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Abstract
In this paper, we investigate space time patterns of meteorological drought events in the Greater Alpine Region (GAR) of Europe.
A long-term gridded dataset of monthly precipitation sums spanning the last 210 years is used to assess abnormally dry states
using a shortfall below a monthly precipitation percentile threshold. These anomalies are calculated for 1, 3, 6, and 12 monthly
moving averages. Contiguous areas of grid points below the threshold are indicating drought areas which are analyzed with
respect to their drought severity. The severity is quantified by taking the average deviation from the threshold and the size of the
drought area into account. The results indicate that the most severe dry anomalies in the GAR occurred in the 1860s, the 1850s,
and the 1940s. However, no significant trends of dry anomaly severity are found over the last 210 years. A spatial clustering
analysis of the detected drought areas shows distinct spatial patterns, with the Main Alpine Crest as a frequent divide between
dryer areas in the north and wetter areas in the south, or vice versa. The patterns are highly significant and similar for all averaging
time scales. The clusters are more clearly defined in winter than in summer. Droughts in the north are most frequent in the second
half of the nineteenth century, while in the south and east, they are most frequent in the late twentieth century.

1 Introduction

From a first snapshot, the Greater Alpine Region (GAR; Auer
et al. 2007) is a water-rich area, exhibiting annual precipitation
totals from 400 to even beyond 3000 mm/year (Isotta et al.
2014). However, water scarcity is a serious issue in some parts
of the area in some years which may cause substantial threats
to drinking water supply, irrigation water supply, energy pro-
duction (through cooling water and hydropower generation),
and river navigation.

Within the last decades, several droughts struck large parts
of Europe and the GAR (Spinoni et al. 2015; Hoerling et al.
2012; Parry et al. 2012; Bradford 2000; van der Schrier et al.
2006), e.g., the summer droughts of 2003 and 2015 as two of

the most recent occurrences. They were caused by prolonged
periods with below average precipitation which led, in com-
bination with high temperatures, to severe drought related
impacts (van Lanen et al. 2016; García-Herrera et al. 2010)
not only in the GAR but also in large areas across Europe.
However, not only in the warm season has an accumulated
precipitation deficit has large impacts on society. In the Alps,
winter sports are a major economic branch, depending heavily
on sufficient snowfall in winter. A succession of three ex-
tremely dry winters in a row (1987/1988 to 1989/1990) sub-
stantially affected winter tourism (Abegg et al. 2007).
Additionally, there is a close link between winter precipitation
(e.g., via melt of the snow pack) and flow characteristics of
rivers with a snow covered catchment during summer since
insufficient snow pack might trigger low flows in the warm
season downstream (Jenicek et al. 2016; Nester et al. 2012;
Parajka and Blöschl 2008). Especially, a deficit of accumulat-
ed precipitation during winter may lead to low flow events of
such rivers (Parajka et al. 2016).

Besides, any formal way to calculate any kind of indicator
the term drought itself must be clarified. For example, Wilhite
and Glantz (1985) discuss the issue of drought severity exten-
sively and identify four types of drought: meteorological, ag-
ricultural, hydrological, and socioeconomic drought. Within
this paper, we focus on meteorological droughts (precipitation
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deficit) as they trigger all other drought types (van Loon 2015;
Stagge et al. 2015; Haslinger et al. 2014). Several studies have
investigated long-term precipitation characteristics and
change in the GAR, e.g., the studies of Brunetti et al. (2006,
2009) and Auer et al. (2005), who found increasing trends in
precipitation north of the Alps and slightly decreasing trends
south of the Alps from 1800 to 2003. These trends are con-
nected to a dipole like feature of precipitation from north to
south which strengthened somewhat over the past 200 years.
Additionally, they reported a slight shift in precipitation sea-
sonality with positive trends in winter and spring,
counteracted by negative trends from July to November.

Brunetti et al. (2006) also analyzed spatial patterns of
precipitation in the GAR, based on principal component
analysis (PCA) of the precipitation time series. They
found four homogeneous sub-regions in the GAR in terms
of their inter-annual precipitation variability. The PCA of
Brunetti et al. (2006) uses all the data of the probability
distribution of precipitation; thus, those patterns for the
dry tail of the distribution might look different. Van der
Schrier et al. (2007) investigated soil moisture variability
in the GAR, based on the self-calibrating Palmer Drought
Severity Index (scPDSI; Wells et al. 2004). They used the
previously defined sub-regions of Brunetti et al. (2006)
regionalization to assess dry and wet episodes. Van der
Schrier et al. (2007) left it open whether the predefined
sub-regions are suitable for a dry episodes analysis.

