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s u m m a r y

In this work the long cycles and long range dependence of monthly discharge, precipitation and air tem-
perature time series from the Danube River during the years 1901–2006 were analysed using wavelet
analysis, with emphasis on wavelet coherence and cross wavelet spectra. All time series were deseason-
alized prior to the analysis. Long cycles with 11–15 year periods during almost the whole observed period
in discharge and during 1935–1975 in precipitation were found. Furthermore a reappearing four year
cycle was found in all discharge time series. No significant long cycles were found in the temperature
time series, which on the other hand display long term persistence. The cross-wavelet spectra and the
wavelet coherence show strong correlation between the precipitation and discharge spectra in the low
frequency intervals. Furthermore, a convolution of precipitation and catchment response function was
used to examine the propagation of long cycles from precipitation to discharge. The results show, that
the long range dependence in precipitation propagates into discharge and that the precipitation lead
in the cross-wavelet spectrum increases with the increasing response time. The results indicate that
especially mean monthly precipitation could be used as input variable in order to improve stochastic
discharge modelling.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Studies analysing the effect of climate related drivers, such as
precipitation and air temperature on discharge are important in
order to increase the understanding of the interactions of such pro-
cess, especially for construction of stochastic models representing
long term discharge fluctuations. Within the framework of the
ongoing climate change debate, the number of studies analysing
the influence of various climate and storage related drivers on
discharge has increased in the past years (Blöschl and Montanari,
2010) as a result of the increased interest in the behaviour of dis-
charge over long time scales in general.

Multi-annual cycles and trends have been identified in dis-
charge time series by various methods-filtering techniques and
spectral analysis (Pekárová et al., 2003; Probst and Tardy, 1987)
or wavelet analysis (Labat, 2008; Sang, 2013). Many studies
focused on capturing and describing periodical behaviour of pro-
cesses from a long term perspective use wavelet analysis.
Timuhins et al. (2010), for example found long cycles of 4, 11
and 30 years in Baltic rivers in the past century. Massei et al.
(2010) found 5–7 and 17 years cycles in both daily discharge and
precipitation for the River Seine in France. Markovic and Koch
(2013) examined discharge, precipitation and other variables on
several stations for the Elbe River in Germany, finding long cycles
in mean monthly discharge and precipitation, but not in tempera-
ture. Andreo et al. (2006) found long cycles with periodicities of
2–3 and 4–6 years in monthly precipitation and temperature time
series on the Southern Iberian Peninsula. Similarly (Ouachani et al.,
2013) found 2–3 and 4–8 years cycles in the seasonal precipitation
of Tunisian rainfall.

Several authors examine the influence of climate phenomena,
such as the North Atlantic Oscillation on discharge and precipita-
tion. For example (Rimbu et al., 2002) finds, that decadal variations
between discharge and precipitation in the lower Danube Basin are
‘‘in good agreement’’ and are ‘‘largely controlled’’ especially by
NAO. Mann et al. (1995) find, that decadal atmospheric circulation
have high influence on Great Salt Lake levels through precipitation.
Markovic and Koch (2013) find significant connection between
NAO and mean monthly precipitation on the Elbe River in Ger-
many. At a broader European and Atlantic scale, the influence of
NAO on precipitation averages is also well known (Osborn et al.,
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1999; Rogers, 1997; Hurell, 1995). More recently, the non-normal-
ity and nonlinearity in the multidecadal response of precipitation
to NAO have been analysed by Pires and Perdigao (2007) for a large
swath of the Northern Hemisphere spanning from the Eastern US
to Western Asia. NAO impacts on precipitation have been identi-
fied even in regions where the quantities are linearly uncorrelated.
However, studies focusing on the influence of precipitation and air
temperature on discharge using wavelet analysis are scarce, even
though precipitation and temperature are most relevant for hydro-
logical predictions as well (Blöschl and Montanari, 2010). Liu et al.
(2011) analysed rainfall and runoff at a half-hourly time step in
four experimental catchments in Northwestern China and found
the wavelet power spectra of rainfall and runoff to be highly
correlated.

Another characteristic used to describe the long term behaviour
of time series is long range dependence, i.e. when the autocorrela-
tion function remains significant even for long lags. Long range
dependence has been found in daily discharge of European rivers
(Szolgayova et al., 2014; Mudelsee, 2007) and daily precipitation
time series in Malaysia (Yusof et al., 2013). Skoien et al. (2003)
found no long range dependence for precipitation data and some
slight long range dependence for discharge in Austria. However,
studies examining the relationship between long range depen-
dence and presence of long cycles are lacking.

