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Abstract Droughts may have tremendous impacts on humans. However, the space-time characteristics
of droughts are not very well understood, as case studies usually focus on individual drought events. Here
we investigate the spatiotemporal drought characteristics of a large sample of events over the past 210
years in the Greater Alpine Region of Central Europe. We use monthly precipitation data, and flag, for each
grid point, time steps with precipitation below a 20% percentile. We then propose a new method that
detects drought events by connecting the flagged elements to space-time drought regions. In contrast to
the traditional drought indices that are based on a fixed, prescribed time window, this method is able to
identify droughts of different durations in an objective way. The data show multidecadal variations of
drought frequency, duration, intensity, and severity, but no consistent trends over the 210 year period. The
top 5% of events in terms of their severity show a shift in seasonality from winter/spring events in the late
nineteenth century toward autumn events during the last decades of the twentieth century. The most
severe events center either in the Northwest or in the Southeast of the region analyzed. We found no
significant correlations of drought frequency, duration, intensity, and severity with the temperature
increases in the past three decades. Dry springs significantly enhance temperatures during summer
droughts, suggesting a soil moisture-temperature feedback.

1. Introduction

Droughts are natural hazards with the potential to cause immense damage to agriculture, water supply, and
energy production, and they can severely affect ecosystems (Vincente-Serrano et al., 2012). The European
summer drought of 2003 (Garc�ıa-Herrera et al., 2010) caused economical losses of around e15 billion (UNEP,
2006). The 2015 drought (van Lanen et al., 2016) and a series of winter droughts in the United Kingdom
from 2010 to 2012 (Kendon et al., 2013) had similarly negative effects.

However, the understanding of long-term drought variability has been hampered by the relatively short
time periods analyzed. Studies usually focus on individual events and/or records of 100 years or less. The
SREX report (IPCC, 2012) stated that drought trends in Central Europe are either inconsistent or statistically
insignificant and that there is low confidence in the attribution of changes in droughts at the level of indi-
vidual regions. Gaining knowledge on past drought behavior in Europe over a longer period is therefore of
utmost importance (Mishra & Singh, 2010).

Several global to continental scale analyses of past drought trends have been performed. Using various variants
of the Palmer Drought Severity Index (PDSI; Palmer, 1965), Dai (2011) found trends toward dryer conditions over
Southern Europe, with an increasing trend during recent decades, which they attributed to increasing evapo-
transpiration associated with increasing air temperatures. These results are not fully consistent with soil moisture
trends from simulations by the VIC model (Sheffield & Wood, 2008), which showed no significant changes in soil
moisture over the 1950–2000 period (Northern Europe 10.096% yr21, Southern Europe 20.048% yr21). Using
the self-calibrating Palmer Drought Severity Index (scPDSI; Wells et al., 2004), van der Schrier et al. (2013) found
an increase in the percentage area under moderately dry conditions in the Mediterranean and a trend toward
wetter conditions in the North of Europe, although these trends were not significant.

More specific analyses focusing on Europe were carried out by Lloyd-Hughes and Saunders (2002) who
found an increasing frequency of extreme droughts in continental Eastern Europe during the twentieth
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century period, based on the PDSI, and similar results when considering the SPI on a 12 month accumula-
tion time scale. The most extreme droughts in Europe from 1950 to 2012 where analyzed by Spinoni et al.
(2015) based on a combined indicator that takes precipitation and evapotranspiration into account, consid-
ering 3 and 12 month accumulation time scales over predefined European subregions. They concluded that
the 1950s were the time period with exceptionally long, widespread, and intense droughts and that West-
ern and Southern Europe showed highest drought frequency and severity in the past two decades.

A joint assessment of precipitation and temperature quantiles of nine stations across Europe (Beniston,
2009) showed a significant increase in warm-dry conditions from 1901 to 2009, exceeding the overall warm-
ing in Europe. The author argues that this might be related to soil moisture-temperature feedbacks (Senevir-
atne et al., 2006). van der Schrier et al. (2006) detected negative trends of the scPDSI, indicating dryer
summer conditions in Europe until the 1990s with a decline afterward, which is not fully consistent with the
results of Dai et al. (2004). van der Schrier et al. (2006) conducted a regionalization based on Empirical
Orthogonal Teleconnections (Van den Dool et al., 2000) and found persistent dry summers in the Balkans
from 1983 to 1994 and from the beginning of the 2000s, only minor changes in Northwestern Europe and
very dry conditions in the 1940s in Southern France/Northern Italy. In another study, van der Schrier et al.
(2007) analyzed droughts in the Greater Alpine Region (GAR) of Central Europe from 1801 to 2003, using
spatially averaged time series of the scPDSI based on predefined subregions (Auer et al., 2007). They found
that the 1850–1870s and 1940–1950s were exceptionally dry, however, long-term trends were not
significant.

Drought is a phenomenon that emerges in space and time and can be characterized by attributes such as
duration, spatial extent, and intensity (Sheffield & Wood, 2007). Yet many studies, choose regions a priori
and analyze (one-dimensional) time series of regional averages of various drought variables (precipitation,
drought indices, streamflow, etc.), even though these regions may not be tailored to drought analyses (e.g.,
Dai, 2011; Sheffield & Wood, 2008; Spinoni et al., 2015; van der Schrier et al., 2007). On the other hand, there
are studies investigating the spatial structure (a two-dimensional assessment) of drought patterns (e.g.,
Patel et al., 2007; Vincente-Serrano, 2006) but most of them utilize drought indicators on fixed accumulation
time scales (moving averaging time windows). Neither of these two groups of studies considers droughts as
a (three-dimensional) space-time phenomenon.

One method that does consider space and time jointly is the Severity-Area-Duration (SAD) method of
Andreadis et al. (2005) that evaluates soil moisture and runoff as a function of prescribed areas and pre-
scribed durations (Andreadis et al., 2005; Samaniego et al., 2013; Sheffield et al., 2009; Zhai et al., 2017). Its
focus on the areal extent may mask the temporal evolution of droughts which prompted Lloyd-Hughes
(2012) to evaluate the space-time structure and similarity of droughts. However, this method is less well
suited for analyzing the general characteristics of droughts and their long-term evolution in a region.

This paper proposes a new method for detecting atmospheric drought events that fully accounts of the
dynamic space-time behavior of droughts. We use the method to analyze precipitation data in the Greater
Alpine Region (GAR) over the past 210 years to detect space-time drought events. Specifically, the aims of
the paper are (i) to develop a new method of space-time drought event detection, (ii) to analyze the tempo-
ral evolution of drought event characteristics (duration, intensity, and severity) in the GAR over the past 210
years, (iii) to analyze the spatial patterns of droughts as a function of severity and duration, and (iv) to inves-
tigate the influence of recent air temperature increases on the three main drought characteristics.

We are interested in meteorological drought events in Central Europe, considering precipitation deficit as
the variable of interest. Our region of interest is the European Greater Alpine Region (Auer et al., 2007).
Although it is only part of Europe, it covers three main climate divisions in Europe (Mediterranean, temper-
ate oceanic and continental climates) and the three main spatial modes of drought identified by van der
Schrier et al., (2006) in the Balkans, Eastern France/Southern Germany, and Southern France/Northern Italy,
respectively.