Several studies investigated spatial and temporal patterns
of drought occurrence globally or in other regions of the
world. General assessments of drought characteristics and
trends from global datasets are given for example in
Sheffield and Wood (2008), Trenberth et al. (2014), or Dai
(2011), highlighting regional differences in drought trends
and large uncertainties considering the input data but on
a v e r a g e i n c r e a s i n g t r e n d s d u e t o i n c r e a s e d
evapotranspiration. Spatial patterns of droughts on a global
scale are investigated for example by Sheffield and Wood
(2007) or Spinoni et al. (2014). Particular interest on spatial
patterns on a regional scale was given by Soulé (1990) who
analyzed various kinds of the Palmer Drought Severity Index
through a PCA for the USA. The results showed more regions
with smaller extent for faster responding indices (e.g.,
Palmer’s Z-Index) and less individual regions with larger ex-
tent for slower reacting indices (e.g., Palmer Hydrological
Index), which implies that the spatial characteristics are de-
pendent on the time scale of the droughts. Similar results were
found for the Iberian Peninsula by Vincente-Serrano (2006)
who conducted an analogous analysis based on the
Standardized Precipitation Index (SPI; McKee et al. 1993),
comparing different accumulation time scales from 1 to
36 months. Other examples are the work of Cai et al. (2015)
who performed a regionalization of drought characteristics
based on a modified version of the Reconnaissance Drought

Index (RDI, Tsakiris and Vangelis 2005) for the Beijing-
Tianjin-Hebei metropolitan areas and the work of Patel et al.
(2007) who investigated spatial drought patterns based on the
SPI in the region of Gujarat (India).

From the existing literature, no complete picture can be drawn
on the spatial patterns of meteorological drought in the GAR.
The most comprehensive work on drought in the GAR conduct-
ed by van der Schrier et al. (2007) did not analyze the spatial
aspects of observed droughts. Consequently, an investigation of
drought patterns in the GAR is still missing. Yet the GAR pro-
vides the possibility to investigate the spatial dimension of
drought in a worldwide unique long-term (200+ years) assess-
ment, enabling to investigate spatial patterns of droughts and
changes of those over the last two centuries. Particularly, consid-
ering global climate change, it is of utterly importance to enhance
our understanding of past droughts to better assess possible future
developments. Stepping into these detected research gaps, we
aim to analyze the long-term (200+ years) characteristics of
drought patterns in theGAR. Themore specific aims of the paper
are (i) to detect areas under drought using accumulated precipi-
tation on different time scales and to quantify the drought severity
of the area, (ii) to assess similarities of these drought areas in
order to obtain main drought patterns, and (iii) to investigate
possible long-term changes of drought patterns over the past
200+ years.

2 Data

The spatial domain of this investigation is the European
Greater Alpine Region (GAR; Auer et al. 2007) which
stretches from 4°–19° E to 43°–49° N (Fig. 1). The GAR is
known for high-quality, long-term climate information back to
1760, the so-called HISTALP database (Böhm et al. 2009). In
this paper, gridded data of monthly precipitation sums cover-
ing the whole GAR are used. This dataset was created by
Efthymiadis et al. (2006) by gridding the available
HISTALP stations with precipitation measurements, which
are at maximum density nearly 200 stations. For the purpose
of this paper, the dataset was updated until 2010 using similar
techniques as for the original dataset described in the follow-
ing section. The dataset therefore covers the period 1801–
2010. It has a spatial resolution of 10′, which is roughly
15 km.

The gridding is performed by the Banomaly approach^
(e.g., Jones and Hulme 1996), which splits the precipitation
field in two components. One is the long-term mean compo-
nent, the climatology fields. Efthymiadis et al. (2006) used a
high-resolution monthly precipitation climatology of the ETH
Zürich (Schwarb 2000) from 1971 to 1990 which utilizes a
very dense station network in order to capture the complex
spatial features of precipitation in the GAR. The second com-
ponent is the anomaly field. It is derived by interpolating
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station anomalies relative to the averaging period of the cli-
matology (1971–1990) using the angular distance weighting
approach. The combination of the high-resolution climatology
and the smoother anomaly fields yields the final absolute pre-
cipitation fields. However, it should be noted that only stations
up to 2000 m a.s.l. are used; thus, uncertainties of the gridding
in the high elevated areas of the GAR should be kept in mind.

In this paper, we use the gridded precipitation data to assess
abnormally dry states in space which could subsequently lead
to soil moisture, streamflow, or groundwater drought. To ac-
count for the different time scales on which these effects may
arise, the precipitation values are summed up by a moving
window approach over a 3-month (3M), a 6-month (6M),
and a 12-month (12M) time scale, similar to the procedure
to calculate the Standardized Precipitation Index (SPI) on dif-
ferent accumulation time scales (see McKee et al. 1993).

3 Methods

Depending on the available data, different approaches have
been used so far to depict drought (Zargar et al. 2011;

Mishra and Singh 2010; Heim 2002; Wilhite and Glantz
1985). During the last decades, especially three indices are
in use for research and operational applications: the Palmer
Drought Severity Index—PDSI (Palmer 1965), the
Standardized Precipitation Index—SPI (McKee et al. 1993),
and the Standardized Precipitation Evapotranspiration
Index—SPEI (Vincente-Serrano et al. 2010). The SPI can be
calculated from precipitation data alone; for the calculation of
the PDSI and SPEI, potential evapotranspiration (PET) would
be required. We intentionally do not use the PDSI or the SPEI,
because (i) the incorporation of a temperature-based PET (oth-
er variables are not available for the GAR for this time period)
introduces additional uncertainty (e.g., Sheffield et al. 2012)
and (ii) we are interested in understanding the spatial patterns
of precipitation deficit; investigating the climatic water bal-
ance would introduce more aspects and processes, e.g., land-
atmosphere interaction which might obscure the original
intensions.