In order to capture the long term behaviour in discharge mod-
elling knowledge of the long term properties of the time series is
of importance. A wide range of stochastic models reflecting the
complexity of geophysical processes such as changes in the regime
(Bataglia and Protopapas, 2011; Valent et al., 2011; Komorníková
et al., 2008), long term persistence (Frolov, 2011; Montanari
et al., 2000) or heteroscedasticity (Elek and Markus, 2007;
Modarres and Ouarda, 2013) exist. Within the modelling frame-
work, the challenge is to connect the complexity contained in the
mathematical models to processes and external drivers (Lee,
2012; Gelati et al., 2010; Fisher et al., 2012). Mann et al. (1995)
suggests, that modelling and especially forecasting may be
improved, when low frequency events would be more considered
in the models. In order to increase the quality of such stochastic
models, especially when interested in more process based multi-
variate models including climate and storage related variables,
the interaction of discharge and its drivers needs to be examined
as a function of time including long range dependence.

The aim of this paper is to analyse precipitation, air temperature
and discharge time series from the upper part of the Danube River
in southern Germany, Austria and Slovakia in order to gain under-
standing of low frequency fluctuations and their interactions and
thus explore, whether and how these drivers (especially in
monthly time step) could be incorporated into a multivariate dis-
charge model. The following questions will be addressed: What
are the statistical characteristics of discharge, precipitation and
air temperature as a function of time and do these time series dis-
play long range dependence? At what scales and when do the data
fluctuate? How are the cycles in discharge related to those in pre-
cipitation and temperature?
2. Methods

2.1. Wavelet transform

In this work we are interested in the behaviour of the time ser-
ies with emphasis on low frequency events. Wavelet transform
provides information about the time series for different frequency
intervals, making it thus a suitable tool. Furthermore, the wavelet
transform does not make the assumption of stationarity of the
analysed time series. A continuous wavelet transform of a discrete
signal (time series) Xt ; t ¼ 0; . . . ; T � 1 with a constant time step dt
is defined as

WXðs;uÞ ¼
XT�1

t¼0

Xtw
�
s;uðtÞ ð1Þ

where

ws;uðtÞ ¼
ffiffiffiffiffi
dt
s

r
w
ðt � uÞdt

s

� �
ð2Þ

is a family of functions obtained through translation and dilation of
a mother wavelet w0ðtÞ 2 L2ðRÞ. (⁄) denotes the complex conjugate,
s 2 R n 0 is the dilation (scale) parameter and u 2 R is the transla-
tion parameter. A wavelet is an arbitrary function localized in time
and frequency fulfilling the admissibility condition (Vidakovic,
1999; Torrence and Compo, 1999). The wavelet spectrum is calcu-
lated from the wavelet coefficients as jWXðs;uÞj. In this work we
use the Morlet wavelet wðtÞ ¼ p�1=4eix0te�t=2, where x0 denotes fre-
quency. Even though there are many known wavelet functions (for
some examples see e.g. Kaiser (1994)), the Morlet wavelet is very
often chosen by practitioners for analysis of geophysical time series
(Labat, 2008; Lafreniere and Sharp, 2003; Grinsted et al., 2004;
Andreo et al., 2006).

Errors in the wavelet coefficients at the edges of the time series
occur due to the finite length of the time series. These errors are
taken into consideration by constructing a cone of influence
(COI) of the wavelet spectrum. Within the COI such errors are neg-
ligible. The cone of influence is given by all points included in the
support of the wavelet for each scale. For the Morlet wavelet it is
the set of points ðu; sÞ with u 6

ffiffiffi
2
p

s (Mallat, 1998; Torrence and
Compo, 1999).

Statistical significance of the wavelet spectrum is tested assum-
ing the null hypothesis that the time series is randomly generated
with autocorrelation properties of red noise. A five percent level of
significance is used in the tests.

The global wavelet spectrum is defined as

W2
XðsÞ ¼

1
T

XT�1

i¼0

jWXðs;uÞj2 ð3Þ

Significant long cycles for each of the time series were tested com-
paring the global wavelet spectrum to the spectrum of a red noise
process for each frequency interval. The red noise spectrum is
approximated by an AR(1) process. The AR coefficient is calculated
as ð/1 þ /0:5

2 Þ=2, where /1; /2 are the lag 1 and 2 correlations of the
underlying time series. For details see (Grinsted et al., 2004;
Torrence and Compo, 1999).

2.1.1. Cross-wavelet transform and wavelet coherence
Cross-wavelet transform and the wavelet coherence provide

information about the relation between two time series. The
cross-wavelet transform obtained as

WX;Y ðs;uÞ ¼WXðs;uÞW�
Y ðs;uÞ ð4Þ

can be used as a measure of correlation between the wavelet spec-
tra of two time series Xt; Yt . From Eq. (4) the cross-wavelet power
is calculated as jWX;Y j. Furthermore the phase shift between the
analysed series is calculated as the angle of the complex part of
the cross-wavelet transform as argðWX;Y Þ.

