of the Ks probability density function, 
the <Ks

f> observations have mainly values <30 mm h−1 and 

Fig. 5. Variance inflation factors (VIFs) associated with the regressors chosen 
to develop the pedotransfer function by a multiple linear regression. The inde-
pendent variables are: square of organic matter content (OM2), silt content 
(SI), square of silt content (SI2), sand content (SA), and elevation (EL).

Fig. 6. Experimental vs. predicted field-scale saturated hydraulic conductivity, 
<Ks

f>, values obtained applying the pedotransfer function derived by multiple 
linear regression (PDFMLR) to the (a) training and (b) testing datasets. The 
1:1 line is also shown.



VZJ | Advancing Critical Zone Science p. 9 of 15

the regression is more accurate in this range. In contrast, the 
regression for <Ks

f> >30 mm h−1 appears to be less accurate, 
with observed values generally underestimated with the PTFR. 
The performance is slightly better if the PTFMLR is applied. 
Overall, the average errors calculated in the training stage by 
the two PTFs are comparable, with RMSEs of 0.21 and 0.18 
for the PTFMLR and PTFR, respectively, which are better than 
those typically found in the literature for local predictions of Ks. 
For example, Schaap and Leij (1998) used ANN-based PTFs to 
predict Ks from different sets of soil properties including tex-
ture, bulk density, and retention points at 10 and 33 kPa. In the 
training stage, they obtained RMSE values ranging from 0.83, if 
only texture was used, to 0.66 if all the variables were utilized in 
the prediction. Parasuraman et al. (2006) used ANNs to model 
Ks for two distinct sites using bulk density and SA, SI, and CL. 
The RMSEs in the training stage ranged from 0.21 to 0.23 for 
the first site and from 0.36 to 0.38 for the second site, depend-
ing on the input variables utilized and the ensemble algorithm. 
Twarakavi et al. (2009) derived a set of four PTFs from the same 
database utilized to develop the software ROSETTA (Schaap et 
al., 2001) but applying a new methodology called support vector 
machines (SVM). They obtained Ks estimates for the training 
dataset with RMSEs between 0.55 and 0.71.

In the validation stage, the PTFR provided better results than 
the PTFMLR for <Ks

f> values <10 mm h−1 (Fig. 6b and 9b), with 
the points aligned and close to the 1:1 line. The observed values 
were better predicted by the PTFR also for <Ks

f> between 20 and 
40 mm h−1, being the points in this interval closer to the bisec-
tor. However, both the PTFs poorly reproduced measured <Ks

f> 
>40 mm h−1, probably due to insufficient data included in the 
training stage. On average, the PTFR provided better predictions 

than the PTFMLR, quantified by RMSEs of 0.18 and 0.24, respec-
tively, which are better than those typically found in the literature 
for local predictions. Schaap and Leij (1998) obtained RMSEs rela-
tive to the validation stage ranging from 0.71 to 0.84 for different 
developed PTFs. Parasuraman et al. (2006) obtained RMSE values 
that varied from 0.20 to 0.23 for a first site and from 0.48 to 0.50 
for a second site when an ANN-based PTF was used for the test-
ing dataset. Twarakavi et al. (2009) achieved RMSE values for the 
validation dataset between 0.56 and 0.72 for the four SVM-based 
PTFs mentioned above.

In terms of map generation capability, the two PTFs devel-
oped in this study present substantial differences independently 
of the applied Method (A or B). From a merely qualitative analysis, 
the maps obtained with the PTFMLR (Fig. 10 and 12) highlight 
the limited capacity of this function to reproduce the high spa-
tial variability that usually characterizes <Ks

f>. The two maps are 
characterized by an almost homogeneous <Ks

f> distribution. On 
the other hand, the maps obtained applying the PTFR (Fig. 11 and 
13) appear to better describe the <Ks

f> spatial heterogeneity. These 
last two maps allow examination into how the two Methods (A 
and B) influence the final result. As can be easily deduced from Fig. 

Fig. 8. Selection of shrinkage parameter k: (a) the ridge trace plot 
represents how each regression coefficient ˆ *jb  changes for different 
possible shrinkage parameters; (b) generalized cross-validation (GCV) 
statistics as a function of k—the minimum GCV value associated with 
the best shrinkage parameter is indicated by the red dashed lines.