2. Data

We use gridded data of monthly precipitation totals covering the area from 48 to 198 East and 438 to 498

North, known as the Greater Alpine Region (GAR, Figure 1). This data set was created by Efthymiadis et al.
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(2006) in the frame of the HISTALP activities (Auer et al., 2007). HISTALP is a database covering the GAR con-
taining long-term (from 1760), high quality, homogenized station time series of various climate variables
such as air temperature, air pressure, sunshine duration, and precipitation as well as gridded products of air
temperature, solid, and liquid precipitation. The data set of Efthymiadis et al. (2006) has a spatial resolution
of 10 arc min (�16 km) and covers the time period from 1801 to 2010. The original data set ended 2003
and was updated for the purposes of this paper. Auer et al. (2007) homogenized the station data the
gridded data set is based on and conducted a comprehensive quality check. Efthymiadis et al. (2006) per-
formed a skill assessment of the gridding process and showed that the skill increases during the first deca-
des of the nineteenth century and reaches a plateau around 1850. The remaining uncertainties in the
gridding process during the first decades of the nineteenth century have to be kept in mind when interpret-
ing the results of this paper.

Droughts are considered from different perspectives across disciplines. In this study, we focus on meteoro-
logical droughts, defined as below average precipitation totals. In a humid climate such as the GAR, precipi-
tation deficit is the main driver for drought development, altered by enhanced evapotranspiration (e.g.,
Burke & Brown, 2008). We therefore consider precipitation a meaningful variable for analyzing the space-
time variability of droughts.

Gridded monthly mean temperature data of the GAR (Chimani et al., 2013) are used as well. They have a
spatial resolution of 5 arc min (�8 km), and cover the period from 1780 to 2014.

3. Methods

In contrast to the traditional drought indices, such as the SPI, that are based on a fixed, prescribed accumu-
lation time windows and a fixed region, we propose a new method that detects drought events by connect-
ing space-time elements to a coherent space-time drought region. Although widely used, the SPI has some
limitations, particularly in terms of a severity assessment of extremes at the tails of the distribution (Naresh
Kumar et al., 2009). Stagge et al. (2015) also highlight the uncertainties associated with the distribution fit-
ting at the tails. This uncertainty would translate into the SPI estimates of the most extreme quantiles thus
making the severity assessment noisy, particularly if adjacent pixels are compared. For example, the most

Figure 1. Study domain and orography. The dashed box indicates the Greater Alpine Region (GAR) which is the area of
interest. For reference the generalized 1,000 m asl elevation contour is shown as a solid black line.
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extreme value at the dry side of the distribution might be 24 at one grid point, but may be 25 at the
neighboring one. Both show their most extreme quantile values close to zero, but the SPI itself would be
different, simply due to distribution-fitting uncertainty. The use of quantiles instead of the SPI has the
advantage of having a fixed lower boundary for the most extreme values, which allows us to identify
droughts of different durations in a more robust way. The proposed method consists of four steps.

In a first step, we calculate moving averages of monthly precipitation data over a 3 month time window
(centered on the actual month) on every grid point in the domain. This smoothing of the precipitation data
is necessary to retrieve meaningful space-time structures of droughts. Alternatively using monthly precipita-
tion totals, for example, would cause interruptions of events along the time axis. A Gamma distribution is fit-
ted to the averaged precipitation, separately for every month of the year and every grid point, in a similar
way as in the Standardized Precipitation Index (SPI; McKee et al., 1993). The choice of the Gamma distribu-
tion is based on Stagge et al. (2015) who found that it provides better fits to precipitation data in Europe
than alternative distributions. To separate dry from nondry areas, we chose the 0.2 quantile as a threshold.
Although this value is not very extreme (equivalent to a 5 year return period, and an SPI-value of 20.84), it
is commonly used to identify dry precipitation anomalies, for example, in the U.S. drought monitor (Svo-
boda et al., 2002). For a more intuitive assessment of drought intensity, these quantiles are scaled in order
to get higher values with higher drought intensity using equation (1):

qint 5ðn2pÞ=n; (1)

where qint is the quantile drought intensity, p is the probability of nonexceedance, and n is the threshold of
the quantile of 0.2. The intensity measure qint ranges between 24 (probability of nonexceedance of 1) rep-
resenting wettest conditions and 1 (probability of nonexceedance of 0) representing the most severe
drought of a particular location and month. Step 2 deals with the spatial component of the detection algo-
rithm, where contiguous areas with drought intensity values qint larger than 0 are identified. We use an algo-
rithm starting from the first grid point with positive drought intensity detected in the field, searching for
neighboring grid points with dry conditions (qint> 0, grid points joining only diagonally at their corners are
not considered). Once a contiguous drought area (DA) is detected, the field is further scanned for dry condi-
tion areas until all grid points are checked. The result is a table with all individual drought areas, their time
of occurrence (year and month), and location of every grid point and their intensity value qint.

Step 3 focuses on the temporal component of the detection algorithm. Identified drought areas are compared
with the drought areas of the subsequent time step. If these areas do overlap, they are considered to belong to
the same drought event (DE), an entity in both space and time. However, we apply three criteria that have to be
met for a space-time region to be considered a drought event: (i) single drought areas must be larger than 10%
(�77,000 km2) of the GAR; we decided for this criterion in order to ensure that only areas with a reasonable size
and therefore impact are considered as drought event candidates; (ii) the overlap of the areas must be at least
50% of the smaller area; and (iii) the smaller area must be at least 25% of the larger area. These criteria were
identified on the basis of test runs, comparing the detected events with those from the literature. Figure 2
shows three hypothetical cases of three subsequent time steps with overlapping drought areas (DAs) (top) and
the outcome of the criterion assessment (bottom). In case 1, all criterions are met, yielding an event consisting
of all three DAs. In case 2, the overlap criterion is violated for areas A2 and A3, which results in two separate
events, the first one including DAs A1 and A2 and the second including A3. In case 3, all three criterions are vio-
lated. The size criterion is violated by A3, the other two DAs (A1 and A2) are big enough, but their overlap is too
small. Consequently A1 and A2 are assumed to be separate events and A3 is not considered at all.

Figure 3 shows a real event identified from December 1862 to March 1863. The DAs of subsequent months
overlap with each other according to the three criteria given above.

The last step consists of evaluating the drought characteristics. One important part is the assessment of the
drought event severity. We assume that an event is more severe if (i) the quantile drought intensity qint is
large, (ii) the area under drought is large, and (iii) the duration of the drought is large. The first two compo-
nents are combined into an intensity measure for every time step over the drought duration:

I5
Xn

i51

qint
i2DA

; (2)
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where I is the intensity, n is the number of grid points i within the drought area (DA), and qint is the quantile
drought intensity. Consequently I increases with both the number of drought grid points and their quantile
drought intensity. Figure 4a shows the temporal evolution of the intensity from the example in Figure 3. From
the onset of the drought in December 1862, intensity is around 150 with no large variation until February. As
can be seen, the intensity depends on the grid size of the utilized data set, so it has to be assessed in relation
to the whole grid. One could also use the area of the grid which would introduce units of km2, but this would
overemphasize the spatial component, although the threshold deviation (qint, dimensionless) is equally impor-
tant. So in the case of December 1862, we have I 5 150 which could either be an area of 150 grid points
(�38,000 km2) all in most extreme drought conditions (qint 5 1) or 300 grid point (�76,000 km2) with
qint 5 0.5. In our case, qint 5 0.3 and the number of grid points is 492. Comparing this evolution with Figures
3a–3c, the areas under drought of the first two time steps are similar in size and in terms of qint. However, in
February qint is larger, but the area is smaller, resulting in rather similar intensity values. The peak of the
drought intensity was reached in March 1863 with an intensity in excess of 400, which is a consequence of
the large area and the large values of qint (Figure 3d). Finally, we calculate the overall drought severity as

S5
Xn

i51

I
i2DE

; (3)

where S is the severity, which is the sum of all intensities I within the same drought event, and n is the num-
ber of time steps comprising the drought event. Consequently, summing up areas in terms of grid points

Figure 3. Example of a detected meteorological drought event in space and time. The event is identified from (a) January 1863 to (d) April 1863. The grey lines
mark zero contour lines of the quantile drought intensities (qint). The colors refer to the quantile drought intensities, darker colors referring to drier areas (larger
qint).