By normalizing the cross-wavelet transform the wavelet coher-
ence is obtained

RX;Y ¼
jhs�1WX;Yðs;uÞij2

hs�1jWX;Xðs;uÞj2ihs�1jWY;Yðs;uÞj2i
ð5Þ

where h�i is a suitable smoothing operator (Torrence and Webster,
1999). In general RX;Yðs;uÞ 2 ½0;1� holds. The significance tests for
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wavelet coherence and the cross-wavelet spectra are based on
Monte Carlo simulations, for details see (Maraun and Kurths,
2004). Here the null hypothesis of no coherence between the two
time series is made.

A Matlab package available from (Grinsted et al., 2004) was
used for the wavelet and cross-wavelet analysis.

2.2. Hurst coefficient estimation

The Hurst coefficient estimates for discharge, precipitation and
temperature were used as complementary information to the
wavelet analysis. Time series exhibiting long range dependence
exhibit a very slow decrease of the autocorrelation function

qs � Cs2H�2 s!1 ð6Þ

where qs ¼ Corr½Xt;Xtþs� is the autocorrelation function of a weakly
stationary time series Xt; C is a constant and H 2 ½0;1� is the Hurst
coefficient. For a stationary process with long range dependence
H 2 ð0:5;1� holds.

In this work regression on the periodogram and detrended fluc-
tuation analysis were used to estimate the Hurst coefficient. For
details on the properties and performance of these two methods
see e.g. (Szolgayova et al., 2014; Grau-Carles, 2005). The methods
are described in Appendix A.

3. Data

The analysis was performed on four data sets, each consisting of
a discharge, precipitation and air temperature time series. The
discharge time series from the stations Hofkirchen, Achleiten,
Kienstock and Bratislava with catchment areas ranging between
from 47,000 to over 131,000 km2 were used in the analysis (further
descriptive statistics including the Hurst coefficient estimates are
listed in Table 1).

In order to analyse long term behaviour long series of records
are necessary. Thus only series, where sufficiently long precipita-
tion, temperature and discharge data sets are available were used.
All time series cover the period between November 1901 and
Table 1
Data description for the four data sets sorted according to the discharge gauge. All four di
interval November 1901–October 2006 (105 years) was used. The descriptive statistics are
regression on periodogram and the detrended fluctuation analysis (DFA).

Hofkirchen

General description
Country Germany

Catchment area, km2 47,496

Latitude 48.68
Longitude 13.12
Elevation, m 631.06

Descriptive statistics-discharge
Mean, m3 s�1 640.72

Standard deviation, m3 s�1 243.85
Coefficient of variation 0.38
Hurst coeff. – Per.Reg. 0.74
Hurst coeff. – DFA 0.73

Descriptive statistics-precipitation
Mean, mm 2.52
Standard deviation, mm 1.41
Coefficient of variation 0.56
Hurst coeff. – Per.Reg. 0.66
Hurst coeff. – DFA 0.56

Descriptive statistics-temperature
Mean, �C 7.86
Standard deviation, �C 7.06
Coefficient of variation 0.90
Hurst coeff. – Per.Reg. 0.72
Hurst coeff. – DFA 0.65
October 2006 (105 years). A monthly time step was used in the
analysis. The discharge time series were provided by the Global
Runoff Data Center (GRDC, 2011). The precipitation and tempera-
ture time series used for analysis were calculated based on data
obtained from the European Climate Assessment and Dataset
(ECA&D) (Klein Tank et al., 2003). The geographical positions of
all stations are shown in Fig. 1.

For each discharge time series catchment area average precipi-
tation time series were constructed using Thiessen polygons
(Dingman, 2008). Since the number of available stations changes
over time, for the sake of consistency only 16 precipitation stations
with sufficiently long records were used for estimating the catch-
ment area averages.

The mean catchment air temperature time series were obtained
by linear regression performed for each day of the analysed period,
temperature being the dependent and elevation the explanatory
variable. The resulting temperature time series were calculated
based on the fitted regression coefficients (for each day) using
the mean elevation of the respective catchment area. The monthly
series were aggregated from thus obtained daily regression series.