Fig. 7. Variance inflation factors (VIFs) associated with the regressors 
chosen to develop the pedotransfer function by ridge regression. The 
independent variables are: organic matter content (OM), square of 
organic matter content (OM2), clay content (CL), square of the clay 
content (CL2), silt content (SI), square of the silt content (SI2), sand 
content (SA), square of the sand content (SA2), slope angle (S), and 
elevation (EL).
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11 and 1, where the stream and forested areas are characterized by 
a higher variability while the cultivated areas have more uniform 
values, Method A is affected by the site morphology. This pattern 
is supported by the previous outcomes of Picciafuoco et al. (2019), 
who highlighted how, in the study area, the Ks variability, in terms 
of CV, reduces by about 25% in the agricultural areas compared 
with the forested land. On the other hand, Method B seems to 
be influenced by the soil survey sites where the independent vari-
ables were measured (light-gray squares in Fig. 1). In Fig. 13, many 
pixels stand out because their value is significantly different from 
that of the surrounding ones. They appear to be located on a grid, 
and their locations coincide with those where the soil surface was 
sampled to measure OM, CL, SI, and SA. These results are prob-
ably related to the smoothing effect that often affects ordinary 
kriging estimates (Isaaks and Srivastava, 1989), where usually 
small values are overestimated and large values are underestimated. 
This effect is uneven in space, being zero at the data locations and 
increasing with distance from these (see also Journel et al., 2000). 
The smoothing is less detectable if Method A is applied because 
it affects the estimates of the textural components, which are 
characterized by small variability across the catchment, and does 
not directly influence the predicted <Ks

f>. As a result, the final 

application of the PTFR, in any case, generates a map linked with 
the catchment morphology. On the contrary, using the PTFR with 
Method B, the spatial interpolation step is the last phase of the map 
generation process. Therefore, the smoothing effect is more appar-
ent because it directly influences the <Ks

f> estimates.
The qualitative analysis of the maps highlights the inability of 

the PTFMLR to represent the <Ks
f> spatial variability. However, a 

more quantitative analysis based on real observations is needed to 
fully understand which of the two examined methodologies pro-
vides the best results. For example, more <Ks

f> observations could 
be taken in areas of the catchment different from those already 
monitored and then the experimental dataset could be dived into 
three groups to be used to train the PTFs, to test the developed 
PTFs, and to evaluate the generated maps, respectively. Currently, 
in the absence of additional data, the predicted <Ks

f> values (Table 
3) can be compared only with the available experimental <Ks

f> 
values (Table 2). However, a preliminary remark is necessary: the 
experimental <Ks

f> values refer to areas of about 80 m2, while the 
predicted <Ks

f> values obtained from the application of the two 

Fig. 9. Experimental vs. predicted field-scale saturated hydraulic con-
ductivity, <Ks

f>, values obtained applying the pedotransfer function 
derived by the ridge regression (PTFR) to the (a) training and (b) test-
ing datasets. The 1:1 line is also shown.

Fig. 10. Map of the field-scale saturated hydraulic conductivity, <Ks
f>, 

obtained by the pedotransfer function derived by multiple linear 
regression (PTFMLR). Method A, involving spatial interpolation of 
the independent variables first and then application of the PTFMLR, 
was used.

Table 3. Basic statistics of the field-scale saturated hydraulic conductiv-
ity (<Ks

f>) values of the maps obtained by the pedotransfer functions 
derived with both multiple linear regression technique (PTFMLR) and 
ridge regression technique (PTFR).

Statistic

Method A† Method B‡

PTFMLR PTFR PTFMLR PTFR

Min., mm h−1 10.7 2.7 7.4 1.0

Max., mm h−1 45.6 43.9 43.8 56.7

Mean, mm h−1 15.0 14.5 14.6 13.9

SD, mm h−1 1.9 5.7 3.0 5.9

CV, % 12.7 36.8 20.5 42.4

† Soil properties were first interpolated and then the PTFs applied.
‡  The PTFs were first applied at sites with available soil properties and then 

interpolated.
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methods are representative of much larger areas (about 625 m2). 
Therefore, the following comparison has to be considered as a discus-
sion directed to understand the positive aspects of one methodology 
over the other. In terms of minimum value, the PTFR provides 2.7 
mm h−1 (Method A) and 1 mm h−1 (Method B), while the PTFMLR
gives 10.7 mm h−1 (Method A) and 7.4 mm h−1 (Method B). In 
both methods, the PTFR minima are closer to the experimental 
one, which was 2.7 mm h−1. However, in terms of maximum value, 
the PTFMLR provides 45.6 mm h−1 (Method A) and 43.8 mm h−1

