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Abstract The objective of this study was to understand whether spatial differences in runoff generation
mechanisms affect the magnitudes of diurnal streamflow fluctuations during low flow periods and which
part of the catchment induces the diurnal streamflow signal. The spatiotemporal variability of the
streamflow fluctuations observed at 12 locations in the 66-ha Hydrological Open Air Laboratory
experimental catchment in Austria was explained by differences in the vegetation cover and runoff
generation mechanisms. Almost a quarter of the volume associated with diurnal streamflow fluctuations at
the catchment outlet was explained by transpiration from vegetation along the tributaries; more than three
quarters was due to transpiration by the riparian forest along the main stream. The lag times between
radiative forcing and evapotranspiration estimated by a solar radiation-driven model increased from 3 to
11 hr from spring to autumn. The recession time scales increased from 21 days in spring to 54 days in
autumn. Observations and model simulations suggest that a separation of scales in transpiration effects on
low flows exists both in time and space; that is, the diurnal streamflow fluctuations are induced by
transpiration from the riparian vegetation, while most of the catchment evapotranspiration, such as
evapotranspiration from the crop fields further away from the stream, do not influence the diurnal signal
in streamflow.

1. Introduction

Evaporation and transpiration in midlatitude humid catchments affect streamflow at two main time
scales. At the seasonal time scale, the energy input is at a maximum in summer; therefore, evapotran-
spiration is also at a maximum. This depletes soil moisture in summer below the annual mean, which
affects runoff generation during storms. Soil moisture depletion also tends to reduce groundwater
recharge and hence discharge to the streams. Streamflow during recession periods is the net result of
the interplay of the hydraulic aquifer characteristics and evapotranspiration within the catchment.
Several studies observed faster streamflow recessions in summer than during the rest of the year due
to summer evapotranspiration (Federer, 1973; Shaw & Riha, 2012; Szilágyi et al., 2007). At the daily time
scale, there are similar fluctuations in the energy input between day and night, leading to diurnal fluctua-
tions in evaporation and transpiration, which, again, affect soil moisture and subsurface flow. In small
headwater catchments these diurnal fluctuations of transpiration usually imprint a diurnal signal on the
streamflow during low flow periods (Gribovszki et al., 2010).

Even though there are two distinct time scales of variability in evaporation and transpiration, diurnal,
and seasonal, a relationship between the two time scales would be expected. Only a few studies
examined the seasonality in the diurnal fluctuations and how the diurnal transpiration was related to
the seasonal transpiration that determines the catchment water balance. Bond et al. (2002) and
Wondzell et al. (2007, 2010) showed that the area contributing to streamflow fluctuations decreased
as the catchment gradually dried out. This dynamic was explained by the weakening of the coupling
between the vegetation and stream during summer as the groundwater levels dropped. The time lags
between transpiration and streamflow also varies seasonally due to changes in the flow paths
(Barnard et al., 2010; Cadol et al., 2012; Deutscher et al., 2016; Fonley et al., 2016; Graham et al.,
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2013; Gribovszki et al., 2008; Kirchner, 2009; Szeftel, 2010; Szilágyi et al., 2008; Wondzell et al., 2007,
2010; Yue et al., 2016).

One of the main questions to investigate diurnal streamflow fluctuations during low flows in the past was to
determine where the streamflow fluctuations originate. Numerous studies have confirmed that these fluctua-
tions were induced by transpiration from the riparian and near river vegetation. Experiments where the ripar-
ian forest was removed showed that the streamflow fluctuations stopped (e.g., Dunford & Fletcher, 1947;
Lawrence, 1990; O’Loughlin et al., 1982); however, when the hillslope vegetation was removed instead, the
fluctuations persisted but in a modified way (Bren, 1997). Another question was related to the main flow
paths in the subsurface between the vegetation and the stream. The integrated effect of site conditions
and the species assemblage may determine the sources of root water uptake (Snyder & Williams, 2000).
Certain trees may extract water directly from the groundwater (Barbeta & Peñuelas, 2017; Gribovszki et al.,
2010; Snyder & Williams, 2000), but the amplitude of the water table fluctuations depends on the distance
from the stream and the vegetation type. For example, Reigner (1966) showed that the groundwater fluctua-
tions were significant only up to a 2-m distance from the stream. Irrigation experiments of Barnard et al.
(2010) in Oregon suggested, however, that during higher soil moisture conditions after irrigation, hillslope
vegetation located further from the stream could contribute to the diurnal streamflow fluctuations. Yue
et al. (2016) observed diurnal groundwater table fluctuations along a part of a river that was covered by
woody species and wet slough; however, the middle section of the river with shallower-rooted grasses did
not exhibit water table fluctuations. When the depth to the water table exceeded a certain threshold during
a long recession period, the amplitudes of the diurnal water table fluctuations observed in an area covered by
wet slough decreased.

There are no robust methods for measuring the evapotranspiration rates in riparian forests with mixed
vegetation types (Drexler et al., 2004; Goodrich et al., 2000; Landon et al., 2009; Leenhouts et al.,
2006; Loheide et al., 2005). For many of the narrow riparian corridors, the fetch requirement of the eddy
covariance method often exceeds the width of the riparian forest (Goodrich et al., 2000). Upscaling sap
flux measurements from tree to stand level can also be problematic (Cermák et al., 2004; Oishi et al.,
2008; Schaeffer et al., 2000). The empirical approaches based on crop coefficients and vegetation
index-based crop coefficients (Glenn et al., 2011; Nagler et al., 2005) are not widely used for riparian eco-
systems due to the heterogeneous species composition. Therefore, estimating the evapotranspiration
rates for the riparian zone based on measurements of diurnal water level fluctuations can be a valuable
alternative (e.g., Cernohous & Šach, 2008; Dvorakova et al., 2014; Gribovszki et al., 2008; Loheide et al.,
2005; White, 1932; Wondzell et al., 2007, 2010). However, estimating riparian zone evapotranspiration
in terms of volumes might be uncertain at some study sites where estimated evapotranspiration rates
are only representative of a fraction of the riparian zone (Butler et al., 2007; Loheide et al., 2005;
White, 1932).

Previous studies examined diurnal streamflow fluctuations and their temporal changes in single or nested
catchments with spatially rather uniform runoff generation mechanisms (e.g., Bond et al., 2002; Szeftel,
2010). However, it is not clear how spatial differences in the runoff generation mechanisms affect the flow
paths and total evapotranspiration. The main objective of our study therefore was to evaluate spatial and
temporal patterns of the diurnal streamflow fluctuations in relation to the seasonal cycle of evapotranspira-
tion in a small experimental catchment with different runoff generation mechanisms and mixed land cover
types. The study was performed in the Hydrological Open Air Laboratory (HOAL), a 66-ha Austrian experimen-
tal catchment, where both the main stream and the tributaries draining nearly all the surface contributing
area to the stream are gauged, allowing the main stream and tributary contributions to be separated. The
goal of our study was to determine where the diurnal low flow fluctuations originate, that is, how much
the streamflow fluctuations observed at the tributaries with different characteristics and runoff generation
mechanisms (such as wetlands, springs, and tile drainage systems) contribute to the streamflow fluctuations
observed at the catchment outlet. Furthermore, we aimed to understand which part of the catchment
induces the streamflow fluctuations on the diurnal time scale and which part influences the evapotranspira-
tion on the seasonal time scale. In order to explore the causal link between the process drivers and the
streamflow signal, we used a solar radiation-driven model. The estimated model parameters assisted in gen-
eralizing the response time scales associated with the diurnal fluctuations and the seasonal recession
of streamflow.
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2. Study Area and Data
2.1. Study Area

The study was conducted in a small experimental catchment, the HOAL in Petzenkirchen, located in the wes-
tern part of Lower Austria (Figure 1a), approximately 100 km west of Vienna (48°90N, 15°90E). The drainage
area of the catchment is 66 ha at the catchment outlet (MW). The natural surface water outlet of the catch-
ment is the Seitengraben stream. The elevation of the catchment ranges from 268 to 323 m above sea level,
with a mean slope of 8%. The stream is approximately 620 m long and has a medium slope of 2.4% (Blöschl
et al., 2016; Eder et al., 2014, 2010).