No deterministic trend was found in any of the discharge or pre-
cipitation time series. Significantly increasing trends were found in
all of the temperature series. However, the wavelet analysis and
Hurst coefficient estimation results listed and discussed later were
conducted on the non-detrended series, since it cannot be distin-
guished, whether the trend found in the analysed time series is
only a part of a cycle with frequency too low to be detected in
the data set due to its limited length. It should be noted, that the
DFA method already accounts for such trends, thus detrending
would not have any effect on the Hurst coefficient estimates using
this method. The regression on the periodogram produced signifi-
cant Hurst coefficient estimates for both detrended and non-
detrended time series and the wavelet and crosswavelet spectra
were almost trend invariant.

All the time series were deseasonalized prior to further analysis.
Let Xt ; t ¼ 1; . . . ; T be a time series of length T (with monthly time
step), the seasonal effects in mean and variance were then
removed by subtracting a series of monthly averages and dividing
scharge gauges are on the Danube River. For all time series of monthly data the time
given for non-deseasonalized data. The Hurst coefficients were estimated using the

Achleiten Kienstock Bratislava

Germany Austria Slovakia
76,653 95,970 131,331

48.58 48.38 48.14
13.50 15.46 17.11
839.97 827.55 708.63

1426.24 1849.54 2056.38
537.98 706.60 800.87
0.38 0.38 0.39
0.71 0.60 0.63
0.70 0.67 0.67

2.65 2.64 2.38
1.41 1.37 1.25
0.53 0.52 0.53
0.55 0.51 0.43
0.51 0.51 0.50

7.06 6.81 7.45
6.90 6.91 7.00
1.02 1.02 0.94
0.71 0.71 0.72
0.65 0.65 0.65



Fig. 1. Geographical position of discharge, precipitation and climatological gauges including the catchment area boundaries.
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by the daily or monthly estimated standard deviations respectively
as follows (Montanari et al., 2000):

Xdes
t ¼

Xt � Xtffiffiffiffiffi
s2

t

p ð7Þ

with the periodically extended series of monthly averages and esti-
mated variances

�Xt ¼
1
ny

Xny�1

i¼0

Xðtmod12Þþ12i and

s2
t ¼

1
ny � 1

Xny�1

i¼0

ðXðtmod12Þþ12i � �XtÞ
2 ð8Þ

Here ny ¼ dT=12e is the number of years.
The catchment average precipitation and air temperature series

will be referred to as temperature and precipitation time series in
the following for the sake of brevity.

3.1. Discharge convolution

In order to help interpret the relationship between precipitation
and discharge and the propagation of low frequency events, a sim-
ple convolution calculating discharge from precipitation was con-
structed. Changing the properties of the convolution function
allows to modify the properties of the discharge time series based
on a chosen precipitation time series as desired and examine the
changes in the cross-wavelet spectrum and the changes in the
Fig. 2. The global wavelet spectra of the discharge, precipitation and temper
wavelet coherence. Thus the dependence of discharge on precipita-
tion for different frequencies and time windows can be examined.
For this purpose, a daily time step was used. The daily precipitation
time series display long range dependence, whereas the monthly
precipitation time series behave similarly to a random noise series
(see Table 1 and Section 4.1). Thus the use of daily precipitation
allows a comparison of the spectra and Hurst coefficients in terms
of the long term persistence in precipitation. This would not be
possible if monthly series was used.

Discharge series were calculated from precipitation time series
for the Hofkirchen and Bratislava by

Qgen
t ¼ Pt � ða1e�a1tw1 þ a2e�a2tw2Þ

¼
Z 1

�1
Psða1e�a1ðt�sÞw1 þ a2e�a2ðt�sÞw2Þds ð9Þ

where Qgen
t ; i ¼ 1;2 is the calculated discharge series, � is a convo-

lution, Pt is the precipitation series, ai indicate different travel times
of water in the catchment and w1; w2 are weights of the respective
travel times with w1 þw2 ¼ 1. Two different travel times with dif-
ferent weights were used in order to simulate a short term (high
frequency, short travel time) and a long term (low frequency, long
travel time) component of the discharge. In all cases a convolution
kernel representing 10 days travel time was combined with long
travel time kernels – 1, 5 and 10 years. The long travel times were
chosen to be similar to the long cycles found in discharge. Both time
series were deseasonalized after the discharge generation analogi-
cally to the monthly data sets. The use of deseasonalized data
ature time series. The dotted line represents the 95% confidence bound.



Fig. 3. Example of the global wavelet spectra of mean monthly precipitation time
series used for the calculation of the catchment average precipitation series. The
dotted lines indicate the 95% confidence bounds of a red noise global wavelet
spectrum. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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justifies that snow and soil moisture are not represented in the con-
volution function.