Figure 2. Schematics of three cases of drought event detection; (top) idealized drought areas as rectangles (A1–A3) within a region of 15 3 12 length units;
(bottom) check of the three criterions (i–iii) that have to be met if the areas are to be joined (see text for details); criterion violations are indicated by red font.
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has the same implications as mentioned above considering the intensity assessment, meaning that the
interpretation of S is dependent on the grid resolution. For the further analysis the following event charac-
teristics are used: severity, the monthly intensity as well as the mean intensity (severity divided by duration)
and duration.

In addition to the temporal evolution of droughts, we are interested in their spatial characteristics. As illus-
trated by the example in Figure 3, one time step may contribute disproportionally to the overall drought
affected area of an event. It may therefore not be useful to consider the overall drought affected area in a
spatial analysis. Instead, we defined drought core regions (DCRs) as shown in Figure 4b. Grey areas denote
regions not affected by the drought, brown areas the overall extent of the drought (see Figure 3) and red
areas the drought core region. We define a DCR as those grid points of an identified event with a time-
average qint of at least 0.5, which represents a quantile value of 0.1 or an SPI of 21.29. This choice is based
on the assumption that the area most affected by the drought has to have a sustained signal of drought
during the whole event with a high value of qint. A comparison of Figures 3 and 4b illustrates that the DCR
comprises those areas with the most sustained and intense drought signal during the drought event.

One further aspect, we considered is the temperature anomaly during an event. Similarly to precipitation,
we calculated 3 month moving temperature averages. From these, anomalies were calculated for each
month individually, with respect to the long-term (1801–2008) mean. Intersecting these temperature anom-
aly grids with the detected areas of the drought events, we obtained the temperature anomalies corre-
sponding to the identified drought areas.

4. Results

4.1. Temporal Evolution of Drought Characteristics
A total of 663 drought events were detected in the time period from 1801 to 2010. Thirty year averages of
the three main attributes of all drought events (duration, severity, and mean intensity) as well as 30 year fre-
quencies are displayed in Figure 5a. Frequency shows a continuous increase from the beginning of the data
set with a first peak around the 1880s and a second, more pronounced one, around the 1940s with 120
events per 30 years followed by a decrease to around 80 events per 30 years. Duration shows a similar
increase until the mid-nineteenth century toward to 3 months, a secondary minimum in the 1930s, and a
slight increase during the rest of the twentieth century. Severity shows the most prominent peak in the
middle of the nineteenth century with mean values up to 1,400. During the twentieth century, severity
varies around 1,000. The mean intensity shows even stronger fluctuations with a prominent peak of 370
around the 1860s, very similar to the peak in severity. A sharp decrease follows reaching a minimum of
around 270 at the beginning of the twentieth century. There is a secondary maximum around the 1940s,
and a secondary minimum around the 1970s.

If one analyses only the top 5% of the events in terms of their severity (34 drought events) a somewhat dif-
ferent time evolution of the event characteristics emerges (Figure 5b). Frequency shows a clear peak around
the middle of the nineteenth century, indicating 10 of the most severe events occurred in this time period.

Figure 4. Temporal evolution of a drought event (referring to Figure 3): the thick black line represents the drought inten-
sity, bounded by the start (December 1862) and the end (March 1863), indicating (a) a duration of 4 months, and the
drought intensity peaking in March 1863; (b) representation of three different spatial entities during the event: areas not
affected by drought, areas affected by drought and the drought core region.
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On the other hand, the lowest frequencies are found from the end of the nineteenth century until the
1930s. Interestingly, the most severe event on record (October 1920 to February 1922, the 1921-event in
Table 1) occurred right in that time period, suggesting that a large frequency does not necessarily imply the
occurrence of very large events, and vice versa. In terms of drought duration there are only four of the most
extreme drought events that lasted 1 year or longer, most of them show durations between 6 and 8 months.
Only one of these three long-lasting droughts, the 1921-event, has high severities, which is due to the

rather low intensities of the other two events.

The 1921-event is ranked #1 in terms of its severity (Table 1). The
2003-event is ranked #2; it gained its severity from the high mean
intensity (1,534) rather than its duration (7 months). This is also the
case for the 1948/1949-event on rank #3 with a mean intensity of
1,418, duration of 6 months and severity of 8,513. Out of the top 10
events, four last 12 months or longer and 6 events have durations
between 6 and 8 months. Even though their severities may be similar,
their other event characteristics may be very different, as illustrated
by the events ranked #7 (1946-event, severity: 7,442) and #8 (1858-
event, severity: 7,403), which have durations of 17 and 6 months,
respectively, and mean intensities of 438 and 1,234, respectively.
These dissimilarities suggest fundamental differences in the emer-
gence of droughts which may be related to different manifestations
of weather patterns and their persistence.

Figure 5. (column a) Frequency, duration, severity, and mean intensity (overlapping 30 year averages for duration, severity, and intensity and overlapping 30 year
counts for frequency with a step of 5 years) of all identified drought events. (column b) The top 5% of the events (34 events) in terms of severity, where frequency
is again the absolute count over 30 year windows with a step of 5 years, and duration, severity, and mean intensity are shown for the actual events.

Table 1
Top Ten Drought Events in the Greater Alpine Region Ranked by Severity

Rank Period
Duration
(months) Peak Severity

Mean
intensity

1 Sep 1920 to Jan 1922 17 Oct 1921 16,610 977
2 Feb 2003 to Aug 2003 7 Mar 2003 10,742 1,534
3 Oct 1948 to Mar 1949 6 Jan 1949 8,513 1,418
4 Jan 1870 to Aug 1870 8 Apr 1870 8,322 1,040
5 Dec 1860 to Nov 1861 12 Sep 1861 7,819 652
6 Nov 1881 to May 1882 7 Dec 1881 7,517 1,074
7 Aug 1945 to Dec 1946 17 Apr 1946 7,442 438
8 Oct 1857 to Mar 1858 6 Jan 1858 7,403 1,234
9 Aug 1989 to Feb 1990 7 Nov 1989 7,258 1,037
10 May 1883 to Aug 1884 16 Feb 1884 6,856 429
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These results indicate that duration is a crucial drought feature. Indeed, Figure 6 shows a quite different
evolution of drought frequency over time when stratifying the events into short (<4 months), intermediate
(4–6 months), and long (>6 months) events. The frequency of short events is highest, clearly showing two
peaks, one minor during the end of the nineteenth century and a major peak around the 1930s, indicating
over 90 events per 30 years, with a subsequent decrease. Events with intermediate durations (4–6 months)
show a constant increase in frequency peaking around the 1950s and 1960s, with a subsequent decrease.
Long events occur more rarely and show a distinct peak around 1870, a flat minimum in the middle of the
nineteenth century and a subsequent increase. There is therefore a shift from short/intermediate to long
droughts in the past decades.