(Method B), which are more similar to the experimental value of 
48.6 mm h−1 than the maxima obtained with PTFR, in particular in 
the case of Method B. As far as the mean value is concerned, both the 
PTFs provided good estimates regardless of the applied method. The 
greatest differences between the two PTFs can be seen in the CVs. 
A reduction of the CV associated with the predicted <Ks

f> values 
compared with that obtained from the experimental data is expected 
because of the different scales that characterize these two quantities. 
Nonetheless, the CVs achieved utilizing the PTFMLR (12.7% for 
Method A and 20.5% for Method B) are much lower than those 
obtained by the PTFR (36.8% for Method A and 42.4% for Method 
B). Neither of the developed PTFs reproduces the variability of the 
complete database (CV = 71.8%), but better outcomes are provided 
by the PTFR. Despite the higher CVs observed when Method B is 
applied, Method A provides better results because the derived map is 
influenced by the catchment morphology, which is what one would 
expect for a map representing the pattern of soil properties.

The striking element that delineates the PTFR as the best 
option is the observation of the different frequency density func-
tions (FDFs) associated with the set of observed <Ks

f> and the 
sets derived from the maps. In this context, because of the differ-
ences in sample size and representative scale between the observed 
and predicted FDFs, a rigorous quantitative analysis cannot be 
performed. In any case, Fig. 14 clearly shows that the PTFMLR
provides, with both methods, FDFs significantly different from 
that describing the observed <Ks

f> database.

Our outcomes point out that the PTFR enables us to derive 
satisfactory estimates of <Ks

f>, not only in terms of mean but 
also in terms of variability across the catchment. On the basis of 
the soil characteristics of our catchment, it is possible to examine 
the prediction efficiency of PTFs proposed earlier. Among the 
available class PTFs (Wösten et al., 1995), we have selected the 
one implemented in the first hierarchical level of the ROSETTA 
software. Its application would give a catchment with only three 
values of <Ks

f>, as its area is characterized by a topsoil classi-
fied as silty loam (75%), silty clay loam (20%), and silt (5%). The 
RMSE associated with the application to the testing dataset 
would have acceptable magnitude, but the spatial structure of 
<Ks

f> would be completely lost (Fig. 15). The other five PTFs 
proposed above were also applied to the testing dataset, and their 
accuracy in terms of RMSE was compared with that character-
izing the PTFs developed in this study. As can be seen in Fig. 15, 
all the PTFs, developed for different catchments and different 

Fig. 11. Map of the field-scale saturated hydraulic conductivity, <Ks
f>, 

obtained by the pedotransfer function derived by ridge regression 
(PTFR). Method A, involving spatial interpolation of the indepen-
dent variables first and then application of the PTFR, was used.

Fig. 12. Map of the field-scale saturated hydraulic conductivity, 
<Ks

f>, obtained by the pedotransfer function derived by multiple 
linear regression (PTFMLR). Method B, involving application of the 
PTFMLR to the independent variables first and then spatial interpola-
tion, was used.

Fig. 13. Map of the field-scale saturated hydraulic conductivity, <Ks
f>, 

obtained by the pedotransfer function derived by ridge regression 
(PTFR). Method B, involving application of the PTFR to the inde-
pendent variables first and then spatial interpolation, was used.
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scales, produce RMSEs higher than those associated with 
PTFMLR and PTFR. The RMSE values are comparable 
with those found in other studies (Schaap and Leij, 1998; 
Twarakavi et al., 2009); however, the predicted values 
are extremely inaccurate and do not allow for the <Ks

f> 
spatial variability. These predicted values are almost 
constant (see Fig. 15) because the input data for our 
catchment do not vary much.

In any case, these results could be expected because 
the existing PTFs were generally developed at the local 
scale, while in our study the PTFs were generated on the 
basis of a field-scale dataset. This approach allows the exis-
tence of random variability sources that are different from 
soil composition and cannot be quantified.