4. Results

4.1. Long cycles

The graphical output from the global spectrum test can be seen
in Fig. 2, the respective spectra for the analysed variables can be
found in Fig. 4. On the 95% significance level several long cycles
Fig. 4. The wavelet spectra for each of the analysed variables-disc
were detected for both discharge and precipitation time series.
The global wavelet spectra of the discharge time series (Fig. 2 left)
are above the red noise background spectrum for periods between
11 and 15 years for all stations except Bratislava. Cycles with
approximately this periodicity are visible in the wavelet spectra
for all stations for almost the whole duration of the analysed per-
iod. In Achleiten the cycle is significant all the time. Furthermore,
for all stations a shorter cycle of 4 years was detected. Based on
the wavelet spectra, this shorter cycle is significant only over
shorter time periods, for example between the years 1910–1940
and later between 1960 and 1970. All time series display long
range dependence with Hurst coefficients larger than 0.7 for the
two German stations, and larger than 0.6 for Kienstock and Brati-
slava for both estimation methods. The Hurst coefficient estimates
can be found in Table 1.

All catchment precipitation time series contain a cycle with
periods between 11 and 15 years, and on the upstream Hofkirchen
station, a long 22 year cycle was detected (Fig. 2 middle). These
cycles can be seen on the wavelet spectra as well, even though they
vary over time. For all four stations, the 11–15 year cycle is signif-
icant approximately between the years 1935–1975. Furthermore,
at Hofkirchen, the 22 years cycles is detected as significant until
the year 1955. However, the analysis of the autocorrelation func-
tions of all these time series (not shown here) shows, that the auto-
correlation structure, especially of the two downstream stations, is
very close to white noise and the Hurst coefficients are close to 0.5
in almost all cases accordingly. The decrease of the Hurst coeffi-
cient as we move downstream on the Danube River (e.g. H for Hof-
kirchen is 0.66 and for Bratislava 0.43 using the regression on
periodogram method) corresponds to the decrease in the areas sig-
nificant in power on the precipitation wavelet spectra. In general,
harge, catchment average precipitation and air temperature.
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the global wavelet spectra of the monthly station precipitation
time series used for calculation of the catchment precipitation ser-
ies show a varied behaviour (see Fig. 3) depending on the geo-
graphic position of the climatic stations. Stations in the north
east and south west of the considered region contain no significant
long cycles. This has an impact on the catchment area averages
interpolated from the station time series and on the resulting
cycles detected.

The temperature time series do not contain any long cycles
compared with the red noise background (Fig. 2 right). Even
though the global wavelet spectrum did not indicate any signifi-
cant cycles, a significant frequency of approximately 10–15 years
can be seen from the wavelet spectra of all time series between
the years 1935–1955. Furthermore, there is long range dependence
present in all four time series: the Hurst coefficients are approxi-
mately 0.6 according to the detrended fluctuation analysis and
0.7 according to the regression on the periodogram method. The
Hurst coefficients for all time series are almost identical, as are
the wavelet spectra (see Fig. 4).
Fig. 5. The cross-wavelet and wavelet coherence spectra. The first two rows show the cr
respectively. The bottom two rows show the wavelet coherence spectra for the same p
Colours indicate the measure of coherence – red colour implies high degree of coherence.
down indicate that precipitation/temperature leads discharge. (For interpretation of the r
this article.)
4.2. The cross-wavelet spectra and wavelet coherence

The cross-wavelet spectra and the wavelet coherence spectra
can be found in Figs. 4 and 5. The first two rows of Fig. 5 display
the cross-wavelet spectra of precipitation and discharge in the first
row and temperature and discharge in the second row. The bottom
two rows show the respective wavelet coherence spectra.

When comparing the cross-wavelet spectra with the wavelet
spectra of the discharge time series, it can be seen that the signif-
icant areas of the cross-wavelet spectrum approximately copy the
areas significant in the discharge spectra, rather than those of the
precipitation spectra for all stations (compare rows one and two
in Fig. 4 with the first row of Fig. 5). The time series have both high
power for the periods of approximately four years for most of the
observed time window. In this period range, precipitation leads
discharge by approximately 45� (corresponding to six months lead
time) in the first half of the time series until the 1960s. Then, how-
ever, we can observe a change in the behaviour for all four ana-
lysed data sets and the two time series are in phase until the end
oss-wavelet spectra between precipitation/discharge and air temperature/discharge
airs of variables. Arrows show the phase shift between the respective time series.
Arrows pointing right indicate that the two time series are in phase. Arrows pointing
eferences to colour in this figure legend, the reader is referred to the web version of



Table 2
Hurst coefficient estimates for daily convoluted discharge time series. The Hurst
coefficients of the real precipitation and discharge time series are listed in the first
two rows. Hurst coefficients for different weight combinations and different travel
times are listed in the following rows. The Hurst coefficient was estimated using
regression on periodogram (Per.Reg.) and detrended fluctuation analysis (DFA).