The seasonal behavior of the top 5% of the droughts is displayed in Figure 7. The monthly intensities (Fig-
ure 7a) highlight the absence of droughts in the first decades of the nineteenth as well as the twentieth
century, whereas the rather wet beginning of the twentieth century was interrupted by the most severe
1921-event. The intensities averaged over 30 year periods (Figure 7b) shows highest values in winter and
spring in the middle of the nineteenth century, peaking from 1851 to 1880 (late winter/early spring regime).
In the following decades until the 1890s, winter months show increasing intensities, while the intensities in
spring decrease (winter regime). During the first 40 years of the twentieth century, the relatively low
extreme drought frequency is apparent, apart from the 1921-event and two cold-season events. From the
1940s, a general increase in intensity all year round is visible, but since the 1950s, autumn events (peaking
in September) have become more frequent changing into a late summer/early autumn regime from 1961
to 1990.

4.2. Spatial Patterns
The spatial patterns of the detected drought events are assessed by the ratio of the number of times a grid
point is considered as a DCR and the number of all events. For example, a ratio of 0.10 at a given grid point
indicates that 10% of the whole number of events this grid point is part of a DCR. Figure 8a shows these
fractions as maps for every grid point using all 663 detected events. There is a tendency for DCR to occur in
northern Italy, particularly the Po-Plain (fraction of up to 0.10) and the French Rivera as well as in southern
Hungary and parts of the Balkans. If one considers only the top 5% events in terms of severity, a different
picture emerges (Figure 8b), and DCRs are more clearly separated and emerge predominantly in the North-
west of the domain as well as in the East. In both centers of mass of these two DCR hotspots, the fraction
goes up to nearly 0.5, which means that during half the events these grid points are part of a DCR. The blue
dashed line in Figures 8a and 8b indicates the approximate borders between the different drought regions
by visual inspection. These are in line with the Alpine crest being a major climate divide in Europe. Subse-
quently, these subregions are referred to according to their location: Northwest, Southwest, and East.

DCRs rarely occur solely within one of these three subregions. More often they cross borders of the region
boundaries, although Figure 8b clearly shows a Northwest and East concentration of DCRs. Thus, as a next
step, the fraction of DCRs covering the subregions is determined and plotted for the top 5% events in Figure

Figure 6. Thirty year running mean (5 year step) drought event frequency stratified by duration: short (<4 months), inter-
mediate (4–6 months), and long (>6 months) events, based on all 663 events.
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Figure 7. (a) Time of occurrence of the top 5% events in terms of their severity, colors indicate intensity of a given time
step, horizontal axis is month, vertical axis is year. (b) Frequency-weighted monthly intensities in 30 year periods
calculated for steps of 10 years; grey boxes indicate subperiods with strong seasonal regime differences.
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9. Most DCRs cannot be attributed to one single region, but there are preferred regions. The fraction of DCRs
covering the Southwest region tends to be smaller than those of the other two. This is consistent with Figure
8b where the rather low fractions are given in the Southwest considering the most extreme events.

The drought-intense time period around the middle to the late nineteenth century mostly consists of
events with DCRs predominantly covering the Northwest (seven events), with only two events contributing
mainly to the Southwest and East. Typically, Northwest occurrence is also apparent during the few events in
the first decades of the twentieth century. However, in the period from 1940 to 1950, with increased
extreme event frequency, DCRs move toward the East, where all events show the highest fraction of DCR
coverage.

In the light of this spatial analysis, the previously described seasonal shift of extremes from winter/spring
(end of nineteenth century) toward autumn (end of twentieth century) has to be considered as a shift in
space as well as a shift in seasonality, implying a fundamental feature of drought occurrence in the GAR.
This could be due to changes in the mid latitude circulation since the end of the Little Ice Age as indicated
by Schwander et al. (2017). They found increased frequencies of high pressure patterns over Central Europe
from 1960 onward, which could explain the dominance of Eastern droughts in that period, and increased
frequencies of Northern Cyclonic patterns and Westerly flow over Southern Europe patterns during the
period from 1850 to 1880, which may be related to the droughts predominantly affecting the Northwest.

Figure 10 shows the DCR fractions for events considering different durations, independent of the severity.
Short-term events (Figure 10a) are most abundant which explains the similarity with Figure 8a. As can be
seen in Figure 10b, the spatial patterns of intermediate events (148 events) show their DCRs mostly in the
North and East of the domain, and the long events (Figure 10c, 34 events) show the preferred location in
the Northwest and the East.

4.3. The Drought-Temperature Nexus
The large sample of droughts over the last two centuries offers the opportunity to assess the long-term rela-
tionship between air temperatures and drought characteristics. In the GAR, air temperatures in the period

Figure 8. (a) Spatial patterns of DCRs for all events and (b) the top 5% events in terms of severity. The color shading indicates the fraction value which relates the
number of times a grid point is part of a DCR relative to the total number of events considered (for Figure 8a: all events (663), for Figure 8b, top 5% (34)). The
higher the fraction (darker color), the more often a grid point is part of a DCR. The dashed blue line indicates approximate borders of drought regions.

Figure 9. Fraction of DCRs covering subregions. Vertical bars indicate the time of occurrence of the top 5% events by
severity. The color of the bars indicates the fractional overlap over subregions. The horizontal positions of the bars have
been slightly adjusted for them to plot without overlap.
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1900–2000 have increased, on average, by 1.28C based on linear trend analysis (Auer et al., 2007). We calcu-
lated annual average air temperatures over the whole domain of the GAR and identified the coolest and
warmest 30 year period, which turned out to be 1876–1905 and 1981–2010, respectively. The correspond-
ing temperatures are 7.86 and 9.278C, respectively (Table 2). The difference thus is 1.418C, which is slightly
above the nineteenth century temperature change of Auer et al. (2007) as mentioned above. The average
drought characteristics (duration, mean intensity, severity, and 30 year frequency) of the coolest and the
warmest periods are given in Table 2. Duration shows an increase from the cool to the warm period from
2.75 to 3.20 months which is consistent with Figure 6. Mean intensity increased from 297 to 319, and sever-
ity from 921 to 1125, although these changes are not significant. However, frequency decreased from 113
to 86 detected events. These results suggest that the recent warming climate has, so far, not significantly
affected the drought characteristics in the GAR.

The seasonal aspects of the drought-temperature nexus are displayed in Figure 11. Each event emerging in
the three winter months (DJF) and the three summer months (JJA) is shown as a circle (having events with
durations> 3 months only these three seasonal months are extracted); drought intensity during these 3
months is indicated by the size of the circle, and vertical position and color indicate the associated tempera-
ture anomaly of this event.

In winter (Figure 11a), droughts with both positive and negative temperature anomalies occur. This behav-
ior is related to air temperatures in winter mainly being forced by the advected air masses in the GAR, either
cold or warm, dependent on the large scale circulation characteristics (Auer et al., 2007). This is not only
true of the overall temperature characteristics but also of those during droughts. Really cold winter
droughts with temperature anomalies below 238C occurred mostly in the late nineteenth century and the
first half of the twentieth century. From the 1950s onward, there is an absence of such events. Running cor-
relation of mean intensity and temperature anomaly (30 year window, Figure 11c) reveals no relationship
until the 1970s, however, afterward a steep increase in correlation is apparent, indicating higher mean
intensities associated with higher temperature anomalies in the recent past.