The climate is humid. Mean annual (2002–2015) air temperature, precipitation, runoff, and evapotranspira-
tion are 9.6 °C, 784 mm/year, 178 mm/year, and 606 mm/year, respectively. Seasonal maxima of air tempera-
ture, rainfall amount, and intensity occur in the summer (Figure 3 in Blöschl et al., 2016). Meanmonthly runoff
tends to peak in winter or early spring. The seasonal variability in evapotranspiration plus storage change
estimated from the water balance is presented in Figure 2.

The geology of the HOAL consists of Tertiary fine sediments and fractured siltstone of the Molasse zone. The
dominant soil types are Cambisols (57%), Kolluvisol (16%), and Planosols (21%) with moderate to low perme-
ability. Gleysols (6%) occur close to the stream (Blöschl et al., 2016; FAO et al., 1998).

The catchment is dominated by agricultural land use. At the time of the study 87% of the catchment area was
arable land, the rest was forested, paved, or used as pasture. The crops were mainly winter wheat, maize, win-
ter barley, and winter oilseed rape. Winter wheat and winter barley resume growing in March, reaching their
full height in June and are harvested typically in July. Maize is planted middle/end of April and harvested in
late September. Oil seed rape develops fromMarch to June and is harvested in July. Most of the forested area
is located close to the stream (Figure 1). The most common trees in the riparian zone are different species of
willow (Salix), poplar (Populus), ash (Fraxinus), field maple (Acer), and black alder (Alnus glutinosa). The main
shrub species in the riparian zone are cornel (Cornus), elder (Sambucus), hazelnut (Corylus avellana), honey-
suckle (Lonicera), and guelder rose (Viburnum).

One of the main features of the HOAL is the wide range of observed runoff generation mechanisms, such as
infiltration excess overland flow, reinfiltration of overland flow, saturation excess runoff from wetlands, tile

Figure 1. Hydrological Open Air Laboratory in Petzenkirchen, Lower Austria (panel a). Streamflow is monitored at the main
outlet (MW) and at 11 tributaries (detail, panel b) that have different dominant runoff generation mechanisms.
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drainage flow, shallow aquifer seepage flow, and groundwater discharge
from springs (Blöschl et al., 2016). Due to the thin soil layers with low per-
meability and the agricultural land use, subsurface tile drainage systems
were installed in the 1950s to eliminate waterlogging (Figure 1a). These
systems contribute to the stream at five points: Sys1 and Sys2 flow
throughout the whole year, while Frau1, Frau2, and Sys3 are ephemeral.
Sys3 behaves as a combination of a tile drain and a wetland during low
flow conditions as it also collects the water from the neighboring highly
saturated parts of the catchment. Exner-Kittridge et al. (2016) found that,
chemically and dynamically, the water at Sys1 tile drain originates from
the deep aquifer and not the shallow aquifer; therefore, Sys1 behaves like
a spring rather than a drainage system. The upper 25% of the stream
length was piped in the 1950s to expand the agricultural area. The con-
crete pipe enters the main stream at inlet Sys4. The dynamics of Sys4 are
similar to the perennial drains. A perennial spring, Q1, originates from a
fractured siltstone aquifer and directly enters the main stream. Two wet-
lands (A1 and A2) are fed by springs that seep into the stream through
rivulets in the southeastern part of the catchment. Due to their high
saturation, the runoff response of the wetlands is fast. During major storm
events, saturation overland flow laterally enters the stream at E1 and E2

erosion gullies and, potentially, a few other points, depending on the event magnitude, soil moisture state,
and the direction of the plowing. As both the main stream and the tributaries draining nearly all the surface
contributing area to the stream are gauged (12 gauging stations in total), the main stream and tributary con-
tributions can be separated.

The estimated drainage area, the percentage of the total drainage area occupied by the riparian forest, the
forest cover, the mean streamflow, and the mean low flow episode streamflow (according to sections 3.1
and 4.1) are summarized in Table 1 for each gauge in the HOAL. Comparing the mean streamflow at MW
catchment outlet with the sum of the tributaries for the time period 2013–2015, the tributaries contribute
approximately 56% to the total runoff at MW outlet. The contribution of the tributaries to the main stream
is higher in the low flow periods (63%). This means that about 40% of the streamflow observed at MW enters
the stream laterally in a diffuse way, mostly through the subsurface.

2.2. Data

Streamflow has been monitored at MW outlet of the catchment by a calibrated H-flume with a pressure
transducer since 2001 with 1-min temporal resolution (Figure 1). Streamflow measurements at the

Figure 2. Monthly evapotranspiration (ET) and storage change (dS) esti-
mated from the water balance in the Hydrological Open Air Laboratory for
the period 2002–2015.

Table 1
Estimated Drainage Area, Proportion of the Catchment Drainage Area Occupied by Riparian Forest, Forest Cover, Mean Streamflow and Mean Low Flow Episode
Streamflow for 2013–2015 (for the MW Catchment Outlet Streamflow Data for 2002–2015 are in brackets) for Each Gauge in the HOAL (Figure 1 Shows the Location
of the Gauges)

Gauge
Runoff generation

mechanism
Estimated drainage

area (ha)
Riparian zone

(%)
Forest cover

(ha)
Mean streamflow

(L/s)
Mean low flow episode

streamflow (L/s)

MW Outlet 65.8 3.5 6.32 4.23 (3.94) 3.12 (2.82)
Sys4 Inlet pipe 37.4 0.2 1.73 0.74 0.62
Frau1 Tile drain 3.1 0.1 0.00 0.03 0.00
Frau2 Tile drain 4.8 0.3 0.01 0.15 0.09
Sys1 Tile drain (deep aquifer) 6.5 5.0 0.77 0.43 0.41
Sys2 Tile drain 2.4 0.7 0.45 0.18 0.16
Sys3 Tile drain/Wetland 4.3 0.1 0.61 0.09 0.06
A1 Wetland 2.1 1.6 0.25 0.09 0.09
A2 Wetland 1.1 7.0 0.17 0.09 0.06
Q1 Deep aquifer 2.0 0.8 0.02 0.46 0.46
E1 Erosion gully 0.8 0.9 0.01 0.01 0.00
E2 Erosion gully 1.0 0.2 0.00 0.09 0.00
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tributaries started in 2011. At Sys4 inlet, at Frau1, Frau2, and Sys2
tile drainage systems, Sys1 tile drain (deep aquifer), Sys3 tile
drain/wetland, at the wetlands (A1 and A2) and at the erosion gullies
(E1 and E2) H-flumes and pressure transducers are used to monitor
the flow; at Q1 spring a V-notch weir and a pressure transducer are
used to measure the flow. Details on the sensors are given in Blöschl
et al. (2016).

Two time periods were selected for the analysis because of the differences
in the record lengths between the main outlet and the tributaries. While
the streamflow fluctuations at the main outlet were analyzed for the per-
iod 2002–2015, the fluctuations at the tributaries were analyzed for the
period 2013–2015. Typical examples of streamflow fluctuations at the
main outlet (MW) during a low flow period in summer and in autumn
2006 are presented in Figure 3. The relatively long rainless period during
June 2006 resulted in a recession of the streamflow, gradually decreasing
from 5 to 3 L/s over 21 days. Due to evapotranspiration, diurnal streamflow
fluctuations were superimposed on the recession curve (Figure 3a). In the
middle of October 2006, the amplitude of the diurnal streamflow fluctua-
tions was around 0.4 L/s. Following a storm event (28–31 October), the air
temperature dropped below freezing point and the diurnal streamflow
fluctuations stopped. Even though later the air temperature increased
above freezing point, the diurnal streamflow fluctuations did not resume
during the rest of the year (Figure 3b).