Hofkirchen Bratislava

DFA Per.Reg. DFA Per.Reg.

Observed time series
Discharge 0.91 0.89 0.88 0.89
Precipitation 0.56 0.57 0.54 0.55

Calculated discharge-travel times 10 days, 10 years
w1years ¼ 0 0.76 0.76 0.73 0.73
w1years ¼ 0:1 0.76 0.76 0.74 0.73
w1years ¼ 0:5 0.77 0.78 0.75 0.74
w1years ¼ 0:9 0.85 0.85 0.83 0.80
w1years ¼ 1 1.27 1.47 1.24 1.42

Calculated discharge-travel times 10 days, 5 years
w5years ¼ 0:1 0.76 0.77 0.74 0.73
w5years ¼ 0:5 0.77 0.78 0.76 0.75
w5years ¼ 0:9 0.83 0.86 0.88 0.87
w5years ¼ 1 1.06 1.37 1.24 1.42

Calculated discharge-travel times 10 days, 1 year
w10years ¼ 0:1 0.77 0.77 0.74 0.74
w10years ¼ 0:5 0.80 0.82 0.81 0.79
w10years ¼ 0:9 0.93 1.04 1.03 1.06
w10years ¼ 1 1.06 1.36 1.22 1.41
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of the observation period. In the low frequency area, where the
cycles of 11–14 years were observed, the two series are both high
in power as well. It can be seen that the lead time of precipitation
increases with increasing periodicity of discharge. Here the phase
difference changes to almost 90 degrees, which would indicate
approximately 3 years lead time. The discharge and precipitation
time series show significant degree of coherence for all frequencies
for most of the time for all four stations. The time series are almost
in phase until the end of the observation period with a lead time of
1–2 months. In the low frequency there is a common area of no
coherence for all data sets in the time window 1920–1970 for
the period interval between 4 and 11 years.

The temperature spectra display a significant area of power
between 1930 and 1960 with the periodicity around 11 years. This
time period corresponds to years, where daily air temperature
minima were generally below the long time average (compare
with an example of the Hofkirchen temperature time series in
Fig. 6). This means that the long cycles were present for years with
especially cold winters.

A major difference between the temperature–discharge and
precipitation–discharge relationships can be seen in the wavelet
coherence spectra. The precipitation time series show high levels
of coherence for most frequencies and times. On the other hand,
the coherence between temperature and discharge is less
pronounced at most frequencies and is significant only in the low
frequency range. In the temporal periods where the wavelet coher-
ence and the cross-wavelet spectra are significant compared to the
red noise background, the temperature and discharge are in anti-
phase (20 years periodicity), with increasing period temperature
leads discharge by approx. 225� (approximately 13 years leading
time). In other areas the phase shifts are random. The significantly
coherent period ends in the late 1950s.

4.3. Convoluted data

The goal of the convolution analysis was to gain understanding
of the relationship between the long range dependence and the
cyclical behaviour in the discharge found in the wavelet spectra.
In order to achieve this, several daily discharge time series were
calculated using the convolution function described in Section
3.1. Table 2 shows an overview of Hurst coefficients for some of
the convoluted time series with various kernel combinations and
weights of the kernels used. We see that the Hurst coefficients of
the calculated discharge time series increase with the increase of
the weight of the long time kernel component. Using only a very
long travel time kernel yields a non-stationary process, thus the
time series does not fulfill the assumptions of regression on
the periodogram estimator, producing H > 1 for both estimation
Fig. 6. Daily minimum temperatures for each year for the Kienstock catchment
average temperature time series. The red line indicates the time period, where the
wavelet spectrum is significant in power for the low frequencies (over 5 years
periodicity). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
methods. The results indicate that the long range dependence in
discharge is influenced by the presence of the long range depen-
dence in precipitation (note, that on a 99% significance level the
Bratislava precipitation time series does not display long range
dependence). However, this influence is not very sensitive to the
generator input parameters, since long range dependence was
detected in all generated time series, independent of the weight
combinations of the kernels. Assuming a convolution function with
a dominant long time produces a non-stationary discharge output.
Furthermore it seems that with decreasing the travel time of the
long term kernel actually produces an increase in the Hurst coeffi-
cient. Thus, based on the convolution model, it is not possible to
directly attribute the increase in Hurst coefficient to the presence
of long cycles (represented by the long time kernel).