Summer temperatures (Figure 11b) show a smaller year to year vari-
ability, and droughts are more likely associated with above average
temperatures. This would be expected as the absence of rainfall is
usually accompanied by lack of clouds, high sunshine duration and
therefore higher temperatures. However, there is no clear indication
that high positive temperatures are also associated with high intensi-
ties, although the 2003-event stands out as a single event where this
is the case (Wetter et al., 2014). Interestingly, the 2003-event was not
the most intense summer drought, it was the summer of 1962 which
was even drier than 2003, although its temperature anomaly was
slightly below average (–0.48C). This suggests that dry summers are
not necessarily hot. Additional analyses (not shown) indicate, that the
circulation patterns during these two summers were rather different;
in 2003 a blocked weather situation governed the drought with

Figure 10. Spatial patterns of DCRs for short events (a, duration< 4 months), intermediate events (b, duration 4–6 months), and long events (c, duration> 6
months). The color shading indicates the fraction value which relates the number of times a grid point is part of a DCR relative to the whole number of events
considered (for Figure 10a: short events (481), for Figure 10b, intermediate events (148), for Figure 10c, long events (34)). The higher the fraction (darker color) the
more often a grid point is part of a DCR.

Table 2
Mean Temperature, Duration, Mean Intensity, Severity, and Frequency of
Drought Events in the Coolest and Warmest 30 Year Periods in the GAR

Coolest period
1876–1905

Warmest period
1981–2010 p-value

Temperature (8C) 7.86 9.27 0.00**
Duration (months) 2.75 3.20 0.10
Mean intensity 297 319 0.66
Severity 921 1,125 0.24
Frequency (#/30 years) 113 86

Note. Significance of the difference between the two periods expressed by
the p-value of the Wilcoxon test statistic.

**Significance at the 5% level (p< 0.05).
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increased subtropical warm air advection, while in 1962 westerly (cool) airflow from the Atlantic into the
GAR dominated. However, the running correlation analysis (Figure 11d) shows an increase from zero at the
beginning of the nineteenth century up to 0.6 around the late nineteenth/early twentieth century, and a
decrease afterward until the 1970s, followed again by an increase in correlation. These results suggest that
the positive relationship between mean intensity and temperature anomaly is stronger during periods with
cooler climate conditions, as summers tended to be coolest at the beginning of the twentieth century.

The drought-temperature relationship is further analyzed in Figure 12 which shows the drought intensity
and temperature anomaly for the two periods from Table 2, stratified by season similar to Figure 10. During
cool climate conditions (1876–1905), some major winter events had very low temperatures while the sum-
mer events show smaller temperature anomalies compared to the long-term mean. As mentioned earlier,
events with high mean intensity and considerable negative temperature anomalies did not occur in recent
decades. In the cool decades at the end of the nineteenth century, high mean intensities are apparent for
very cold, as well as for slightly above temperature anomalies, indicating a large spread of temperature
characteristics during droughts, which is consistent with the running correlation analysis of Figure 11c. All
these findings point toward major changes in the weather patterns leading to droughts, particularly the
location of precipitation-inhibiting high pressure systems and the associated air mass advection into the
GAR. During warm climate conditions (1981–2010), the summer events, again, show smaller temperature
anomalies if one does not count the 2003-event which has been extraordinary. It is interesting that the cold
period featured two cold outliers while the warm period featured a warm outlier.

The distribution properties of the mean intensity on a seasonal basis are evaluated by Empirical Cumulative
Distribution Functions (ECDFs) of the mean intensity stratified by temperature anomalies (Figure 13). In win-
ter (DJF), higher drought intensities are associated with near normal or below average temperatures. The
less pronounced tail of the intensity distribution for the warm events indicates less potential for warm win-
ter droughts with high intensities. Cold winter droughts are likely to be caused by continental high pressure
systems which tend to be very persistent, which may not be the case for the warm winter droughts. In
spring (MAM), no clear shift in the intensity distribution of different temperature stratifications is apparent.
However, in summer (JJA), rather different ECDFs are apparent, indicating that higher drought intensities

Figure 11. (top) Mean intensities and corresponding temperature anomalies of drought events of a minimum duration of 3 months covering (a) winter (DJF) and
(b) summer (JJA). Size of circles indicates intensity; location along the vertical axis and the color shading indicate temperature anomaly. In the background, the
seasonal mean temperature anomalies of the whole GAR are plotted in grey (thin line: seasonal means, thick line: 20 year Gaussian filtered seasonal means).
(bottom) Running correlation (Spearman rank correlation) of mean intensity and temperature anomaly over 30 year periods with a step of 2 years.
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are associated with higher temperature anomalies and, conversely, cool summer droughts are usually not
very intense. The same signal is apparent in autumn (SON) but is less distinctive.

While intense summer droughts (such as the 2003-event, see Figure 10b) tend to be warmer than average,
this was not the case for the 1962-event. The two events also differed in terms of their temporal evolution.
The 2003-event started in February (see Figure 7a), whereas the 1962-event started in June with normal pre-
cipitation conditions during spring. This suggests that the summer temperature anomaly during droughts
may be related to preceding spring precipitation. We therefore analyzed summer droughts and separated
those with dry springs from those where the drought did not start before summer. The Probability Density
Functions of the monthly temperature anomalies from May to August for both samples are plotted in Figure
14. A distinct shift toward higher temperature anomalies during summer with dry spring preconditions
(mean temperature anomaly: 10.738C) is apparent compared to those events where spring was wet (mean
temperature anomaly: 10.308C). This difference in the mean is significant according to the Wilcoxon test on
the 5% level (p-value: 0.042). Also noticeable is a broader right tail of the distribution (positive temperature
anomalies).

5. Discussion

In this paper, we present a new method for identifying meteorological drought events based on connected
space-time regions. We analyze a 210 year precipitation data set to explore drought event durations, inten-
sities, severities, and frequencies. As would be expected, well-known severe droughts rank highly in the
results, such as the 2003-event (Fink et al., 2004; Wetter et al., 2014), the 1921-event (Brooks & Glasspoole,
1922), and the 1946-event (Br�azdil et al., 2016).

Figure 12. Intensity and respective temperature anomaly of drought events of a minimum duration of 3 months covering
winter (DJF) and summer (JJA), during 30 year periods of coolest/warmest climate conditions (cool: 1876–1905, warm:
1981–2010).

Figure 13. Empirical Cumulative Distribution Functions of drought Intensities (over 3 months) stratified by seasons: winter, DJF; spring, MAM; summer, JJA; and
autumn, SON, and stratified by the corresponding temperature anomaly; below average, blue; near average, yellow; above average, red.
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Our results on the temporal evolution of droughts during the last two
centuries is in close agreement with previous studies that have
tagged the 1940s and the period from 1850 to 1880 (the 1860s
period) as drought prone time periods (e.g., Lloyd-Hughes, 2012;
Lloyd-Hughes & Saunders, 2002; van der Schrier et al., 2007). Here we
were able to clearly distinguish these two periods from their spatio-
temporal features. The 1860s period shows the highest values in both
severity and mean intensity as well as in frequency of the major (top
5%) droughts. At the same time, the analysis of frequency stratified by
duration revealed that this period shows a peak in the occurrence of
long (>6 months) droughts. In contrast, the 1940s show only slightly
lower mean intensities, but severity is not peaking. This is related to
the low frequency of long droughts, while short (<4 months) and
intermediate (4–6 months) events show rather high frequencies.