6Conclusions
Two pedotransfer functions developed using the 

MLR technique and the ridge regression technique were 
compared in terms of accuracy and capability of repro-
ducing <Ks

f> variability for map generation.
The accuracy at the training stage was found rather 

similar for the PTFMLR and PTFR. A significant differ-
ence in the prediction accuracy of <Ks

f> was obtained in 
the subareas used for testing the PTFs, with lower RMSE 
for the PTFR. Therefore, the PTFR can be considered 
a valid alternative to the classical MLR technique. This 
conclusion is also supported by a comparison of the maps 
generated for the whole area of interest, which were devel-
oped by applying the two predictive functions together 
with a spatial interpolation technique required to obtain 
an appropriate spatial resolution. Specifically, two alter-
natives were followed: Method A with the input soil 
parameters first interpolated, obtaining their continuous 
maps, and the PTFs then applied to estimate the <Ks

f> 

Fig. 14. Frequency density functions (FDFs) characterizing the set of measured field-scale saturated hydraulic conductivity, <Ks
f>, values and the sets 

derived from the maps. The maps were obtained by the pedotransfer functions derived by multiple linear regression (PTFMLR) and ridge regression 
(PTFR) and using Methods A (spatial interpolation of the independent variables first and then application of the PTF) and B (application of the PTF 
to the independent variables first and then spatial interpolation).

Fig. 15. Measured vs. predicted field-scale saturated hydraulic conductivity, <Ks
f>, 

values obtained applying literature pedotransfer functions (PTFs) (first and sec-
ond rows) and the PTFs developed in this study and derived by multiple linear 
regression (PTFMLR) and ridge regression (PTFR) (third row) to the testing data-
set; m is the slope of the fitting line (dashed line). The 1:1 line is also shown.
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maps; and Method B with the PTFs first applied to the input 
parameters, generating partial maps of <Ks

f>, and then interpo-
lated to derive continuous maps of <Ks

f>.
Independently of the two adopted alternatives, the maps 

obtained with the PTFMLR show an almost uniform distribution 
of <Ks

f>, which is not realistic in the study catchment. On the 
other hand, the maps generated by the PTFR have a much more 
variable spatial pattern and a more appropriate CV. The statistical 
characteristics of the PTFR–related maps are similar to those of 
the observed <Ks

f> database. In particular, the FDFs associated 
with the <Ks

f> values predicted by the PTFR using Methods A or 
B have a shape that is very close to the one characterizing the FDF 
of the observed <Ks

f> database, while those associated with the 
PTFMLR have a shape significantly different.

Furthermore, the use of the PTFR with Method A can be 
considered to provide better results because the derived map is 
inf luenced by the catchment morphology, which is what one 
would expect for a map representing the pattern of a soil property. 
On the other hand, the map obtained by the PTFR with Method 
B appears to be highly influenced by the location of the samples 
of the independent variables.

Finally, some PTFs proposed earlier were not able to predict 
<Ks

f> for our catchment because (i) the specific texture of the 
catchment is characterized by low soil variability across the inves-
tigated subareas, and (ii) they were generally developed at the local 
scale, while in our study the PTFs were generated on the basis of 
a field-scale dataset.

66Appendix A
The equation of the PTF obtained using the MLR technique 

(PTFMLR) is

f
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2 2
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The equation of the PTF obtained using the ridge regression 
technique (PTFR) is

f
s 13.5 ˆ*= +K bX  	 [A2]

where X  is the standardized matrix of regressors, <Ks
f> is the 

vector of the predicted field-scale saturated hydraulic conductivity 
values, and ˆ*b  is the vector of the ridge coefficients:

T* 1.35 4.62 1.91 1.30 1.34 4.36

0.28 2.05 1.5 .0

ˆ

2 0 3

é= - -ë
ù- - - û

b

It is crucial to note that the matrix X  needs to be gener-
ated considering the exact following order of the columns: OM, 
OM2, CL, CL2, SI, SI2, SA, SA2,  S, and EL expressed in the units 
described above.

To estimate the <Ks
f> vector with regressors additional to 

those used in the training stage, the standardized matrix X  is 
generated according to the following transformation:

SD
ij j

ij
j

x
x
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where m j and SDj are the jth elements of the vectors m and SD, 
respectively, (given in mm h−1) by
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