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Abstract:

Investigating long range dependence of river flows, especially in connection with various climate and storage related factors, is
important in order to improve stochastic models for long range dependence and in order to understand deterministic and
stochastic variability in long-term behaviour of streamflow. Long range dependence expressed by the Hurst coefficient H is
estimated for 39 (deseasonalized) mean daily runoff time series in Europe of at least 59 years using five estimators (rescaled
range, regression on periodogram, Whittle, aggregated variances, and least squares based on variance). All methods yield
estimates of H> 0.5 for all data sets. The results from the different estimators are significantly positively correlated for all pairs
of methods indicating consistency of the methods used. Correlations between H and various catchment attributes are also
analysed. H is strongly positively correlated with catchment area. Apparently, increasing storage with catchment area translates
into increasing long range dependence. H is also positively correlated with mean discharge and air temperature and negatively
correlated with the mean specific discharge and the seasonality index (maximum Pardé coefficient). No significant correlation is
found between the Hurst coefficient and the length of the analyzed time series. The correlations are interpreted in terms of snow
processes and catchment wetness. Copyright © 2012 John Wiley & Sons, Ltd.
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INTRODUCTION

The number of large-scale studies analyzing long-term
behaviour of streamflows has increased dramatically in
the past years. With better data availability and quality
and with the rising interest of impact of climate change
and climate related factors on streamflow processes
(Blöschl and Montanari, 2010), the amount and complex-
ity of these studies have increased. The importance of
such research lies in the need of stochastic models
incorporating long range dependence, which can be used
for example in water resources management or reservoir
operations. It is also of interest to relate the long-term
behaviour to possible drivers causing these phenomena to
understand the most important controls.
There are several ways of considering long-term

behaviour of streamflow, both from deterministic and
stochastic perspectives. A common method is trend
analysis. For example, Petrow et al. (2009) conducted a
Germany-wide study of flood trends. They found
increasing trends in several catchments and a strong
dependence of the trends on atmospheric circulation
patterns. Stahl et al. (2010) found geographically
coherent trend patterns of stream flow over Europe
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which they interpreted by climate drivers. For other large-
scale studies examining trends and their relation to
external, especially climate related controls, see (Kite,
1989; Kundzewicz et al., 2005; Svensson et al., 2005;
Schmocker-Fackel and Naef, 2010).
Trends are only one phenomenon which is interesting

from a long-term perspective. Kite (1989) pointed out,
that ‘what appears to be a trend now, may turn out to be
part of a periodicity when looked at over a longer time
span’. Other long-term dependencies of interest are
therefore periodic events with frequencies as low as the
data permit. Gudmundsson et al. (2011), e.g. examined
the response of low-frequency components (in terms of
relative variance) of runoff to the mean and long-term
variations of precipitation and air temperature. They
suggest that the low-frequency part of runoff follows
atmospheric features but that the low-frequency part of
runoff is uncorrelated with the low-frequency components
of the climatic factors. However, dependence on catchment
properties and mean climatic conditions was found.
Another property characterizing time series from a