Instead of using the SPI, we use precipitation quantiles on
four different accumulation time scales (1, 3, 6, and
12 months) to quantify meteorological drought conditions in
the GAR. Quantiles introduce a lower boundary (zero), which

Fig. 1 Map of Central and Southern Europe. The broken line indicates the boundaries of the Greater Alpine Region; the solid line represents a
generalized outline of the 1000 m a.s.l. isoline of the Alps which should help in locating the mountainous areas of the domain in the following figures
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makes a severity assessment, as described below, much more
straightforward. As highlighted by Naresh Kumar et al.
(2009), the SPI underestimated the severity of dry and wet
extremes due to distribution fitting issues which underpins
the advantage of using quantiles.

The procedure to identify dry areas is displayed in
Fig. 2. Figure 2a shows an example of a precipitation
field, the December of 1829. The spatial patterns of this
field are characterized by low precipitation in the north-
west of the domain, well below 50 mm/month. In con-
trast, in some coastal areas of Croatia, precipitation sums
exceed 300 mm/month. In the same manner as for calcu-
lating the SPI, a Gamma-distribution (Wilks 2011) is
fitted to the time series at every grid point. The parame-
ters of the distribution are individually estimated for all
the Januaries, Februaries, and so on and repeated for all
three accumulation time scales. This procedure ensures
comparability of anomalies across seasons, independent
of the climatological mean of the precipitation sum.

From the estimated Gamma distribution, the precipita-
tion values (e.g., for the example of 1829 in Fig. 2a) are
assigned to percentile values (Fig. 2b). Obviously, regions
in the northwest faced rather low values, well below the
10% percentile, indicating a relatively unusual month. As
a next step, a threshold of the percentile values is deter-
mined to separate dry areas from non-dry areas. We chose
the 20% percentile, which is a widely used threshold for
drought identification (e.g., Svoboda et al. 2002). The
threshold is indicated as a gray outline in Fig. 2b. As a
next step, all spatially neighboring grid points below the
threshold are aggregated to regions, which we term
drought areas (DAs). In Fig. 2c, two identified DAs, A
and B, of December 1829 are displayed. All key attributes
of a detected DA are summarized by a lookup table cov-
ering the region ID, the grid point IDs, longitudes, lati-
tudes, quantile values, and the month and year of occur-
rence. For further analysis throughout the paper, we use
only DAs with a minimum size of 20% relative to the
whole GAR.

For our study, the affected area of a drought by itself is
an important drought measure. Therefore, we decided to
define also the severity of a detected drought area by

scaling the mean deviation from the threshold level by
the number of affected grid points. The severity of a DA
is given by Eq. (1).

S ¼ ∑
n

i¼1
−1 q−tð Þð Þ=t

i∈DA
ð1Þ

where S is the severity which is a dimensionless measure; n is the
number of all grid points i, detected within a DA; and q is the
quantile value and t the threshold (fixed at 0.2). This implies that
the severity is higher, if either the DA or deviation from the
threshold is large. Highest severities are given, if the DA as well
as the threshold deviation is large.

In Fig. 3, examples of four individual DAs are displayed.
Figure 3a shows a meteorological drought on a 1M time scale
in February 1814, affecting mostly the southern part of the
GAR. The affected area is rather large, while the mean
quantile value is rather low (0.077), resulting in a larger value
of the overall severity of 982. In contrast, the DA from
February to April 1930 (M time scale; Fig. 3b) is considerably
smaller, impacting mostly the western part of Austria. In com-
bination with a mean quantile value of 0.125, the severity is
only 39. However, this DA is not considered in the further
analysis since it is below our chosen area threshold (20% of
the GAR). Another example with large spatial extent, but low
mean quantile deviation from the threshold is displayed in Fig.
3c. This DA on a 6M time scale (May–October 1822) covers
large areas in the east, but the mean quantile value is 0.141,
yielding a severity of 299, which is considerably lower than
the severity of February 1814 (Fig. 3a). A last example, for the
12M time scale, shows the DA from July 1954 to June 1955 in
Fig. 3d. The spatial extent is not large, but the mean quantile
value is low, which gives a severity of 258, comparable to the
severity in Fig. 3c, but affecting not nearly half of the area.
Some guidance on the probability distribution of the severity
is shown by Table 1 which displays the severity values asso-
ciated with certain quantiles. In general, the severity is some-
what decreasing with higher accumulation time scale. The
median ranges between 648 and 571, whereas the 95%
quantile lies between 1879 and 1621. There is indeed a theo-
retical upper bound of the severity which relates to the size of
the grid. If all the grid points would show no precipitation at
all at a given time step, equivalent to a quantile value of zero,

Fig. 2 Example of a precipitation field of December 1829 (a), the corresponding quantiles; the gray contour line represents the 20th percentile (b), and
the detected contiguous drought areas for the selected date A and B (c)
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the severity would be 2895, which is the number of all land
surface grid points in the GAR.