Nineteen piezometers located in the riparian forest close to the stream
have monitored the groundwater level at a resolution of 5 min since
2013. Consistent with the streamflow records, groundwater level fluctua-
tions were analyzed for the period 2013–2015. Five piezometers at differ-
ent distances from the stream were selected for the analyses. The average
depth to the groundwater table between 2013 and 2015 was larger further
away from the stream: 0.3 m at BP02 (0.3 m from the stream), 0.4 m at BP07

and H04 (1.6 and 1.4 m from the stream respectively), 2.7 m at H02 (7.4 m from the stream), and 4.3 m at H01
(14.7 m from the stream).

Rainfall has been measured with high temporal resolution (1 min) since 2002 by a weighing rain gauge situ-
ated 200 m from the catchment outlet. In 2012 four additional weighing rain gauges were installed in the
HOAL (Figure 1).

Since 1986 air temperature has been recorded at 7, 14, and 19 hr by a thermometer and cumulative daily
solar radiation has been measured with a pyranometer located about 500 m from the catchment outlet.
Since October 2012 air temperature, incoming and outgoing solar and long wave radiation have been mea-
sured at the HOAL weather station at 1-min temporal resolution. Three eddy covariance stations have mea-
sured crop evapotranspiration in the HOAL since August 2012.

Streamflow, groundwater level, rainfall, and solar radiation data were aggregated to hourly values for the
analysis. Test simulations indicated that the difference between hourly and shorter time steps was negligible
during low flows. For the time period 2002–2012, hourly solar radiation on a horizontal surface was estimated
from measured cumulative daily solar radiation as a function of the day of the year, the solar time and the
latitude (Duffie & Beckman, 2013).

3. Methodology
3.1. Identification of Periods With Streamflow Fluctuations

In order to analyze the diurnal streamflow fluctuations, periods during streamflow recession with diel stream-
flow and groundwater level signals were identified for the main outlet, for all tributaries and for five piezo-
meters based on four criteria:

Figure 3. Example of air temperature (Tair) interpolated between 7, 14, and
19 hr, rainfall (P), and streamflow (Qm) fluctuations at the main outlet (MW)
of the Hydrological Open Air Laboratory in (panel a) June 2006 and (panel b)
October–November 2006.
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(i) the day and the night preceding the day had no precipitation,
(ii) the difference between the daily minimum and maximum streamflow or groundwater level exceeded a

threshold (see supporting information Table S1),
(iii) the daily minimum streamflow or groundwater level was observed between 8 a.m. and 7 p.m., and
(iv) the daily maximum streamflow or groundwater level was observed either before 3 p.m. or after 9 p.m.

For the selected episodes, the amplitude was estimated as the difference between the daily minimum and
maximum streamflow or groundwater level (see supporting information Text S1). If an episode was identified
at the main outlet, the streamflow records of the tributaries and the groundwater levels of the piezometers
were checked with regard to the presence of fluctuations. If one or more of the criteria above were not
matched at the tributaries or at the piezometers, the episode was considered to have zero amplitude;
otherwise, the amplitudes were evaluated in a similar way as for the main outlet. The mean streamflow of
the episodes was calculated for the same time periods for all streamflow gauges and became 0 only if a
tributary dried out.

3.2. Modeling of Streamflow Fluctuations

The study proceeded along two approaches of analyzing streamflow fluctuations, that is, direct analyses and
model simulations. The spatiotemporal patterns and the seasonal variability of the low flow fluctuations were
described through direct analyses of the observations. The model simulations aimed at estimating the time
lags of the streamflow response relative to its forcing. A new modeling approach based on a simple impulse
response model was used assuming that

(i) the amplitude of the diurnal streamflow fluctuations is proportional to incoming shortwave solar radia-
tion; that is, solar radiation can be used as a proxy for transpiration (e.g., Renner et al., 2016),

(ii) the temporal pattern of the diurnal streamflow fluctuations can be modeled by an exponential response
function to solar radiation, and

(iii) the main recession trend during the low flow period is exponential.

The model has three free parameters (f, λ, and α). The parameter f expresses the proportion of the maximum
available energy in the entire catchment or subcatchment, which influences the amplitude of the diurnal
streamflow fluctuations, assuming that the energy consumed by evapotranspiration is equal to incoming
shortwave solar radiation. If this assumption is true, f is equal to 1, if the entire maximum catchment energy
contributes to diurnal streamflow variations. The parameter λ represents the time lag between incoming
shortwave solar radiation and the diurnal streamflow fluctuations. The parameter α is the recession time
scale. If α is significantly larger than λ, that is, there is a magnitude difference between the two time scales,
then a separation of scales exists in the time domain.

Based on assumption (i) evapotranspiration ET is estimated from the incoming shortwave solar radiation
according to (1)

ET ¼ f ·S·
G

ρΔHvap
(1)

where ET is evapotranspiration in (L3/T), f is the dimensionless amplitude factor, S (L2) is the drainage area of
the entire catchment or subcatchment, G (M/T3) is incoming shortwave solar radiation, ρ (M/L3) is the density
of water, and ΔHvap (L

2/T2) is the latent heat of vaporization of water. This approach assumes no plant regula-
tion of evapotranspiration. Based on assumption (ii), the evapotranspiration pattern is convoluted with an
exponential response function to obtain the evapotranspiration signal in the hydrograph Qd (L

3/T) according
to (2):

Qd tð Þ ¼ ∫t0ET τð Þu t � τð Þdτ (2)

where τ (T) is the integration variable and ut (1/T
1) is the response function according to (3):

ut ¼ 1
λ
e�

t
λ (3)

where λ (T) is the time lag and t (T) is time. Based on assumption (iii), the recession curve Qr (L
3/T) is expressed

as an exponential function (4):
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Qr ¼ Q0e
� t

α (4)

where α (T) is the recession time scale and Q0 (L
3/T) is set to the maximum measured discharge during the

first day of the time period analyzed. Streamflow Q (L3/T) is calculated according to (5), subtracting the eva-
potranspiration signal from the recession curve:

Q ¼ Qr � Qd (5)

It is important to note that the model is not a predictive model. It was fitted to the streamflow data using a
multiple objective calibration approach (combining the root-mean-square error, the amplitude error, and the
error of timing, see supporting information Text S2, Chu et al. (2011)) for the purpose of interpreting the
streamflow fluctuations and low flow recessions at different times of the year. As the model was fitted to each
recession period independently, the result was one parameter set (f, λ, and α) for each episode.

The modeled evapotranspiration volumes were compared with upscaled, literature-based riparian evapo-
transpiration volumes (see supporting information Text S3 and Table S2), (Beeson, 2011; Hinckley et al.,
1994; Köcher et al., 2008). The groundwater evapotranspiration, that is, the evapotranspiration calculated
from the diurnal fluctuations of the shallow groundwater levels, was estimated by the White method
(White, 1932) and the empirical method of Gribovszki et al. (2008; see supporting information Text S4).