long-term perspective is the long range dependence
(Hurst phenomenon (Hurst, 1951), Hurst–Kolmogorov
dynamics or long-term persistence). Here, the autocorre-
lation function does not disappear even for high temporal
lags (Grau-Carles, 2005), or ‘correlations decay like a
power law’ (Doukhan et al., 2003). Although this
phenomenon has been known for over 60 years, it still
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remains largely unexplained and is hotly discussed in the
literature. The point of contention is that, if the long
range dependence is significant, some of the observed
trends should not be interpreted in a causal way. For
example, Koutsoyiannis et al. (2009) remark on the
importance of ‘the understanding and modelling of the
long-term variability of climatic processes . . . with
particular emphasis on the Hurst-Kolmogorov dynamics’
and the need of communicating this across disciplines.
Koutsoyiannis and Montanari (2007) point out that ‘the
statistical uncertainty is dramatically increased in the
presence of dependence, especially if this dependence is
long-term persistence’ and highlight the need of examin-
ing this phenomenon with respect to ‘other climatic
hypothesis’. Alternatively, Salas et al. (1979) considered
the Hurst phenomenon as a pre-asymptotic feature, which
can be reproduced by appropriate stationary models such
as shifting mean models. Long range dependence can be
numerically expressed by the Hurst coefficient H. This is
a coefficient ranging between 0 and 1, where H> 0.5
indicates long range dependence in the data (Section 2).
There exists a wide range of methods for estimating the
Hurst coefficient (an overview can be found for example
in Teverovsky et al. (1995), both in time and in the
frequency domains. Historically, the first method used to
estimate H is the rescaled range (R/S) analysis. This
estimator does not account for short memory in the data
nor for heteroscedasticity (Lo, 1991), and it suffers from
‘size distortions’ for small data sets (Grau-Carles, 2005).
Despite the numerous known drawbacks, the rescaled
range estimator is a rather popular method used in
literature (Lye and Lin, 1994; Sakalauskiene, 2003).
There are numerous papers examining estimators for
artificially generated data with various properties. Grau-
Carles (2005) compares estimators with respect to the
length of the time series based on generated ARMA/
GARCH series. He observes that the regression on
periodogram method (developed by Geweke and Porter-
Hudak (1983)) and the detrended fluctuation analysis
outperform the other methods (R/S and modified R/S
estimator), which often estimates H> 0.5 even if the time
series was generated from a process without long range
dependence. Montanari et al. (1999b) generate series
from a seasonal ARIMA model, to analyse the effects of
periodic components on the H estimates. The Whittle
estimator (Beran, 1994) turns out to be the most precise
estimator despite the presence of short-term dependen-
cies. The Whittle estimator is a likelihood-based method,
which fits a fractionally integrated ARMA model to the
data. The quality of the results depends on the correct
choice of the underlying model, which might not be
trivial. Furthermore, the Whittle estimator assumes
normal distribution of the time series, which is usually
not the case considering hydrological data. Another
method performing well in the tests of Montanari et al.
(1999b) is the aggregated variances algorithm. A
comparison of 12 estimators applied to artificially
generated series (using fractional Gaussian noise and
fractionally integrated time series) was conducted by Rea
Copyright © 2012 John Wiley & Sons, Ltd.
et al. (2009). They find the Whittle estimator to be among
the most accurate methods when distinguishing time
series with long memory and those with other non
random components. Tyralis and Koutsoyiannis (2011)
test 12 methods on generated fractional Gaussian noise
series. In this study, three methods estimating both the
Hurst coefficient and the variance of the time series
simultaneously are included. The authors conclude, that
these three methods, a maximum likelihood estimator
(McLeod and Hipel, 1978), least squares based on
standard deviation (Koutsoyiannis, 2003), and a newly
proposed method least squares based on variance (LSV)
are ‘more accurate’ compared to the other methods in test
(including the rescaled range, regression on periodogram,
the aggregated variances algorithm, and a modification of
the Whittle estimator - the local Whittle estimator
(Robinson, 1995). Furthermore, according to Tyralis
and Koutsoyiannis (2011), the LSV method is computa-
tionally faster compared to the LSSD and ML algorithms;
thus, it is more suitable for long series of records, which is
our case. The above listed studies analyze generated
(artificial) time series with chosen properties where clear
comparisons of estimated and prescribed Hurst coeffi-
cients can be established. However, a comparison can not
be made based on real data, whose exact properties are
never known.
There are several studies analyzing long range

dependence on actual, non-artificial data using different
methods. Local scale studies include Radziejewski and
Kundzewicz (1997), Montanari et al. (1999a), and Zhang
et al., (2008), which all detect long range dependence in
the discharge data sets.
On a larger scale, Pelletier and Turcotte (1997)

conducted a study estimating the Hurst coefficient from
average power spectra of monthly discharge data of 636
catchments in the United States and found long range
dependence. Koscielny-Bunde et al. (2006) conducted a
study of 41 series of daily river runoff worldwide using
wavelet-based techniques, again having detected long
range dependence in the data. Ehsanzadeh and
Adamowski (2010) found long range dependence in
weekly summer/winter low flows of approximately 200
Canadian stations and noted that long range dependence
had strong influence on trend estimation. Lye and Lin
(1994) tested long range dependence of peak flow series
of 90 Canadian rivers based on rescaled range analysis
and concluded there is ‘fairly high probability of long-
term dependence’. Mudelsee (2007) found H of monthly
streamflow to increase along the stream network for four
out of six rivers which they explained as a ‘result of
spatial aggregation of short-memory reservoir contribu-
tions in the network’. While there have been numerous
studies testing for the presence of long range dependence
in streamflow data, very little has been done on analyzing
the hydrological controls on the long range dependence.
The aim of this paper is therefore to analyze the long-term
behaviour of streamflow with respect to possible drivers.
Specifically, we address the following questions: What
are the Hurst coefficients of mean daily discharge time
Hydrol. Process. 28, 1573–1586 (2014)
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series of European rivers? Are the estimated Hurst
coefficients consistent for various methods? What are
the factors influencing the Hurst coefficient in these data?
In order to address these questions, we first estimate the
Hurst coefficients of discharge time series of European
rivers using five different methods and examine the
consistency of the results (meaning compare the Hurst
coefficient estimates calculated by each of the methods).
In a second step, we correlate the Hurst coefficients
so obtained with various catchment attributes to find
possible drivers of long range dependence.
METHODOLOGY