The main methodological framework of this investigation
is the clustering of spatial patterns of DAs in order to gain
information on the spatial behavior of meteorological drought.
We identify similarity patterns of DAs by a k-means clustering
approach.We use the monthly DA-fields, where all grid points
with percentile values outside the 0–0.2 range are set to zero,
in order to avoid biases arising from prominent wet features in
space, and all grid points below the threshold boundary are set
to one. Within the k-means approach, Euclidian distances
(Wilks 2011) between data points are calculated, which are
matrices with binary information on drought (one) and no
drought (zero). The distances are iteratively minimized trough

the sum-of-squares criterion for a previously defined number
of clusters (Bishop 1995). The crucial part of the clustering
algorithm is the determination of an optimal number of clus-
ters. In this paper, we use the silhouette width approach
(Rousseeuw 1987) which describes the similarity of an object
to the assigned cluster as well as the dissimilarity to all other
clusters. It ranges between − 1 and + 1, with higher values
indicating better clustering solutions. The significance and
stability of a given clustering solution are assessed through
the clustering stability (Hennig 2007) approach.

4 Results

4.1 Drought areas and their severity

Figure 4 shows the top 100 DAs in terms of their severity,
stratified by the accumulation time scale. The DAs cluster
around the middle of the 19th, as well as the twentieth century
and in the 1890s if only the 1M time scale is considered. On a
1M time scale, 13 DAs of the topmost ones are detected in the
1860s, 9 in the 1850s, and 8 in both the 1920s and 1940s.
Decades with rather low numbers of extreme DAs are the
1820s (0 DAs) and the 1810s (1 DA), for example. Time
periods of prolonged dry conditions are revealed considering

Fig. 3 Four examples of identified DAs on a 1-month (a), 3-month (b), 6-month (c), and 12-months (d) time scale. Every DA is described through three
attributes exemplarily: the time period of occurrence (time), the quantile mean of the DA, and the severity

Table 1 DA severity associated with different quantiles stratified by
accumulation time scale

Quantile Severity

1 month 3 months 6 months 12 months

50% 648 604 583 571

80% 1160 1112 1040 960

90% 1557 1437 1335 1285

95% 1879 1699 1629 1621
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higher aggregation levels. On a 3M and 6M time scale, the
1940s show the highest DA occurrence (12 and 16 DAs respec-
tively), followed by the 1920s on a 3M time scale with 9 DAs
and the 1860s on a 6M time scale with 13 DAs. On a 12M time
scale, the 1830s (20 DAs), 1850s (18 DAs), and the 1860s (17
DAs) are identified as periods of maximum drought occurrence.

It should be noted that, as an additional effect of using
moving averages of the monthly precipitation sums in the time
domain, DAs tend to cluster around similar years for different
time scales. This is apparent mostly for the 12M line in Fig. 4.
For example, the outstanding DA of October 1949 is
surrounded by other, but smaller DAs along time.

The presented occurrence diagrams in Fig. 4 show a dis-
tinct decadal to multi-decadal scale variability of DA frequen-
cy. However, there is no apparent trend in the occurrence of
droughts. We analyzed time series of annual averages of DA
severity and frequency using the non-parametric Mann-
Kendall trend test for estimating the significance of the trend

in the given time series. Since the accumulation procedure
might introduce autocorrelation in the time series, these were
prewhitened before significance assessment. As can be seen in
Fig. 5, both the frequency and the severity show in general no
significant trend, no matter what time scale is considered with
p values ranging between 0.11 and 0.48.

Table 2 lists the top five DAs in terms of their severity per
time scale. The overall driest month on record was September
1865, followed by April of the same year. This DA affected
99.5% of the whole GAR and shows an average precipitation
anomaly of − 90 mm which equals 9% with respect to the long-
term (1801–2010) mean. The overall deficit volume in this par-
ticular month is 61 km3 of water. The driest 3M period wasApril
to June, again in 1865. The area under dry conditions covers
98.4% and the overall precipitation anomaly is −144 mm,
resulting in a deficit volume of 97 km3. The second and third
driest 3M periods occurred in winter 1857/1858, with similar
precipitation anomalies of −139 and − 152 mm respectively.

Fig. 4 Time of occurrence andmagnitude of the top 100 drought areas (DAs) for the GAR described by their time scale (y-axis and indicated by different
color shadings) and by their severity (size of the symbols)

Fig. 5 Time series of annual averages of DA severity (blue) and annual frequency of DAs (red) stratified by accumulation time scale and the estimated
trend line; respective values of Kendall’s τ and the significance of the trend given by the p value are given in the upper right corner
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Also, on a 6M time scale, the year of 1865 reaches the top
position with the period from April to September. Within these
6 months, only 60% of average precipitation was observed,
resulting in a deficit volume of 158 km3. On ranks two and three,
a more recent event is recorded, namely the time from February
to August 2003, with a deficit volume of nearly 150 km3.
Considering a 12M time scale, the driest period occurred from
November 1948 to October 1949, followed by the time from
January to December in 1921. Both show similar deficit vol-
umes of 240 and 241 km3, respectively.