The seasonal patterns exhibited a major shift of the extreme droughts
from a winter/spring dominated regime in the 1860s toward an
autumn regime in the 1960s, whereas the period around the 1940s
shows no strong seasonality. A possible mechanism of the 1940s
droughts could be the expansion of the tropical belt and the Hadley
cell during that time period (Br€onnimann et al., 2015) which may have

caused more subtropical high pressure systems to affect Central Europe. This would also be consistent with
the joint drought/temperature assessment showing a clear peak in the intensity and temperature anomaly
of summer droughts in the 1940s (see Figure 10). However, this is not consistent with the results of Schwan-
der et al. (2017) who showed that high pressure weather patterns over Europe did not peak during this
period. Their results indicate weather patterns with easterly or northerly flow to dominate.

Whereas in the 1940s, it was predominantly the East of the domain which was most affected by droughts,
in the 1860s it was the Northwest. While the reasons for these differences are not fully clear due to data lim-
itations, the features of the 1860s with their highest mean intensities, long durations, and winter/spring
dominance point toward high frequency and/or high persistency of high pressure weather patterns over
Central Europe which might be introduced by a wavier jet stream bearing the potential for excessive block-
ing situations. We also found a transition in seasonality from the 1860s (high winter/spring intensities)
toward the end of the twentieth century (higher autumn intensities). Interestingly, this seasonal shift is
accompanied by a spatial change from the Northwest to the Southeast. The location of drought centers is
primarily driven by the location of the drought inducing weather patterns (e.g., high pressure systems).
Schwander et al. (2017) found higher frequencies of high pressure systems over Central Europe from the
1960s to the 1990s, which would confirm the higher drought intensities in that period. In contrast, no such
peak is apparent during the middle of the nineteenth century, the period with the highest drought intensi-
ties. Above average high pressure situations are therefore not likely the main cause. It is possible that the
location of the high pressure pattern does not have to be over Central Europe, given that the Northwest is
the area most affected by droughts during this period. Extensive highs over the British Isles could also affect
the Northwestern GAR and would be accompanied with northerly airflow. Increased frequencies of weather
patterns with Northerly airflow have been found by Schwander et al. (2017) during the 1860s and could
explain the frequent high intensity droughts in the Northwestern GAR. There is, however, room for better
understanding the atmospheric drivers in this period.

The evaluation of the temperature increase in the GAR in relation to drought characteristics yielded no sig-
nificant relationships, although previous studies (Dai, 2011; van der Schrier et al., 2006, 2007) did report
increasing drought conditions over Central Europe during recent decades. This is mainly due to fact that
drought indices, such as the PDSI where a temperature based parameterization of evapotranspiration is
used, imply a relationship between droughts and temperature. Trends of changing weather patterns in the
mid-latitudes over the last decades (Weusthoff, 2011) point toward an increased frequency of high pressure
weather patterns over Central Europe, but this does not seem to manifest itself in more severe or frequent
droughts. We did find a significant shift in the temperature anomalies during summer droughts dependent
on the spring preconditions (wet/dry). Mueller and Seneviratne (2012) identified a positive relationship

Figure 14. Probability Density Function (PDF) of monthly temperature anoma-
lies during May–August, stratified by drought conditions of the preceding
spring. Red, drought event covering spring and summer (dry spring precondi-
tion); blue, drought event covering only summer (wet spring precondition).
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between preceding negative SPI values and the occurrence for hot days in Europe and other parts of the
world. These and our findings suggest that soil moisture-temperature coupling is of major importance for
drought development in the warm season, as it could increase drought stress through enforced evapotrans-
piration. Although there is no clear signal of increased summer drought intensity or frequency apparent
from the precipitation analysis in this paper, further increasing trends of high pressure pattern frequency
over Europe in winter and spring (Weusthoff, 2011) may have implications on summer droughts in a warm-
ing climate.

The new method of drought detection proposed in this paper allowed for an objective analysis of drought
characteristics, including drought duration. However, the method does have its limitations. It is based on a
connectivity approach where connected space-time elements of below threshold precipitation are con-
nected to a coherent region, i.e., the space-time drought event. While the connectivity approach is attrac-
tive as it is able to identify events, rather than minima of an index, it is not fully independent of the space
and time resolution used in the analysis (see Western et al., 1998, 2001 for a discussion of grid resolution in
the context of soil moisture connectivity). The smaller the space-time discretization, the smaller tend to be
the regions identified, as a coarser resolution averages out any small scale features that may interrupt a
coherent space-time region. We used a 3 month temporal averaging and a spatial resolution of 10 arc min
(�16 km). It would be interesting to analyze the effect of the resolution on the results. Preliminary analyses
suggest that there is an effect on the absolute value of the drought characteristics, but the space-time pat-
terns of the results (long-term variability, spatial patterns of drought core regions) change very little. Future
work could be directed toward more quantitatively analyzing the atmospheric drivers of the space-time
drought patterns, both in Europe and elsewhere. Finally, the method could be readily applied to drought
realms other than meteorological droughts (agricultural, hydrological droughts) by using soil moisture and
streamflow in addition to existing pooling methods for obtaining temporally coherent hydrological drought
events (e.g., Laaha et al., 2017).

6. Conclusion

In this paper, we proposed a new method for detecting atmospheric drought events and their space-time
structure. We used the method to analyze the long-term evolution of drought frequency, duration, intensity,
and severity over the past 210 years in the Greater Alpine Region (GAR) in Central Europe. Our results show
variations of these characteristics on multidecadal time scales, but no trends over the 210 year period are
apparent. Two periods (the 1860s and 1940s) stand out as drought periods, although the characteristics of
individual droughts in these decades are substantially different, indicating different driving mechanisms.
The most extreme droughts show their centers either in the Northwest or the Southeast of the GAR, with a
larger number of Northwest events in the nineteenth century and a shift toward Southeast events in the
second half of the twentieth century. Although temperatures increased significantly during the period, we
did not find the increase to be significantly correlated with drought duration, intensity, or severity. However,
we found that dry springs significantly increase temperatures during subsequent summer droughts, which
implies soil moisture-temperature coupling in the warm season. Further research should be directed toward
better understanding the drivers of long-term drought fluctuations.

References
Andreadis, K. M., Clark, E. A., Wood, A. W., Hamlet, A. F., & Lettermaier, D. P. (2005). Twentieth-century drought in the conterminous United

States. Journal of Hydrometeorology, 6(6), 985–1001. https://doi.org/10.1175/JHM450.1
Auer, I., B€ohm, R., Jurkovic, A., Lipa, W., Orlik, A., Potzmann, R., . . . Nieplova, E. (2007). HISTALP—Historical instrumental climatological sur-

face time series of the Greater Alpine Region. International Journal of Climatology, 27, 17–46. https://doi.org/10.1002/joc.1377
Beniston, M. (2009). Trends in joint quantiles of temperature and precipitation in Europe since 1901 and projected for 2100. Geophysical

Research Letters, 36, L07707. https://doi.org/10.1029/2008GL037119
Br�azdil, R., Ra�ska, P., Trnka, M., Zahradn�ı, P., Val�a�sek, H., Dobrovoln�y, P., . . . Stachon, Z. (2016). The Central European drought of 1947:

Causes and consequences, with particular reference to the Czech Lands. Climate Research, 70, 161–178. https://doi.org/10.3354/cr01387
Br€onnimann, S., Fischer, A. M., Rozanov, E., Poli, P., Compo, G. P., & Sardeshmukh, P. D. (2015). Southward shift of the northern tropical belt

from 1945 to 1980. Nature Geoscience, 8, 969–974. https://doi.org/10.1038/ngeo2568
Brooks, C. E. P., & Glasspoole, J. (1922). The drought of 1921. Quarterly Journal of the Royal Meteorological Society, 48(202), 139–168. https://

doi.org/10.1002/qj.49704820205
Burke, E. J., & Brown, S. J. (2008). Evaluating uncertainties in the projection of future drought. Journal of Hydrometeorology, 9, 292–299.

https://doi.org/10.1175/2007JHM929.1

Acknowledgments
K. Haslinger is a recipient of a DOC
fellowship (24147) of the Austrian
Academy of Sciences which is
gratefully acknowledged for financial
support. Funding from the Austrian
Science Foundation as part of the
Vienna Doctoral Programme on Water
Resource Systems (DK Plus W1219-
N22) is acknowledged. The authors
also thank the Climate Research Unit
of the University of East Anglia for
hosting the Greater Alpine Region
precipitation data set and the Central
Institute for Meteorology and
Geodynamics for providing the
HISTALP temperature data set. The
paper is a contribution to UNESCO’s
FRIEND-Water program. The authors
thank two reviewers for their valuable
comments on the manuscript.

Water Resources Research 10.1002/2017WR020797

HASLINGER AND BL€OSCHL SPACE-TIME PATTERNS OF DROUGHT EVENTS 9821

https://doi.org/10.1175/JHM450.1
https://doi.org/10.1002/joc.1377
https://doi.org/10.1029/2008GL037119
https://doi.org/10.3354/cr01387
https://doi.org/10.1038/ngeo2568
https://doi.org/10.1002/qj.49704820205
https://doi.org/10.1002/qj.49704820205
https://doi.org/10.1175/2007JHM929.1


Chimani, B., Matulla, C., B€ohm, R., & Hofst€atter, M. (2013). A new high resolution absolute temperature grid for the Greater Alpine Region
back to 1780. International Journal of Climatology, 33(9), 2129–2141. https://doi.org/10.1002/joc.3574

Dai, A. (2011). Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. Journal of Geophysical
Research, 116, D12115. https://doi.org/10.1029/2010JD015541

Dai, A., Trenberth, K. E., & Qian, T. (2004). A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture
and effects of surface warming. Journal of Hydrometeorology, 5(6), 1117–1130. https://doi.org/10.1175/JHM-386.1

Efthymiadis, D., Jones, P. D., Briffa, K. R., Auer, I., B€ohm, R., Sch€oner, W., . . . Schmidli, J. (2006). Construction of a 10-min-gridded precipita-
tion data set for the Greater Alpine Region for 1800–2003. Journal of Geophysical Research, 111, D01105. https://doi.org/10.1029/
2005JD006120

Fink, A. H., Br€ucher, T., Kr€uger, A., Leckebusch, G. C., Pinto, J. G., & Ulbrich, U. (2004). The 2003 European summer heatwaves and drought—
Synoptic diagnosis and impacts. Weather, 59(8), 209–216. https://doi.org/10.1256/wea.73.04

Garc�ıa-Herrera, R., D�ıaz, J., Trigo, R. M., Luterbacher, J., & Fischer, E. M. (2010). A review of the European Summer Heat Wave of 2003. Critical
Reviews in Environmental Science and Technology, 40, 267–306. https://doi.org/10.1080/10643380802238137

IPCC. (2012). In C. B. Field et al. (Eds.), Managing the risks of extreme events and disasters to advance climate change adaptation. A special report
of Working Groups I and II of the Intergovernmental Panel on Climate Change (582 pp.). Cambridge, UK: Cambridge University Press.

Kendon, M., Marsh, T., & Parry, S. (2013). The 2010–2012 drought in England and Wales. Weather, 68(4), 88–95. https://doi.org/10.1002/wea.2101
Laaha, G., Gauster, T., Tallaksen, L. M., Vidal, J.-P., Stahl, K., Prudhomme, C., . . . Wong, W. K. (2017). The European 2015 drought from a

hydrological perspective. Hydrology and Earth System Sciences, 21(6), 3001–3024. https://doi.org/10.5194/hess-21-3001-2017
Lloyd-Hughes, B. (2012). A spatio-temporal structure-based approach to drought characterization. International Journal of Climatology, 32,

406–418. https://doi.org/10.1002/joc.2280
Lloyd-Hughes, B., & Saunders, M. A. (2002). A drought climatology for Europe. International Journal of Climatology, 22, 1571–1592. https://

doi.org/10.1002/joc.846
McKee, T. B., Doeskin, N. J., & Kleis, J. (1993). The relationship of drought frequency and duration to time scales (Preprints). In 8th conference

on applied climatology (pp. 179–184). Boston, MA: American Meteorological Society.
Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391(1–2), 202–216. https://doi.org/10.1016/j.jhydrol.

2010.07.012
Mueller, B., & Seneviratne, S. I. (2012). Hot days induced by precipitation deficits at the global scale. Proceedings of the National Academy of

Sciences of the United States of America, 109(31), 12398–12403. https://doi.org/10.1073/pnas.1204330109
Naresh Kumar, M., Murthy, C. S., Sesha Sai, M. V. R., & Roy, P. S. (2009). On the use of Standardized Precipitation Index (SPI) for drought

intensity assessment. Meteorological Applications, 16, 381–389. https://doi.org/10.1002/met.136
Palmer, W. C. (1965). Meteorological drought (Tech. Rep. Weather Bur. Res. Pap. 45). Washington, DC: U.S. Department of Commerce.
Patel, N. R., Chopa, P., & Dadhwal, V. K. (2007). Analyzing spatial patterns of meteorological drought using Standardized Precipitation Index.

Meteorological Applications, 14, 329–336. https://doi.org/10.1002/met.33
Samaniego, L., Kumar, R., & Zink, M. (2013). Implications of parameter uncertainty on soil moisture drought analysis in Germany. Journal of

Hydrometeorology, 14, 47–68. https://doi.org/10.1175/JHM-D-12-075.1
Schwander, M., Br€onnimann, S., Delaygue, G., Rohrer, M., Auchmann, R., & Brugnara, Y. (2017). Reconstruction of Central European daily

weather types back to 1763. International Journal of Climatology, 37, 30–44. https://doi.org/10.1002/joc.4974
Seneviratne, S. I., L€uthi, D., Litschi, M., & Sch€ar, C. (2006). Land–atmosphere coupling and climate change in Europe. Nature, 443, 205–209.

https://doi.org/10.1038/nature05095
Sheffield, J., Andreadis, K. M., Wood, E. F., & Lettenmaier, D. P. (2009). Global and continental drought in the second half of the twentieth

century: Severity-Area-Duration analysis and temporal variability of large-scale events. Journal of Climate, 22(8), 1962–1981. https://doi.
org/10.1175/2008JCLI2722.1

Sheffield, J., & Wood, E. F. (2007). Characteristics of global and regional drought, 1950–2000: Analysis of soil moisture data from off-line
simulation of the terrestrial hydrologic cycle. Journal of Geophysical Research, 112, D17115. https://doi.org/10.1029/2006JD008288

Sheffield, J., & Wood, E. F. (2008). Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-
driven simulations of the terrestrial hydrologic cycle. Journal of Climate, 21, 432–458. https://doi.org/10.1175/2007JCLI1822.1

Spinoni, J., Naumann, G., Vogt, J. V., & Barbosa, P. (2015). The biggest drought events in Europe from 1950 to 2012. Journal of Hydrology:
Regional Studies, 3, 509–524. https://doi.org/10.1016/j.ejrh.2015.01.001

Stagge, J. H., Tallaksen, L. M., Gudmunsson, L., van Loon, A. F., & Stahl, K. (2015). Candidate distributions for climatological drought indices
(SPI and SPEI). International Journal of Climatology, 35, 4027–4040. https://doi.org/10.1002/joc.4267

Svoboda, M., Lecomte, D., Hayes, M., Heim, R., Gleason, K., Angel, J., . . . Stephens, S. (2002). The drought monitor. Bulletin of the American
Meteorological Society, 83(8), 1181–1190.