4. Results
4.1. Amplitude of the Observed Diurnal Signals

The number of episodes with diurnal variations at the main outlet was 549 and 138 for the two time periods
(Table 2). Depending on the runoff generation mechanism, the streamflow data of some tributaries featured
diel signals simultaneously with the catchment outlet (approximately 60% of the episodes for the wetlands),
while other tributaries were dry during long rainless periods (for instance the erosion gullies E1 and E2). While
all periods were used for the direct analyses, periods shorter than 3 days were excluded from themodel simu-
lations (Table 2). The mean lengths of the episodes for the direct analyses and model simulations were about
60 and 110 hr, respectively.

The monthly average amplitudes of the streamflow diel signals at the MW catchment outlet and diurnal fluc-
tuations of the groundwater levels at two piezometers (1.6 m from the stream at BP07 and 1.4 m away from
the stream at H04) show a clear seasonal pattern (Figures 4a and 4c). The amplitudes of the diurnal stream-
flow and groundwater level fluctuations increased from spring to summer. During the summer season (May
to September) the amplitude of the streamflow fluctuations was usually larger than 0.4 L/s at MW outlet,
while during the winter season (November to March) the amplitudes approached 0. The amplitude is con-
trolled by both the energy input, which peaks in the summer, and the efficiency of the plants as they allocate
the available energy to transpiration. The very small values of the amplitudes in the late autumn and winter
months suggest that the efficiency is the lowest in the winter season. This is consistent with observations
(e.g., Figure 3b) that the first late autumn frost terminates the diurnal streamflow fluctuations.

Themagnitudes of the streamflow fluctuations varied between the locations (Figures 5 and 6). During a 5-day
dry period in August 2013 diel signals were observed for most of the tributaries and piezometers in the HOAL,
althoughwith very differentmagnitudes (Figure 5). The differences between the tributaries are highlighted in
Figure 6, which shows the relative amplitudes, that is, the mean measured amplitudes as a function of the
mean streamflow of the episodes at the nine gauges of the catchment that usually have nonzero runoff

Table 2
Number of Episodes and Days Included in the Direct Analyses and the Model Simulations and Mean Episode Lengths

Time
period Gauges

Direct analyses Model simulations

Number of
episodes

Total number of
days in episodes

Mean episode
length (hr)

Number of
episodes

Total number of
days in episodes

Mean episode
length (hr)

2002–2015 MW 549 1364 57 185 832 108
2013–2015 MW and tributaries 138 344 56 42 197 113

Note. Episodes shorter than 3 days were excluded from the model simulations.
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during rainless periods. The other three gauges, the ephemeral Frau1 tile drain and the erosion gullies (E1
and E2), are not included in Figure 6 because they are always dry during rainless periods.

In order to understand from which tributaries the fluctuations detected at MW catchment outlet originate,
vegetation cover, dominant soil types, depths to groundwater level, and runoff generation mechanisms were
explored for the respective subcatchments. Sys3 tile drain/wetland is located on the left side of the stream,
where the depth to groundwater level is small. The drainage area of Sys3 tile drain/wetland is dominated by
Kolluvisol around the outlet; the soil texture is characterized by a large percentage of silty loam causing low
permeability and generally wet soil conditions. The drainage area around the outlet is covered by forest; the
dominant tree types are ash, poplar, and black alder. The root system of these tree species in moisture retain-
ing and organic rich soil types can reach depths of 2 m (Crow, 2005); therefore, they are apparently excep-
tionally well connected to the shallow groundwater table. Similarly to Sys3 tile drain/wetland, A1 and A2
wetlands were characterized by diel fluctuations with large magnitudes (Figures 5a and 6). The wetlands
are also located on the left side of the stream, and due to their high wetness conditions and large riparian
forest cover, the trees can be expected to be well connected to the shallow groundwater table as well.

The relative amplitude was 1 magnitude smaller at Sys4 inlet and Sys1, Sys2, Frau2 tile drains compared
to the wetlands (Figures 5a and 6). One of the reasons for the smaller relative amplitudes is the different
vegetation cover (Table 1). The catchment area of Sys4 inlet and Frau2 tile drains is covered mainly by crop;
the forest cover is minimal (Table 1). The fluctuations at these tributaries are possibly caused by the narrow
riparian forest zone close to the outlets. Furthermore, Frau2 tile drain enters the main stream in an oblique
way from the crop fields so is more exposed to riparian vegetation, unlike Frau1 tile drain that enters perpen-
dicularly and is dry in rainless periods. Even though Sys1 tile drain behaves as a spring according to chemical

Figure 4. Seasonal variability of the monthly average measured amplitudes Am of the streamflow diel signals (panel a) and
the time of the day when the minimum measured discharge occurs tm,min (panel b) at MW catchment outlet based on
observations during 2002–2015; seasonal variability of themonthly averagemeasured amplitudesAm,gwl of the groundwater
level diel signals (panel c), and the time of the day when the minimummeasured groundwater level occurs tm,min,gwl (panel
d) at BP07 and H04 piezometers based on observations during 2013–2015. For the piezometers the results have been
lumped into bimonthly bins because of the shorter observation period. Direct analyses, see supporting information Text S1.
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analyses and it has basically constant contribution to the outflow at the catchment outlet even in the driest
months, the root zone of the riparian forest may reach the aquifer, causing diurnal fluctuations of the
streamflow. At Sys1 tile drain (deep aquifer) the relative amplitudes of the fluctuations induced by the
riparian vegetation were smaller than the relative amplitudes at the wetlands and they were
superimposed on the high baseflow rates. The deep aquifer spring Q1, which produces runoff throughout
the year from a fractured siltstone layer, is not exposed to the local effect of riparian vegetation; hence,
diurnal variations of the outflow were never observed (Figures 5a and 6).

Based on the magnitudes of the observed relative amplitudes and the process reasoning above, the tribu-
taries in the HOAL were separated into two distinct groups, which were lumped into two virtual gauges by
taking the sum of the measured streamflow rates. Virtual gauge LF consists of three gauges (A1 and A2 wet-
lands, and Sys3 tile drain/wetland) with large amplitudes relative to the streamflow rates. Virtual gauge SF

Figure 5. A 5-day episode in the Hydrological Open Air Laboratory, 14–18 August 2013. (panel a) Measured runoff is shown
as solid lines, two virtual gauges (i.e., combination of gauges, LF with large amplitudes and SF with small amplitudes)
are shown as dotted lines. Incoming shortwave radiation G and latent heat of vaporization LE at the weather station are
shown at the top. (panel b) Normalized (between 0 and 1) groundwater levels of five piezometers (BP02, H04, BP07, H02,
and H01, Figure 1).
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consists of four gauges (Sys4 inlet pipe, Frau2, Sys1, and Sys2 tile drainage systems) with small or no diurnal
fluctuations in streamflow (Figure 5a).

MW catchment outlet integrates the characteristics of the different runoff mechanisms, and therefore, it can
be regarded as a mixture of the different systems. However, Figure 6 suggests that the relative fluctuations at
MW (about one fifth of the average low flow, solid line) were much larger than the average of all the tribu-
taries (dashed line). This means that there must be significant additional mechanisms that give rise to the
observed fluctuations at MW. About 40% of the streamflow observed at MW enters the stream laterally in
a diffuse way (Table 1), mostly through the subsurface, and is not captured by the tributary gauges, which
suggests that the remaining part of the fluctuations is related to these diffusive inflows. These are the areas
of significant riparian vegetation.

For comparison, Figure 5b shows the groundwater levels normalized to the minimum and maximum levels
during the episode for five piezometers (supporting information Table S3), one of them located on the left
bank, 1.6 m from the stream (BP07), and four of them on the right bank (BP02, H04, H02, and H01, which
are installed 0.3, 1.4, 7.4, and 14.7 m from the stream, respectively). The mean amplitude of the measured
groundwater level fluctuations during the 5-day recession period in August 2013 (Figure 5) was 16.9 cm at
BP07 piezometer, while no diurnal fluctuations were observed further away from the stream at H01 piezo-
meter. The amplitude of the groundwater table fluctuations was 13 times larger at BP02 piezometer (0.3 m
from the stream) than the water level fluctuations at MW Outlet.