Considering drought occurrence stratified by seasons, some-
what different patterns are observed as can be seen in Fig. 6.We
defined the cold season (warm season) as the half year span-
ning October to March—ONDJFM (April to September—
AMJJAS). In addition, we considered the core season within
these half years: winter (DJF) and summer (JJA). DAs in the
cold season are clearly more likely in the second half of the
nineteenth century, although the biggest event on a 1M time
scale occurred in March 1929 and on a 6M time scale in March
1949. The decades with the highest number of DAs in the cold
season are the 1850s on a 1M time scale (6 DAs), the 1880s on
a 3M time scale (7 DAs), and the 1850s, 1880s, 1890s, and
1970s on a 6M time scale. The warm season experiences most
DAs in the 1940s on a 1M time scale (7 DAs), in the 1920s on a
3M time scale (9 DAs) and in the 1860s on a 6M time scale (8
DAs). Considering the core season winter and summer, the

patterns are similar. In winter (DJF), DAs are most frequent
in the 1850s and 1860s on a 1M time scale (6 DAs) and in
the 1850s on a 3M time scale (6 DAs). In summer (JJA), the
1850s and 1940s show highest frequency of DAs on a 1M time
scale (6 DAs), whereas the 1860s, 1920s, and 1940s show the
highest number of DAs on a 3M time scale (5 DAs).

4.2 Spatial patterns

In this section, the spatial patterns of DAs are analyzed using a
k-means clustering approach. The aim is to allocate every de-
tected DA (c.f. Fig. 3) to a cluster of DAs with similar spatial
properties. The result of the k-means clustering is a flag for the
DAs indicating their spatial affiliation, e.g., all DAs covering
the northwest of the GAR are assigned to the same cluster.

As described in Section 3, the optimal number of clusters
has to be defined beforehand, which is carried out with the
silhouette width approach (Rousseeuw 1987).

Figure 7 shows the silhouette width of different clustering
solutions stratified by different time scales. First of all, silhouette
widths of the clustering on different time scales are rather similar.
If averaged over all time scales, the peak is at four clusters with
silhouette widths of 0.30 for the 1M, 3M, and 6M time scales
and 0.25 for the 12M time scale (c.f. Table 3), indicating optimal
clustering with four clusters. These values can be interpreted,
following Kaufmann and Rousseeuw (2005), as Bweak

Table 2 Characteristics of the top five drought areas (DAs) per accumulation time scale

Time scale Time period
Severity

Affected area Mean percentile value Absolute anomaly Relative anomaly Deficit volume

(−) (%) (−) (mm) (%) (km3)

1 month September 1865 2782 99.5 0.007 − 90 9 61

April 1865 2765 100.0 0.009 − 73 14 50

March 1929 2663 100.0 0.016 − 61 14 42

March 1953 2602 97.7 0.016 − 63 12 42

April 1893 2556 96.0 0.016 − 71 16 46

3 months April–June 1865 2520 98.4 0.023 − 144 50 97

December 1857–February 1858 2477 97.2 0.024 − 139 36 93

November 1857–January 1858 2342 98.0 0.035 − 152 41 102

March–May 1852 2315 100.0 0.040 − 119 53 82

February–April1834 2278 99.6 0.042 − 121 45 83

6 months April–September 1865 2546 99.4 0.023 − 232 60 158

February–July 2003 2505 99.4 0.026 − 214 59 146

March–August 2003 2504 97.8 0.023 − 219 60 148

July–December 1921 2449 99.0 0.029 − 264 55 180

December 1851–May 1852 2403 100.0 0.034 − 206 56 142

12 months November 1948–October 1949 2389 98.7 0.022 − 376 65 240

January–December 1921 2229 90.1 0.029 − 389 64 241

February 1852–January 1835 2174 92.1 0.037 − 347 68 220

February 1865–January 1866 2156 91.4 0.037 − 325 70 204

November 1920–October 1921 2107 90.4 0.039 − 347 68 216
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structures which may be artificial,^ which is consistent with the
present analysis, since the objects for the clustering are binary
fields which may overlap to some degree, but may be assigned
to different clusters. For further analysis, we choose four clusters.
To further assess the quality of the clustering solution, we calcu-
lated the Cluster Stability (Hennig 2007). In this approach, the
data is resampled by a bootstrapping approach and the similari-
ties (using the Jaccard coefficient) of the original to the
resampled clusters are calculated. The mean of these similarities
indicates the stability of a given cluster. The results for the clus-
tering using four clusters are summarized in Table 3. The cluster
stability ranges between 0.97 and 0.68, with higher values found
at lower accumulation time scales. Values above 0.85 can be

interpreted as Bhighly stable^ (Hennig 2007); here, we have only
two clusters below this threshold, indicating that the clustering
solution is highly stable and significant, although silhouette
widths are low, given the fact that cluster objects tend to overlap
to some degree.

The obtained clusters are termed after the region within the
GAR they are mostly affecting: northwest, southwest, east,
and a cluster termed all dry which contains DAs covering very
large parts of the GAR. Figure 8 shows the clusters displayed
as a fraction value which indicates how often grid points from
a DA are assigned to a given cluster (e.g., northwest) in rela-
tion to the overall size of the cluster (e.g., how often DAs are
assigned to cluster northwest in total).