An example of the wavelet, cross-wavelet and wavelet coher-
ence spectra of the generated data can be seen in Fig. 7. The time
series depicted on the figure was calculated using 5 years travel
time with weight 0.9 combined with the 10 days travel time
mentioned above, using the Bratislava precipitation time series.
Here the estimated Hurst coefficient (using the DFA method)
coincides with that of the measured Bratislava daily discharge
series. The wavelet coherence is close to 1 for almost all the area
of the spectrum. The areas of no significant coherence observed in
the real precipitation/discharge time series spectra could be only
partially reproduced using this simple generator. The high wave-
let coherence is mainly caused by the fact that the discharge time
series were directly calculated from the precipitation time series,
especially without any added noise. Similarly to the spectra of the
observed precipitation/discharge time series, the phase arrows
show that for shorter periodicities precipitation leads discharge.
In these cases the phase is influenced by the travel time of the
water in the catchment. However, the time variability of
discharge for longer periods depends on the variability in the
precipitation time series, rather than on the travel time. For peri-
odicities bigger than the long time kernel, the phase arrows are
not influenced by the weights of each of the kernels. However,
for shorter periodicities the increase in lead time of precipitation
increases with the increase of the weight of the long time kernel
(not shown here).



Fig. 7. The wavelet (left), cross-wavelet (middle) and coherence spectra (right) for the discharge time series calculated from the Bratislava precipitation time series using the
kernel combining 10 days and 5 years travel times with respective weights 0.1 and 0.9.
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5. Discussion and conclusions

The main goal of this paper was to analyse the long term behav-
iour of mean monthly discharge, temperature and precipitation
time series of four stations on the Danube River, with emphasis
on long cycles and the dependencies between precipitation, air
temperature and discharge. Statistical tests of the global wavelet
spectra confirmed a four year cycle in all observed discharge time
series on a 95% significance level. Furthermore, long cycles of
11–15 years were detected on the three upstream stations. This
is in agreement with (Labat, 2008), who found similar cycles (4,
14, 20 and 33 years) in the annual discharge of the Danube River
at Ceatal Izmail in Rumania. It is as well in agreement with findings
of other authors, who analysed European discharges and found
long cycles – 4 and 11 years cycles on the Baltic rivers (Timuhins
et al., 2010) and 10–14 years cycles on the Elbe River (Markovic
and Koch, 2013). Rimbu et al. (2002) points out that long cycles,
such as those found in the analysed discharge time series are in
correlation with positive phase of the NAO and can be associated
with below the average sea surface temperature anomalies as well.

Unlike other authors, who found cycles of around 5 years in pre-
cipitation data sets on the Iberian Peninsula and North Africa
(Andreo et al., 2006; Ouachani et al., 2013), only a 11–13 year peri-
odicity was detected in precipitation. The five year cycles could be
detected only in one of the precipitation time series included in the
catchment average time series. This different periodic behaviour is
likely caused by different geographical and climate conditions in
the Danube Basin. Furthermore, catchment average precipitation
time series were used instead of time series measured at a single
climatic station in the above indicated studies. The global wavelet
spectrum test of the climatic stations found long cycles in precip-
itation in the north eastern and south western segments of the
analysed geographical area. These segments approximately corre-
spond to the climatological regionalization according to Auer
et al. (2007).

Similarly to Markovic and Koch (2013), no significant long
cycles were found in the mean monthly temperature time series.
This, however, differs from the findings of Andreo et al. (2006),
who were able to detect long cycles in temperature. This may be
attributed to the different climatic conditions – unlike in the upper
Danube region, the temperatures on the Iberian peninsula analysed
by Andreo et al. (2006) are strongly influenced by the Atlantic
ocean and Mediterranean sea.

Long range dependence was found in all discharge time series.
The presence of long range dependence in the Danube River dis-
charges is in accordance with findings of Szolgayova et al. (2014)
and Mudelsee (2007). Despite the fact that no long cycles could
be detected in the temperature time series, all of these display long
term persistence. Thus the long range dependence is likely driven
by some other non-cyclical mechanism or process. No long range
dependence could be found in monthly precipitation time series.
This might indicate, that even though long cycles in precipitation
do influence the Hurst coefficient of discharge, there are other sig-
nificant factors, such as catchment storage characteristics, as sug-
gested by Szolgayova et al. (2014).

The wavelet spectra of each of the observed time series were
analysed as well. The high correlation between the respective time
series contributes to the high degree of similarity between the
spectra for each variable. In addition, the similarity between the
temperature spectra is caused by the method of calculation of
these time series. A visual decrease in the significant low frequency
parts of the spectrum in the precipitation time series can be
observed as we move downstream. This was accompanied by the
decrease of the respective Hurst coefficients. Significant low fre-
quency spots in the temperature spectra were observed for the
years with daily temperature minima over years below the long
time temperature average.