The impact of distance from the stream on themagnitude of the diurnal fluctuations was further investigated
(Figure 7). Similarly to Figure 5b, the mean amplitude of the measured groundwater level fluctuations
through the episodes decreased with larger distance from the stream. While the mean amplitude was
6.0 cm at BP02 piezometer 0.3 m from the stream, at H01 piezometer (14.7 m from the stream) it was

0.1 cm. These results indicate that the signal that is propagated into the
streamflow decreased with larger distances from the stream.

4.2. Timing of the Observed Diurnal Signals

The timing of the diurnal fluctuations, that is, the time of the day when the
minimum streamflow or groundwater level occurs, showed a clear seaso-
nal pattern (Figures 4b and 4d). In February and March the daily minimum
discharge and groundwater level occurred in the early afternoon. As the
season progressed, the daily minimum discharge and groundwater level
occurred later in the afternoon, at around 16:00 at MW outlet and around
18:00 at the piezometers. These changes may be related to the response
times of the system to the energy input. This phenomenon was analyzed
in detail later by the model (section 4.5).

The timing of streamflow fluctuations was compared with the timing of
latent heat of vaporization measured by the eddy covariance technique

Figure 6. Mean measured streamflow amplitudes (Am,mean) as a function of the mean measured streamflow (Qm,mean) of
the episodes at nine stream gauges. Solid line indicates the relative low flow amplitudes of the MW outlet; dashed line
indicates the trend of the relative average low flow amplitudes of the tributaries.

Figure 7. Mean amplitude of the measured groundwater level fluctuations
(Am,gwl,mean) as a function of logarithmic distance (log L) from the stream.
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at the weather station (Figure 5a at the top) and groundwater level fluctua-
tions (Figure 5b). The latent heat of vaporization representative of the crop
fields and grassland surrounding the weather station lagged behind the
incoming solar radiation by 0.5–2 hr (Figure 5a at the top). The phase shift
between streamflow and groundwater table fluctuations varied between
locations. Piezometers were either in phase with MW, such as closest to
the stream at BP02 piezometer (0.3 m away), while further away they chan-
ged earlier (BP07) or later (H02 and H04) than MW.

4.3. Model Performance

For the 185 recession periods between 2002 and 2015 (Table 2), themedian
of the model efficiency, that is, Nash-Sutcliffe coefficient, for MW was 0.89;
the 25th and 75th percentiles were 0.68 and 0.95, respectively (see support-
ing information Table S4). For autumn, the model efficiency was lower due

to the smaller amplitudes and signal-to-noise ratios. Figures 8 and 9 show examples of the model fit. A 17-day
recession period in June 2009 had several overcast days (Figure 8). The significant differences in the ampli-
tudes between the days were captured very well by themodel. For example, 11 June was an overcast day with
a diurnal amplitude of streamflow at MW of only 0.3 L/s compared to the other days with amplitudes of about
1.1 L/s. During a 5-day period in August 2013 (Figure 9), diel signals were observed at most of the tributaries.
Virtual gauge LF (A1 and A2 wetlands and Sys3 tile drain/wetland) was characterized by large amplitudes,
while amplitudes at virtual gauge SF (Sys4 inlet, Frau2, Sys1, and Sys2 tile drainage systems) were small.

4.4. Process Controls on Amplitude of Diurnal Streamflow Variation

In order to describe the dynamics of the diurnal low flow fluctuations, we analyzed the seasonal evolution
of the calibrated model parameters. Figures 10a and 10c show the seasonal variability of the amplitude
factor f at MW catchment outlet (a) and at Virtual gauge LF (c). Amplitude factor f expresses the proportion
of maximum available energy in the catchment which affects the diurnal streamflow variations, if the energy

consumed by evapotranspiration is equal to incoming shortwave solar
radiation. The amplitude factor increased from early spring until the
beginning of summer. Assuming that all the entire incoming shortwave
radiation is allocated to transpiration, f = 0.004 in April and 0.008 in the
summer would imply that only a small portion of the available energy
in the catchment (0.004 and 0.008, respectively) contributes to the com-
ponent of transpiration that causes the diurnal streamflow fluctuations.

The seasonal variability of the amplitude factor f at virtual gauge LF (A1
and A2 wetlands and Sys3 tile drain/wetland) was similar to the value for
the MW catchment outlet (Figure 10c). It increased from early spring (med-
ian of 0.003) until the summer (median of 0.009) and decreased in the
autumn (median of 0.002). At virtual gauge LF the mean of the amplitude
factor f was 0.0081, 5 times larger than at virtual gauge SF (0.0018), where
the relative amplitude of the fluctuations was 1 magnitude smaller.

Figures 10b and 10d show the calibrated amplitude factor f as a function of
the maximum measured discharge Q0 on the first day of each recession
period. Amplitude factor f increased with discharge both for MW catchment
outlet (Figure 10b) and even more clearly for virtual gauge LF (Figure 10d).

The amplitude factor of the model comprises several factors influencing
the diurnal streamflow fluctuations. One of these factors is the efficiency
of the vegetation in root water uptake, which we estimated using eddy
covariance measurements. Although the flux footprints of the eddy covar-
iance stations located in the crop fields do not cover the riparian zone
close to the stream, we estimated the proportion of the incoming solar
radiation, which is allocated for transpiration in the crop fields under the
climatic conditions in the HOAL. The seasonal variability of the ratio of

Figure 8. Observed (blue line) and simulated (red line) streamflow fluctua-
tions Q at the MW catchment outlet in the period 2–18 June 2009.
Incoming shortwave radiation G is shown at the top.

Figure 9. Observed (blue line) and simulated (red line) streamflow Q for
14–18 August 2013. The tributaries are lumped into virtual gauge LF (A1
and A2 wetlands, Sys3 tile drain/wetland) and virtual gauge SF (Sys4 inlet,
Frau2, Sys1, and Sys2 tile drainage systems). Incoming shortwave radiation G
is shown at the top.
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daily evapotranspiration (expressed as latent heat) and incoming shortwave radiation is shown in Figure 11a.
Analyzing only the clear-sky days between June and August (2012–2014), the average of the incoming
shortwave radiation was approximately 25.3 MJ/m2/day (or 293 W/m2, 10 mm/day), and the latent heat
measured in the crop fields was around 7.4 MJ/m2/d (or 86 W/m2, 3 mm/day). The LE/G ratio, that is, the
plants’ efficiency of allocating energy to transpiration, increased from 0.1 in January to about 0.3 in
summer (Figure 11a). This means that in summer only about 30% of the incoming shortwave radiation was
balanced by latent heat in the crop fields. Assuming similarity between tree and crop transpiration, the
ratio of the calibrated model parameter f and the median of the LE/G ratios represents a measure of how
well the trees are connected to the stream (Figure 11b). Amplitude factor f is essentially the ratio of
evapotranspiration seen by the stream and G, so f/(LE/G) is the ratio of evapotranspiration seen by the
stream and the evapotranspiration measured by the eddy covariance method and hence a measure of
the proportion of the available energy in the entire catchment influencing the streamflow fluctuations at
the diurnal time scale. Figure 11b suggests that this proportion slightly increased from spring to summer,
but the change was much smaller than that of the transpiration efficiency.

Figure 10. Seasonal evolution of the calibrated amplitude factor f (panels a, c) and f as a function of the maximum mea-
sured discharge Q0 on the first day of each recession period (panels b, d) for MW catchment outlet (panels a, b) and for
Virtual gauge LF comprising the three gauges (A1 and A2wetlands, Sys3 tile drain/wetland) with large amplitudes (panels c, d).
For LF the results have been lumped into bimonthly bins because of the small sample size.