Fig. 6 Time of occurrence and magnitude of the top 50 drought areas
(DAs) at different time scales (indicated by different color shadings)
stratified by season. The two top most panels show the DAs in the half-
years (cold season ONDJFMandwarm seasonAMJJAS); the two bottom
most panels show the DAs in seasons (winter DJF and summer JJA). The
attribution of a DA to a distinct season follows strictly their defined

boundaries, for example, 6M DAs in the cold season are only those
detected in March, since the 6M time scale refers to the accumulation
from October to March; for this reason, there are only three time scales
displayed in the half-year plots and two time scales in the seasonal plots.
The size of the circles indicates the severity of the event
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The most striking feature of this figure is the similarity of
spatial patterns independent of the accumulation time scale. All
of these cluster composites show rather similar shapes and near-
ly identical locations of the center of mass. For example, the
northwest cluster always shows highest fractions near the bor-
der triangle of France, Germany, and Switzerland, whereas the
center of cluster southwest is located in the Po Plain. The cluster
east tends to dominate the whole eastern half of the domain
with a center in western Hungary. Moreover, the lower cluster
stability at 12M time scale (cf. Table 3) is also reflected in the
lower fraction gradient from north to south compared to the
lower time scales 1M and 3M. The remaining cluster is the all
dry cluster, which indicates DAs where large parts of the do-
main are below the 20th percentile threshold. The similarity of
cluster composites across time scales indicates that DAs are
caused by persistent atmospheric circulation patterns leading
to precipitation deficit in one of the three sub parts or the whole
domain. Our choice of four clusters is based on the mean sil-
houette widths across all time scales. However, Fig. 7 also
indicates that for a 12M time scale, compared to the other time
scales, more clusters (six) would lead to slightly enhanced clus-
ter results. Additional investigations of the patterns with six
clusters on a 12M time scale (not shown) revealed consistent
results, as two additional clusters emerge from a splitting of
cluster northwest into a western and a eastern part and a split-
ting of cluster east into a northern and a southern part.

From the above analysis, it becomes clear that the Alps are a
major divide between dry and wet conditions under certain

circumstances. To underpin these results, we performed an addi-
tional analysis assessing the probability of change from dry to
non-dry conditions in space. Therefore, all grid points identified
as DAs per time step were flagged as 1 and all the others were
flagged as zero.We then calculated the probability for the change
in space from dry conditions (grid point value = 1) to near nor-
mal or wet conditions (grid point value = 0) between pairs of grid
points in the north-south direction as well as in the west-east
directions. The number of times a pair of grid points shows a
1/0 (dry/non-dry or vice versa) combination is counted and re-
lated to the whole number of time steps. The result is a percent-
age probability for a change from dry to wet in one direction
between pairs of grid points. The mean of these calculations for
both directions (north-south, west-east) is displayed in Fig. 9.

The maps support the results from the k-means clustering,
clearly showing a band along the main alpine crest with the
highest change probabilities, which are somewhat larger at higher
time scales. The change probabilities in space reach up to 6%
along the main Alpine Ridge and some areas at the southern rim
of the Alps where the mountainous terrain gives way to the Po-
Plain. The role of the Alps as a boundary of a north-south divide
is rather clear, also seen in the k-means clustering results, but
more restricted to the western part of the area. However, there is
no similar boundary in a west-east direction. Although the clus-
tering revealed an east cluster, the boundary is fuzzier and not as
marked as for the north/south clusters. This fuzziness is also
confirmed by the spatial change probability assessment, showing
no clear areas with enhanced probability in a west/east direction.

In order to assess seasonal differences of spatial drought
patterns, the clustering approach was carried out for winter
(DJF) and summer (JJA) DAs separately, where we used a
sub-sample of the 3M DAs detected in February (covering
December through February) and in August (covering June
through August). Following the silhouette width approach, the
optimal number of clusters is 4 for winter and 2 for summer;
cluster stability is again high with a mean value across clusters
in winter of 0.72 and in summer of 0.84.

In Fig. 10, the cluster composites for winter and summer
are displayed.Winter shows some similarities with the all year
cluster solutions: the first cluster dominates the north of the
domain, again with a clear boundary along the Alpine crest;
clusters two and three are more in the south and along the
western and eastern fringe of the Alps. There is again an all
dry cluster indicating widespread drought across the GAR. In
summer, the characteristics of the patterns are different. In
general, the two clusters show a northwest-southeast contrast
too, but the region boundaries are rather fuzzy and the Alpine
crest is not as clear a separating feature as in the all year
analyses or in winter. This might be due to the different mech-
anisms of precipitation formation in summer which is usually
a mixture of stratiform precipitation through cold and warm
front passages and convective precipitation which is either
triggered by frontal systems or generated locally. Therefore,

Fig. 7 Silhouette widths for different cluster solutions and different time
scales of the DAs

Table 3 Silhouette width and cluster stability of the k-means approach

Time scale 1 month 3 months 6 months 12 months

Silhouette width [−] 0.30 0.30 0.30 0.25

Cluster stability [−]
Northwest 0.95 0.96 0.86 0.89

Southwest 0.95 0.94 0.81 0.68

East 0.97 0.93 0.85 0.86

All dry 0.97 0.94 0.78 0.94
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the precipitation patterns in summer on monthly or even
multi-monthly averages tend to be more heterogeneous than
those in other seasons with lower convective activity, resulting
in fuzzier cluster boundaries.