UNEP. (2006). Impacts of summer 2003 heat wave in Europe. Environmental Alert Bulletin, Nairobi, Kenya.
Van den Dool, H. M., Saha, S., & Johansson, A. (2000). Empirical Orthogonal Teleconnections. Journal of Climate, 13(8), 1421–1435. https://

doi.org/10.1175/1520-0442(2000)013<1421:EOT>2.0.CO;2
van der Schrier, G., Briffa, K. R., Jones, P. D., & Osborne, T. J. (2006). Summer moisture variability across Europe. Journal of Climate, 19, 2818–

2834. https://doi.org/10.1175/JCLI3734.1
van der Schrier, G., Efthymiadis, D., Briffa, K. R., & Jones, P. D. (2007). European Alpine moisture variability for 1800–2003. International Jour-

nal of Climatology, 27, 415–427. https://doi.org/10.1002/joc.1411
van der Schrier, G., Barichivich, J., Briffa, K. R., & Jones, P. D. (2013). A scPDSI-based global data set of dry and wet spells for 1901–2009.

Journal Geophysical Research: Atmosphere, 118, 4025–4048. https://doi.org/10.1002/jgrd.50355
van Lanen, H. A. J., Laaha, G., Kingston, D. G., Gauster, T., Ionita, M., Vidal, J. P., . . . van Loon, A. F. (2016). Hydrology needed to manage

droughts: The 2015 European case. Hydrological Processes, 30, 3097–3104. https://doi.org/10.1002/hyp.10838
Vincente-Serrano, S. M. (2006). Differences in spatial patterns of drought on different time scales: An Analysis of the Iberian Peninsula.

Water Resources Management, 20, 37–60. https://doi.org/10.1007/s11269-006-2974-8
Vincente-Serrano, S. M., Beguer�ıa, S., Lorenzo-Lacruz, J., Camarero, J. J., L�opez-Moreno, J. I., Azorin-Molina, C., . . . Sanchez-Lorenzo, A.

(2012). Performance of drought indices for ecological, agricultural and hydrological applications. Earth Interactions, 16, 010. https://doi.
org/10.1175/2012EI000434.1

Wells, N., Goddard, S., & Hayes, M. (2004). A self-calibrating Palmer Drought Severity Index. Journal of Climate, 17, 2335–2351. https://doi.
org/10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2

Western, A. W., Bl€oschl, G., & Grayson, R. B. (1998). How well do indicator variograms capture the spatial connectivity of soil moisture?
Hydrological Processes, 12, 1851–1868. https://doi.org/10.1002/(SICI)1099-1085(19981015)12:12<1851::AID-HYP670>3.0.CO;2-P

Water Resources Research 10.1002/2017WR020797

HASLINGER AND BL€OSCHL SPACE-TIME PATTERNS OF DROUGHT EVENTS 9822

https://doi.org/10.1002/joc.3574
https://doi.org/10.1029/2010JD015541
https://doi.org/10.1175/JHM-386.1
https://doi.org/10.1029/2005JD006120
https://doi.org/10.1029/2005JD006120
https://doi.org/10.1256/wea.73.04
https://doi.org/10.1080/10643380802238137
https://doi.org/10.1002/wea.2101
https://doi.org/10.5194/hess-21-3001-2017
https://doi.org/10.1002/joc.2280
https://doi.org/10.1002/joc.846
https://doi.org/10.1002/joc.846
https://doi.org/10.1016/j.jhydrol.2010.07.012
https://doi.org/10.1016/j.jhydrol.2010.07.012
https://doi.org/10.1073/pnas.1204330109
https://doi.org/10.1002/met.136
https://doi.org/10.1002/met.33
https://doi.org/10.1175/JHM-D-12-075.1
https://doi.org/10.1002/joc.4974
https://doi.org/10.1038/nature05095
https://doi.org/10.1175/2008JCLI2722.1
https://doi.org/10.1175/2008JCLI2722.1
https://doi.org/10.1029/2006JD008288
https://doi.org/10.1175/2007JCLI1822.1
https://doi.org/10.1016/j.ejrh.2015.01.001
https://doi.org/10.1002/joc.4267
https://doi.org/10.1175/1520-0442(2000)013%3C1421:EOT%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(2000)013%3C1421:EOT%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(2000)013%3C1421:EOT%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(2000)013%3C1421:EOT%3E2.0.CO;2
https://doi.org/10.1175/JCLI3734.1
https://doi.org/10.1002/joc.1411
https://doi.org/10.1002/jgrd.50355
https://doi.org/10.1002/hyp.10838
https://doi.org/10.1007/s11269-006-2974-8
https://doi.org/10.1175/2012EI000434.1
https://doi.org/10.1175/2012EI000434.1
https://doi.org/10.1175/1520-0442(2004)017%3C2335:ASPDSI%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017%3C2335:ASPDSI%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017%3C2335:ASPDSI%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017%3C2335:ASPDSI%3E2.0.CO;2
https://doi.org/10.1002/(SICI)1099-1085(19981015)12:12%3C1851::AID-HYP670%3E3.0.CO;2-P
https://doi.org/10.1002/(SICI)1099-1085(19981015)12:12%3C1851::AID-HYP670%3E3.0.CO;2-P
https://doi.org/10.1002/(SICI)1099-1085(19981015)12:12%3C1851::AID-HYP670%3E3.0.CO;2-P


Western, A. W., Bl€oschl, G., & Grayson, R. B. (2001). Towards capturing hydrologically significant connectivity in spatial patterns. Water
Resources Research, 37(1), 83–97. https://doi.org/10.1029/2000WR900241

Wetter, O., Pfister, C., Werner, J. P., Zorita, E., Wagner, S., Seneviratne, S. I., . . . Spring, J.-L. (2014). The year-long unprecedented European
heat and drought of 1540—A worst case. Climatic Change, 125(3), 349–363. https://doi.org/10.1007/s10584-014-1184-2

Weusthoff, T. (2011). Weather type classification at MeteoSwiss: Introduction of new automatic classification schemes. Arbeitsberichte der
MeteoSchweiz, 235, 46.

Zhai, J., Huang, J., Su, B., Cao, L., Wang, Y., Jiang, T., & Fischer, T. (2017). Intensity–area–duration analysis of droughts in China 1960–2013.
Climate Dynamics, 48(1–2), 151–168. https://doi.org/10.1007/s00382-016-3066-y

Water Resources Research 10.1002/2017WR020797

HASLINGER AND BL€OSCHL SPACE-TIME PATTERNS OF DROUGHT EVENTS 9823

https://doi.org/10.1029/2000WR900241
https://doi.org/10.1007/s10584-014-1184-2
https://doi.org/10.1007/s00382-016-3066-y

	l
	l