The relationships between precipitation, temperature and dis-
charge time series were analysed using the cross-wavelet spectra
and wavelet coherence. The precipitation–discharge wavelet
coherence spectrum showed significant coherence for most of
the periods at almost all time as would be expected. This is in
agreement with the high consistency of precipitation and dis-
charge decadal variability in the Danube basin found by Rimbu
et al. (2002). The non-significant part of the wavelet coherence
spectrum between precipitation and discharge ending in the early
in the 1960s corresponds to the period, where almost no significant
floods occurred on the Danube River (Blöschl and Montanari,
2010). This may be due to a regime switch in the precipitation time
series.

A finding that is considered particularly interesting is the lead
time between precipitation and discharge found from the cross
wavelet spectra. At the period of four years, precipitation leads dis-
charge by about six months. Soil moisture storage and near-surface
groundwater have typical residence times of this order of magni-
tude. Interestingly, for the longer period of 11–14 years, the lead
time is also longer (around 3 years). This suggests that deeper
groundwater storage is accessed when long-term decadal fluctua-
tions in precipitation and discharge occur which is not the case of
the shorter term fluctuations. This can be clearly seen in Fig. 7
where a constant time lag has been used for generating discharge
for all periods and consequently the lead time does not increase
with the period. The effect of deeper groundwater storage is
accessed is likely related to the non-linearity of the rainfall–runoff
transformation which has been documented in numerous catch-
ments around the world (e.g. Wittenberg, 1999). Furthermore, in
the 1960s, the phase difference in the period of four years tends
to decrease from six to one to two months. It is possible that this
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is also related to storage effects where shallower aquifers are
accessed due to changes in the water balance.

A discharge convolution function was constructed in order to
gain better understanding of the information provided by the
wavelet spectra and the long range dependence in precipitation.
The periodic behaviour of the discharge time series was acceptably
reproduced using the convolution. The convolution results indicate
that the long range dependence in discharge is partly influenced by
the long range dependence in precipitation and partly by the non-
linear catchment storage processes. It can be seen that the lead
time of precipitation increases with the increasing weight of the
long time kernel representing the rainfall–runoff relationship. This
kind of convolution function could be used as a basis for a more
sophisticated rainfall runoff wavelet based model, attempting to
include and reproduce the phase shifts between the time series
found in the cross-wavelet spectra (Kwon et al., 2007; Renaud
et al., 2003).

The results show that especially mean monthly precipitation
could be used in multivariate stochastic discharge time series mod-
elling when considering a monthly time step, for example by
means of a wavelet based model using wavelet decomposition
and wavelet coherence in order to obtain a multivariate stochastic
discharge model. Furthermore, additional wavelet analysis can be
conducted in combination with other climate phenomena, such
as the North Atlantic Oscillation in order to attribute the cycles
found especially in precipitation and thus explain the found cycli-
cal behaviour of the precipitation and temperature time series on
larger scale. The findings of this paper give insights into the cyclical
behaviour and changes of such behaviour of monthly discharge of
the Danube River in central Europe and how these changes are
influenced by precipitation and temperature in the respective
catchment areas.
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Appendix A. Hurst coefficient estimation

A.1. Regression on the periodogram

The regression on the periodogram is a method developed by
Geweke and Porter-Hudak (1983) based on the idea that the peri-
odogram of a time series follows the equation

lnðIðxÞÞ � c � d lnð4 sin2ðx=2ÞÞ ð10Þ

where c is a constant and IðkÞ is the periodogram

IðxÞ ¼ 1
2pN

XN�1

j¼0

Xje�ijx

 !�����
�����
2

x ¼ 2pk
N

;8k ¼ 1; . . . ; T
� �

ð11Þ

with T ¼ ulbn�1
2 c and the frequencies x. Fitting a regression line on

the logarithm of the frequencies and logarithm of the periodogram
thus yields an estimate for d with d ¼ 1� 2H. In our case ul ¼ 0;1
was used.
A.2. Detrended fluctuation analysis

The detrended fluctuation analysis (DFA) was introduced by
Peng et al. (1994). In this paper the DFA of first order was used.
Here the series of partial sums Yt ¼

Pt
i¼1ðXt � XÞ is divided into

non-overlapping boxes of length l (where X is the mean of Xt). Then
for each box a fluctuation function is calculated as

FðlÞ ¼ 1
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXl

i¼1
ðYi � ia� bÞ2

r
ð12Þ

where a; b 2 R are regression coefficients. This procedure is
repeated for different values of l and a log–log plot of FðlÞ against
l is constructed. A generalized version of the Hurst coefficient is
then obtained as the slope of the regression line. Here H > 1 indi-
cates a non-stationary unbounded process (Peng et al., 1995).
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