4.3 Spatial patterns in time

The occurrence of the identified drought patterns in Section
4.2 varies over time. Temporal variations are apparent from
the overall frequency of DA and also in the partitioning be-
tween clusters as can be seen in Fig. 11. On a 1M time scale,
DA frequency is peaking in the period from 1860 to 1890with
an overall amount of about 130 DA/30 years. The strong

increase of DAs at the beginning of the time series can be
explained by decreasing precipitation sums following the very
wet years within the first decades of the nineteenth century,
with a rather low number of DAs. This pattern is also seen on
longer accumulation time scales, but in addition, other char-
acteristics emerge. Particularly, at the 6M and 12M time
scales, two periods clearly stand out in terms of DA frequency,
the time windows from 1850 to 1880 and from 1920 to 1950,
showing isolated peaks of 140–160 DA/30 years.

The fraction of clusters for these 30 year periods is not
homogeneous over time. As it was the case for the entire
region’s frequency, the differences in the frequency of the
single clusters are more pronounced at longer time scales.

Fig. 8 Spatial patterns of DA clusters on different time scales. The
fraction value indicates how often grid points from a DA are assigned
to a given cluster (e.g., Northwest) in relation to the overall size of the

cluster (e.g., how often DAs are assigned to cluster northwest in total);
higher fraction values indicate higher accordance of DAs assigned to the
given cluster

Fig. 9 Mean of the change probability between a pair of grid points within a DA and outside a DA in north-south and west-east directions on different
accumulation time scales
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On the 12M time scale, there is no occurrence of DAs in the
northwest region at the beginning of the nineteenth century.
Afterwards, a steep increase is visible until the period from
1860 to 1890 showing, around 80 DAs/30 years. The north-
west cluster is the one with highest temporal dynamics along
with the east cluster. Both of them trigger the peaks in cluster
frequencies in the middle of the nineteenth and twentieth
centuries.

In terms of seasonal variability, the results are not as coher-
ent as for the all year analyses. In Fig. 12, the relative cluster
frequencies on a seasonal basis for winter and summer are
shown. In winter, two pronounced peak periods are visible,
one from 1851 to 1870 (16 DAs/30 years) and another from
1971 to 2000 (15 DAs/30 years). However, the two main
peaks are different with respect to their cluster fraction. The
peak in the nineteenth century is composed of the occurrence
of all four clusters with the least contribution from the

southeast cluster, whereas the late twentieth century peak is
dominated by the southeast cluster, and the all dry cluster is
not at all present.

Less variation over time of DA frequency is visible in sum-
mer. After a steep increase during the beginning of the nine-
teenth century, the frequencies range between 9 and 12 DA/
30 years. However, the small overall variation is counteracted
by periodical changes of the cluster fractions. From 1851 to
1890 as well as from 1911 to 1960, the southeast cluster is
dominating, whereas in the other periods, the northwest clus-
ter occurs more frequently.

5 Discussion

The analyses of this paper suggest that the time periods of the
1850s through the 1870s and the 1940s were the driest in the

Fig. 10 Spatial patterns of clusters on a 3M time scale for winter (DJF)
and summer (JJA). The fraction value indicates the number of cluster
assignments of a grid point to a distinct cluster in relation to the overall

size of a cluster; higher fraction values indicate higher accordance of DAs
assigned to the given cluster

Fig. 11 Absolute frequency of clusters for 30-year periods at different accumulation time scales. Bars are centered at the given 30-year period, e.g., the
first bar at 1815 represents the 1801–1830 period
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GAR during approx. the last 200 years. This result is in line
with the findings of van der Schrier et al. (2007) who assessed
the moisture variability based on the scPDSI. Particularly, the
year 1865 clearly stands out in terms of severity of DAs. The
associated DAs developed on different time scales (1M, 3M,
and 6M; c.f. Table 2) and led to severe drought impacts as
some historical evidence shows (c.f. Soja et al. 2013).
Interestingly, the year of 1865 is not known for severe drought
impacts on agriculture. Although 1865 shows the most severe
DA on a 6M time scale from April to September, it was the
enveloping months April and September that were the most
severest overall (c.f. Table 2). However, the aftermaths of
these strong anomalies emerged later in winter. A historical
Viennese report on January 1866 stated: BIn Leopoldstadt (a
part of Vienna) water scarcity is becoming noticeable. Many
wells fell dry.^And BIncreasing water scarcity. The streambed
of the Danube Channel is covered with thousands of dead
fish.^ (BlLkNÖ 1866; originally in German language,
translation by the authors). But not only on a local scale was
the severe dry anomaly noticeable. In a study by Pekarova et
al. (2006), who investigated long-term streamflow trends
across Europe, the authors found the 1860s and 1940s as out-
standing dry periods for Western and Central European major
river systems. Unfortunately, no north/south distinction
among catchments has been carried out in their study.
Investigations of more recent drought events in Europe show
increasing dry and continental conditions during the last
20 years in the Carpathian Region (Spinoni et al. 2013) and
also increasing drought conditions in the Balkans and Italy,
whereas in Central Europe, no general trend is noticeable
(Spinoni et al. 2015). The results of these papers underpin
our results which show increased DA frequency in the south-
east of the GAR, particularly in winter and no (1M and 3M) or
even decreasing (6M and 12M) DA frequency in the north-
west cluster during the second half of the twentieth century.