Figure 11. Seasonal variability of the ratio of daily latent heat LE measured by eddy covariance and daily incoming short-
wave radiation G (panel a) and the ratio of the calibrated model parameter f and the median of the LE/G ratios (panel b).
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4.5. Process Controls on Lag Times of Diurnal Streamflow Variation

The calibrated values of time lag λ at MW catchment outlet and virtual gauge LF including only those periods
when the model accurately reproduced the observed time series (Nash-Sutcliffe coefficient > 0.2; 90% and
69% of the modeled episodes were considered for MW outlet and virtual gauge LF, respectively) gradually
increased through the year (Figure 12). In March the median of the time lag λ was around 3 hr; it increased
to 8 hr in May and 11 hr in October. For virtual gauge LF (A1 and A2 wetlands and Sys3 tile drain/wetland)
there was a similar increase (Figure 12c). The mean value of the time lag λ was higher at Virtual gauge SF
(11.1 hr) than at virtual gauge LF (10.3 hr; Table 3).

The second lag time of the model is the recession time scale α. It operates at longer time scales than λ and is
related to the catchment drainage and evapotranspiration as the catchment dries out during the recession
periods. Figures 12b and 12d show the seasonal evolution of the calibrated values of recession time scale
α at MW catchment outlet (b) and virtual gauge LF (d) for only those periods when the Nash-Sutcliffe coeffi-
cient was larger than 0.2 and there was a clear recession in the hydrographs at MW catchment outlet (66%
and 38% of the modeled episodes were considered for MW outlet and virtual gauge LF, respectively). A
few episodes had increasing baseflow, which would imply a rainfall input not considered. Therefore, these
episodes were not considered in estimating α. There was a tendency for time scale α to gradually increase
from spring to autumn, from a median value of 21 days in March to 54 days in October. According to
Table 3, the mean recession time scale αwas 4 times larger at virtual gauge SF than at virtual gauge LF, where
the systems are fed by deeper subsurface flow.

5. Discussion
5.1. Spatiotemporal Patterns of Streamflow Fluctuations

Several studies analyzed the spatial and temporal differences of diurnal streamflow fluctuations between
catchments and in single or nested catchments but focused only on spatially uniform runoff generation

Figure 12. Seasonal evolution of the calibrated model parameter time lag λ (panels a, c) and α (panels b, d) for MW
catchment outlet (panels a, b) and for Virtual gauge LF comprising the three gauges (A1 and A2 wetlands, Sys3 tile
drain/wetland) with large amplitudes (panels c, d). For LF the results have been lumped into bimonthly bins because of the
small sample size.
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mechanisms. For instance, Lundquist and Cayan (2002) analyzed diurnal variations in 100 rivers in the
western United States and found a weak correlation between the amplitude of the diurnal cycle and mean
monthly temperature, discharge, basin area, and mean basin elevation. They concluded that each catchment
was unique and that the spatiotemporal patterns of diel streamflow signals were determined by local physio-
graphic and hydrologic characteristics.

The observation and modeling results presented in this study show that the spatial differences in runoff gen-
eration greatly influence the magnitude of the diurnal streamflow fluctuations. We found that the amplitude
of the diel streamflow signal relative to the streamflow at the wetlands was 1 magnitude larger than those of
the tile drains and the deep aquifers (Figures 5a and 6). The wetlands are the areas in the catchment with high
wetness conditions, shallow groundwater table, and large riparian forest cover (Table 1). In contrast, the inlet
pipe, the tile drainage systems, and deep aquifers are fed by deeper water sources, covered mainly by crop
fields and the depth to the groundwater level is larger than in the wetlands.

The modeling results also reflected the differences in the relative fluctuations between the tributaries. The
amplitude factor f of the solar radiation-driven model was larger in the wetlands; that is, a larger proportion
of the maximum catchment energy was allocated for transpiration, which influenced the diurnal streamflow
fluctuations. The recession time scale α of the model was longer for systems fed by deeper subsurface flow
(tile drainage systems and deep aquifers) than for the shallower systems as would be expected.

5.2. Simplified Process Representation

In this study incoming shortwave radiation proved to be a useful proxy for representing streamflow fluctua-
tions due to riparian transpiration (see section 4.2). Dominant controls on transpiration, that is, stomatal
(vapor pressure deficit and conductances) versus boundary layer (radiation) control, depend on the vegeta-
tion type, scale, and meteorological conditions (Jarvis & McNaughton, 1986; Martin et al., 2001). Due to the
energy that is advected in the form of vapor pressure deficit, daily latent heat flux can exceed the daily
sum of net radiation (e.g., Hall et al., 1998, observed such a phenomenon on a few, dry summer days).
Therefore, using net radiation as a driver of the diurnal streamflow fluctuations might introduce a bias on
longer time scales. Some studies suggested the atmospheric moisture deficit as the main driver of transpira-
tion (e.g., Granier et al., 2000; Szeftel, 2010) or a combination of both energy and vapor pressure deficit (e.g.,
different versions of the Penman-Monteith equation). However, other studies showed that transpiration of
various tree species was closely related to solar radiation (e.g., Dragoni et al., 2005; Granier et al., 2000;
Kume et al., 2008; Oguntunde & Oguntuaseb, 2007). For example, Pieruschka et al. (2010) suggested that
the absorbed solar energy by the leaves influenced the stomatal control of transpiration; therefore, solar
radiation was an important control on transpiration. Using 110 FLUXNET eddy covariance sites, Boese et al.
(2017) observed a substantial transpiration component, also termed as equilibrium transpiration (Jarvis &
McNaughton, 1986), which was independent of stomatal conductance and driven by incoming solar radia-
tion. Phillips et al. (1999) showed that diurnal sap flow in a Panamanian humid forest was more correlated
with radiation than with atmospheric moisture deficit and Williams et al. (2004) found that transpiration
was not correlated with atmospheric vapor pressure deficit in an olive orchard in Morocco. Renner et al.
(2016) argued that vapor pressure deficit and wind speed, two variables widely used in evapotranspiration
estimations, only slightly increased the predictability of atmospheric demand in a beech forest
in Luxembourg.

In this study the evapotranspiration pattern was convoluted with an exponential response function that
resulted in a hydrograph shape with convex rising limbs and concave recessions. Kovar and Bacinova

Table 3
Mean of the Three Calibrated Model Parameters for MW Catchment Outlet and the Virtual Gauges in the HOAL

Gauge Time period f (�) λ (hr) α (days)

MW Catchment Outlet 2013–2015 0.0096 11.3 69.3
MW Catchment Outlet 2002–2015 0.0076 8.9 58.4
Virtual LF (A1 and A2 Wetland, Sys3 Tile drain/Wetland) 2013–2015 0.0081 10.3 19.8
Virtual SF (Sys4 Inlet, Frau2, Sys1, Sys2 Tile drain) 2013–2015 0.0018 11.1 77.6

Note. Location of the gauges is shown in Figure 1. HOAL = Hydrological Open Air Laboratory.
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(2015) used similar methods when they simulated the diurnal streamflow fluctuations with the Fourier series
model. They applied both a linear and an exponential regression to simulate the depletion process and found
a very small difference between the two approaches. Dvorakova et al. (2012, 2014) developed and calibrated
a linear storage model to describe the recession process, where the actual evapotranspiration was
reproduced by simplified Fourier series or sine curves (Dvorakova et al., 2012, 2014). Similar to our results,
these studies also showed that the depletion of the catchment storage during low flow conditions could
be captured by an exponential function.

5.3. Estimated Evapotranspiration Volumes and Rates

The daily transpiration rates depend on the type of vegetation, structure, age, and leaf area index (Farid et al.,
2008; Schaeffer et al., 2000). Numerous studies compared evapotranspiration or transpiration rates of differ-
ent vegetation cover using eddy covariance or sap flow measurements. For example, Granier et al. (2000)
found summer transpiration rates of about 4.5 mm/day in a beech forest in France. Water abstraction of wil-
lows next to the stream can reach 5.6 mm/day (Marttila et al., 2017). Crop evapotranspiration, typically, is also
on the order of 4 mm/day, depending on crop type (e.g., Delzon & Loustau, 2005).

The volumes of the diurnal streamflow fluctuations may be interpreted in two ways. The first and most com-
mon interpretation, as presented, for example, in Gribovszki et al. (2010), is to attribute the entire missing
volume in the hydrograph to evapotranspiration. This is the assumption underlying our estimations. In terms
of volumes, independently from the LE/G ratio, by integrating equation (1) over the day and taking the aver-
age over the episode, the daily average summer (between June and August) evapotranspiration at MW, LF,
and LS was 69, 8, and 8m3/day, respectively (Table 4). The tributary influences are expected to propagate syn-
chronously along the main stream due to the short, approximately 50- and 80-min-long lag times of celerity
and velocity, respectively, between the upstream tributaries and MW outlet (Eder et al., 2014). Therefore, this
result means that 53 m3/day are not accounted for by the tributaries (LF + LS) so needs to be due to the dif-
fusive subsurface inflow to the stream. In other words about 77% (53/69) of the volumes associated with the
streamflow fluctuations are related to (hyporheic) exchange along the riparian zone of the main stream.

The second interpretation of the diurnal streamflow fluctuations is that subsurface flow is controlled by slight
changes in the potential gradients that, in turn, are controlled by the diurnal cycle of evapotranspiration as
the suction of the roots changes during the day. If this is the case, the summer evapotranspiration rates caus-
ing the diurnal streamflow fluctuations are smaller than the estimated ones. Szilágyi et al. (2008) distin-
guished between a local and an overall hydraulic gradient driving the water transport in the vadose and
saturated zones during recession flow periods using a 2-D finite element numerical model. Voltz et al.
(2013) observed an overall relatively small response of the hydraulic gradients during a summer recession
period in a steep headwater catchment in Oregon, where the ratio of the cross-to down-valley hydraulic
gradient showed the largest diurnal fluctuations in wells closest to the stream. Given the topography, where
the roots of riparian trees can easily reach into the groundwater, and groundwater levels in the riparian zones
themselves fluctuate, this mechanism is not likely important in the HOAL.

In order to compare the mean daily evapotranspiration rates from the main outlet with evapotranspiration
rates estimated from the shallow groundwater level fluctuations (ETG), the estimated evapotranspiration
volumes (equation (1)) were divided by the product of the catchment area and the calibrated amplitude

Table 4
Estimated Average Summer (June, July, and August) Evapotranspiration Volumes

Method Reference gauge/piezometer Time period ET (m3/day)

Incoming shortwave radiation-driven model MW Outlet 2002–2015 55
Incoming shortwave radiation-driven model MW Outlet 2013–2015 69
Incoming shortwave radiation-driven model Virtual gauge LF (A1 and A2 Wetland,

Sys3 Tile drain/Wetland)
2013–2015 8

Incoming shortwave radiation-driven model Virtual gauge SF (Sys4 Inlet, Frau2, Sys1,
Sys2 Tile drain)

2013–2015 8

Upscaling literature-based evapotranspiration
values for the entire riparian zone

— — 81

10.1029/2017WR022037Water Resources Research

SZÉLES ET AL. 6182



factor f. The comparison indicates that the daily rates from diurnal streamflow fluctuations from the ground-
water levels were 7 and 5 mm/day based on the empirical method of Gribovszki et al. (2008) and the White
(1932) method, respectively, which was slightly lower than the simulated rates for MW catchment outlet
(9.5 mm/day). These results are consistent with the range (8–11 mm/day) found by Gribovszki et al. (2008)
in an alder forest in Hungary. As the depth to the groundwater did not exceed 1m (2013–2015) in the riparian
zone within 0.5-m distance from the stream in the driest summer months, the root system of the trees (espe-
cially the 40–70 year olds and >10-m species) is likely in direct contact with the saturated zone and evapo-
transpiration estimated from the diurnal groundwater level fluctuations could be close to groundwater
evapotranspiration (Dawson, 1996; Shah et al., 2007; Williams et al., 2006).

Because the estimated evapotranspiration volumes could not be validated against measurements of sap
flow and stomatal conductances, we estimated the transpired volumes for the entire riparian forest using
aerial photographs, a tree survey and literature-based transpiration values of different tree species
(Table 4). The estimated summer transpiration rates (81 m3/day) show a good agreement with the modeling
results (e.g., incoming shortwave radiation-driven model set up for MW Outlet, for the time period 2013–15:
69 m3/day). The slightly larger values are expected as the literature-based estimate was calculated for the
entire riparian zone (Table 4), which may not fully contribute to the streamflow fluctuations.

5.4. Separation of Scales in Time Implies a Separation of Scales in Space

The analysis of the streamflow fluctuations during low flow conditions at MW catchment outlet shows that
the time lag λ between radiation and the diurnal low flow fluctuations gradually increased from 3 to 11 hr
as the season progressed. The time lag represents the total response consisting of a cascade of responses,
which includes the time lags between radiation and evaporation from the stomata, sap flow in the branches
and the stem, root water movement, groundwater movement, and groundwater-stream interactions
(Figure 13). Each component has its own time lag. A number of studies found that the time lag between
the diurnal fluctuations of radiation and sap flow in the tree was approximately 30 min for species such as
apple trees (Dragoni et al., 2005), beech (Granier et al., 2000), and Japanese cedar (Kumagai et al., 2009).
Gartner et al. (2009) found that the sap flow of birch and spruce in the southeastern part of Austria lagged
solar radiation by 1 hr during early August. When the soils dried out during a significant drought, the time
lags increased to approximately 2.5 hr. Hence, it is likely that the time lag of the mixed vegetation in the ripar-
ian zone of the HOAL catchment is also on the order of 0.5 to 2.5 hr. In some of the studies above, the time lag
of sap flow from stem to branch was included in the estimates; therefore, this value is also small. Similarly, it is
likely that the time lags for root water uptake are small in the riparian zone, where the groundwater table is
high, which is typical in the HOAL, especially on the left side of the stream. The remaining time lag compo-
nents are associated with subsurface processes (groundwater movement and groundwater-stream interac-
tions). Assuming that the lag components are additive, one would estimate lags of the subsurface
processes of about 1.5 hr in early spring to about 9 hr in autumn for MW catchment outlet. The time lags
are shorter on those tributaries that are located on the left side of the stream with a western aspect where
the groundwater levels are shallow and the riparian forest cover is more dense (virtual gauge LF).