However, it is important to assess also the spatial charac-
teristics of meteorological droughts in the GAR, since climate
variability and precipitation regimes are rather diverse.
Regional aspects have been considered, for example, in van
der Schrier et al. (2007) who analyzed moisture variability in
four different regions in the GAR. But the regionalization was
based on the PCA of Auer et al. (2007) which treated all

available climate variables of the HISTALP data base at once
(temperature, precipitation, sunshine duration, cloudiness, and
air pressure). As a consequence, this regionalization might not
be useful for deriving homogenous drought regions. With our
clustering approach, we were able to show that meteorological
droughts tend to develop in three sub-regions and one region
covering most of the domain. The results are partly consistent
with the PCA of Auer et al. (2007), since our clusters north-
west and southwest are to some extent comparable to regions
northwest and southwest of Auer et al. (2007). However, clus-
ter east is in our case not separated into a northern and a
southern part as is the case in Auer et al. (2007), which is a
fundamental difference. Interestingly, accumulating the pre-
cipitation on different time scales does not usually affect these
patterns in contrast to investigations for, e.g., the Iberian
Peninsula (Vincente-Serrano 2006).

These findings along with the change probability assess-
ment in space from dry to non-dry states suggest that the Main
Alpine Crest is a distinct boundary between different manifes-
tations of the climate in the GAR. We found that the change
probability from north to south for a dry to normal/wet condi-
tion is even enhanced if longer accumulation time scales are
considered. This indicates that precipitation anomalies are per-
sistent over several months, which may be related to re-
occurring weather conditions, enhancing the spatial differ-
ences in anomalies. This dipole-like feature of precipitation
in the GAR was initially detected by Böhm et al. (2003) and
analyzed in more detail by Brunetti et al. (2006). They found
that the north-south (N-S) dipole feature is more prominent
than the west-east (W-E) feature, which is in line with the
findings of our study. However, they also found an increasing
trend in N-S dipole, which they attribute to negative precipi-
tation trends in the southern part and mostly positive trends in
northern parts of the GAR. This reflects our finding of dom-
inating south and east clusters on higher accumulation time
scales in the second half of the twentieth century.

With respect to seasonal aspects, the spatial patterns in
winter (DJF) based on a 3M time scale are to some extent
similar to the all year analyses indicating, again, a pronounced
border along the Alpine Crest between dry and normal/wet
conditions based on an optimal cluster solution of four clus-
ters. For summer, however, this picture is not as clear. The

Fig. 12 Absolute seasonal frequency of clusters on a 3M time scale enveloping winter (DJF) and summer (JJA). Bars are centered at the given 30-year
period, e.g., the first bar at 1815 represents the 1801–1830 period
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quantitative assessment of an optimal clustering suggested
two clusters to be the best following the silhouette width ap-
proach, resulting in a northwest and a southeast cluster.
Furthermore, the cluster borders are much fuzzier and the
Alpine Crest is not as strong a boundary as in the all year
and winter clusters. The reason for this may lie in the domi-
nance of convective precipitation which is either embedded in
frontal systems or generated locally, producing heterogeneous
spatial patterns of precipitation.

6 Conclusions

Considering the long-term perspective of more than 200 years
of drought patterns in the GAR, we conclude that the time
periods of the 1850s through the 1870s and the 1940s were
the driest ones, as they showed both highest DA frequency
and highest severities. The assessment of the similarity be-
tween DAs by the k-means clustering approach revealed three
dominant sub-regions for drought occurrence which differ
from the previous regionalizations of Auer et al. (2007), for
example. We also conclude that the Main Alpine Ridge is a
major climatic divide for droughts, which does apply not only
to daily or monthly accumulation scales (c.f. Böhm et al.
2003) but also to multi-monthly time scales. The frequency
of DA occurrence shows no trends, but rather exhibits multi-
decadal variations which are more pronounced at higher ac-
cumulation time scales. Interestingly, these also manifest dif-
ferently for cluster regions, the north and west were more
drought prone in the middle of the nineteenth century, whereas
the east of the GAR shows higher DA frequency within the
last decades. These findings indicate the importance of inter-
nal climate variability which seems to impact long-term spa-
tial precipitation characteristics. This in turn implies that the
general warming trend in the GAR (Auer et al. 2007) has
either yet no detectable effect on drought patterns in space,
or the processes involved are manifold, non-linear, seasonally
dependent, and therefore not straightforward to analyze.

To better understand the processes driving the results of
this paper, it is suggested to examine the circulation charac-
teristics of the atmosphere during the occurrence of DAs. By
investigating atmospheric features such as blockings, zonal
and meridional wind patterns, and jet stream location, the
atmospheric conditions leading to dry anomalies within the
GAR should be explored and thus be better understood.
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