The reason for the longer subsurface lag times in the summer months are presumably a consequence of the
soil moisture status of the riparian zone. Along the stream in the HOAL there is probably a mixture of infiltra-
tion and exfiltration due to the heterogeneity of the topography in the near-stream zone. Previous studies
(e.g., Caldwell et al., 1998; Voltz et al., 2013) found a reversal of groundwater gradients in the riparian zone
due to nighttime infiltration of groundwater into the stream and reversed flow during the day as the
trees take up groundwater and part of the stream water to satisfy their transpiration needs (Figure 13).
Although we did not observe the complete reversal of the groundwater gradient in the riparian zone with
the current measurement setup, a diurnal change in the magnitude of the gradient was observed. The fact
that the main part of the time lag is related to the movement of water in the subsurface suggests that the
increase in lag times during the summer months is a consequence of the amount of water stored in the
near-stream zone. The subsurface water storage, both soil moisture and groundwater, is largest in spring,
which is also indicated by the seasonal maximum in the discharge. Therefore, it is likely that the short lag
times in spring are a consequence of the fact that the roots are well connected to the water sources and
the celerities are higher. As the season progresses, the catchment gradually dries out and the roots become
less connected to the subsurface water storage. When the soils get drier, the unsaturated zone becomes
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thicker and flow paths get longer and the overall hydraulic conductivity gets smaller. These mechanisms
cause an increase in the lag times from 3 to 11 hr for MW catchment outlet. This interpretation is
consistent with the findings of Bond et al. (2002), Fonley et al. (2016), Moore et al. (2011), and Wondzell
et al. (2007, 2010).

Similarly to time lag λ, the recession time scale α could be also described by a cascade of responses. This cas-
cade includes the time lags between transpiration of the crop fields in the catchment and root water uptake,
water movement in the unsaturated zone, groundwater movement, and groundwater-stream interactions.
While it is difficult to separate the individual components, it is clear that the dynamics of root water uptake
and transpiration of crops are faster than the water movement in the unsaturated zone and the groundwater
movement. The former operates at a daily scale with significant diurnal variations, while the latter operates at
time scales of weeks and months. The differences in the magnitudes of the time scales are indicated in
Figure 13 by the thickness of the arrows. Thick arrows represent time scales of hours; thin arrows represent
time scales of weeks or months. The recession time scale shows a gradual seasonal increase from 21 to
54 days for MW catchment outlet. This increase is presumably related to the amount of water stored in the
subsurface at the catchment scale. As the catchment dries out, groundwater flow seems to follow deeper
flow paths, which are associated with longer response times consistent with the findings of Bond et al.
(2002). A similar, increasing trend of the recession time scale αwas found for the subcatchments with shallow
groundwater levels (virtual gauge LF) although, overall, the time scales are smaller, as would be expected
because of the shorter distances. At subcatchments fed by deeper subsurface flow (virtual gauge SF) the
recession time scale α was longer indicating a reduced dependence on riparian processes.

Observations and model simulations showed that the diurnal signal observed in streamflow at different out-
let points of the HOAL mainly originates from diurnal fluctuations in the riparian evapotranspiration. There is
a clear spring onset, a late autumn offset (Figure 3b) of the diurnal diel signal in streamflow and a clear

Figure 13. A possible conceptualization of the catchment during low flow periods: schematic of the decoupling of riparian
zone fluxes and catchment zone fluxes for the catchment outlet. Width of the arrows indicates the time scale. The thick
arrows represent time scales of hours (i.e., well connected at the diurnal scale); the thin arrows represent time scales of
weeks or months (i.e., decoupled at the diurnal scale).
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seasonal pattern in the amplitudes and timings (Figure 4). While the first harvest of the crop fields in July does
not influence the amplitude of the diurnal signal in the stream (Figure 4), the amplitudes start to decrease
only in the autumnmonths and the first frost when the trees in the riparian zone next to the stream drop their
leaves terminates the diurnal streamflow fluctuations. Streamflow from tributaries with large riparian forest
cover fluctuated more than streamflow from tributaries which were covered mainly by crop fields and fed
by deep aquifers. These observations imply that the riparian zone is the main driver of the diurnal streamflow
fluctuations. The results of a solar radiation-driven model showed that only a small proportion of the maxi-
mum available catchment energy induced the diurnal streamflow fluctuations (Figure 10). This proportion
was larger during higher baseflow conditions, and it increased from spring to summer and decreased in
autumn. The daily minimum streamflow occurred later as the season progressed, which was also reflected
in the time lags of the solar radiation-driven model. The change in the timing of the daily minimum stream-
flow and the increase in lag time are likely related to the drying of the catchment during the summer and
autumn, which may lead to a partial disconnect of the riparian zone and the stream. This is consistent with
the findings of previous studies, such as Bond et al. (2002) and Wondzell et al. (2007, 2010) who showed that
the area contributing to streamflow fluctuations decreased as the catchment gradually dried out.

A clear separation of scales (Blöschl & Sivapalan, 1995) exists in the time domain, which is apparent in the
streamflow signal. Conceptually, time scales and space scales of variability are linked through their character-
istic velocities; therefore, a separation of scales in the space domain would be expected, if a separation of
scales in the time domain exists (Skøien et al., 2003). There is also interaction across the diurnal and seasonal
time scales. The diurnal low flow fluctuations due to riparian and near-riparian transpiration are modulated
by the soil moisture state at the seasonal time scales. Conversely, daily transpiration contributes to the sea-
sonal totals. This interaction across time scales is reminiscent of the effects of climate variability on floods
—in a direct way through the seasonal variability of storm characteristics and indirectly through the season-
ality of rainfall and evapotranspiration that affect the antecedent catchment conditions for individual storm
events (Sivapalan et al., 2005).

The streamflow and piezometer observations imply that at the daily time scale, riparian evapotranspiration
induces the diurnal streamflow fluctuations, while most of the catchment evapotranspiration, such as evapo-
transpiration from the crop fields further away from the stream does not contribute to these fluctuations. This
implication was confirmed by piezometer data. We found that the amplitudes of the fluctuations in the ripar-
ian zone within 2-m distance from the stream were significant and did not find significant fluctuations 15 m
from the stream. This is consistent with the findings of Reigner (1966), who also found that the amplitudes
were significant within 2-m distance from the stream. This behavior is also apparent in the time domain.
As the first frost occurs, the low flow fluctuations at MW stop within days (Figure 3b). A similar behavior
has been observed by Goodrich et al. (2000) and for groundwater fluctuations by Lautz (2008). Deutscher
et al. (2016) distinguished between two distinct parts of the catchment with different connectivity, and con-
nectivity may also exist in terms of soil moisture patterns (Western et al., 1998). Conversely, there is a quick
onset of the fluctuations in spring at the beginning of the growing season, when the vegetation is growing.
Preferred states and switching behavior associated with thresholds seem to be more common characteristics
than what is usually assumed (Blöschl & Zehe, 2005; Zehe & Sivapalan, 2009). Spatial patterns of hydrologic
dynamics may help identify preferred states (Blöschl, 2006; Grayson et al., 1997). Analyzing spatial patterns
may also help to address the difficulties in predicting the whole-catchment water balance from observations
at the local scale (Thompson et al., 2011).

6. Conclusions

This study investigated the spatial and temporal patterns of diurnal low flow fluctuations for different runoff
generation mechanisms in a 66 ha Austrian experimental catchment, the HOAL. Our results showed that:

-The ratio of streamflow fluctuations and mean streamflow was around 0.3 for wetlands, where the riparian
forest cover is the largest and the depth to the groundwater table does not exceed 1 m. The amplitudes were
much smaller for tile drainage systems and springs that are fed by deeper subsurface flow, where the domi-
nant land cover is crop and the ratio is around 0.04.

-The separation of scales in the time domain could be reproduced by a solar radiation-driven model. Lag
times between radiative forcing and evapotranspiration increased from 3 to 11 hr from spring to autumn
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as the catchment became more disconnected from the stream. The recession time scales increased from
25 days in spring to 60 days in autumn, which was likely a consequence of the decreasing storage of subsur-
face water at the catchment scale.

-A separation of scales in the time domain is apparent in the streamflow signal, that is, diurnal and seasonal
fluctuations induced by transpiration, implies a separation of scales in the space domain: the diurnal stream-
flow fluctuation are driven by the riparian zone along the main stream, while most of the catchment (the crop
fields located further away from the stream) did not affect the diel signals. This interpretation is supported by
the groundwater level data.
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