The Hurst coefficient

Long range dependence is numerically expressed by
the Hurst coefficient H2 (0.5, 1]. In general holds
H2 [0,1]. For H = 0.5, the time series is random noise.
For H< 0.5, the time series is said to be antipersistent, but
this case is rarely of interest in hydrology (Koutsoyiannis,
2005). Processes with long-term persistence have the
property of slowly decaying autocorrelation

rt � Ct2H�2 t ! 1 (1)

where rt=Corr[Xt,Xt+ t] is the autocorrelation function
of a weakly stationary time series Xt, t= 1, 2, . . . with
finite variances (Montanari et al., 1999b) and C is a
constant (note that stationarity does not exclude the
possibility of long memory, because even for high lags,
autocorrelation might still depend only on the time lag).
Based on the literature (Montanari et al., 1999b;

Koutsoyiannis, 2003; Grau-Carles, 2005; Tyralis and
Koutsoyiannis, 2011), five estimators were selected here:

• Rescaled range (R/S),
• Regression on periodogram,
• Whittle estimator,
• Aggregated variances, and
• LSV.

A description of themethods can be found inAppendixB.

The data were deseasonalized prior to the Hurst
coefficient estimation. The seasonality in the mean was
removed by subtracting a moving average of daily means
over 15 days. The seasonality of higher than the first
moments was not removed. Denote Xi, j a time series,
where i= 1, . . ., 365 stands for the days of the year and
j= 1, . . ., ny represent the years with ny= dN/365e the
number of years and N the number of days. Then, the daily
averages are obtained as �Xi ¼ 1=ny

Xny

j¼1
Xi; j and the

applied filter is Ft ¼ 1=15
X7

i¼�7
�X t mod 365ð Þþi (mod being

the rest after division) with appropriate modifications for
values at the beginning and the end (t< 7 and t>N� 7).
Thus, the resulting series is

X dð Þ
t ¼ Xt � Ft (2)
Copyright © 2012 John Wiley & Sons, Ltd.
Correlation of Hurst coefficient and catchment attributes

As measures of correlation between the Hurst coefficient
estimates and the catchment attributes Spearman’s r and
Kendall’s t are used. Spearman’s r estimates how well the
dependence between the two considered variables can be
expressed by a monotonic function. It is given by

r ¼
XnTS

i¼1
hi � �hð Þ ai � �að ÞXnTS

i¼1
hi � �hð Þ2

XnTS

i¼1
ai � �að Þ2

� �0:5 (3)

where hi and ai are the ranks assigned to theHurst coefficient
estimates and the catchment attributes, respectively. nTS is
the total number of the runoff time series analyzed.
Kendall’s t is based on rank comparison, assessing the

number of same ordered pairs of each of the variables:

t ¼ nc � nd
0:5nTS nTS � 1ð Þ (4)

where nc and nd are the number of concordant and
discordant pairs, respectively. A pair of observations hi, ai
is concordant if hi> ai and discordant for hi< ai. Both of
these correlation measures range between (�1, 1). Values
close to zero indicate in both cases that the variables are
almost uncorrelated. The calculated values will be given
with the result of a statistical test with the null hypothesis
H0: The Hurst coefficient and the respective attribute are
statistically uncorrelated.
DATA DESCRIPTION

Time series of mean daily discharges of European rivers
were analyzed. The data were provided by the Global
Runoff Data Centre (GRDC, 2011) and by the UNESCO
FRIEND database.
The character of the analyses requires as long records

as possible, otherwise long and short-term dependencies
or trends can be difficult to distinguish (Montanari, 2003).
In order to maintain relatively uniform spatial coverage of
Europe and to minimize estimation uncertainty, only data
sets with a minimum length of 59 years were considered.
The data were subject to preliminary analysis. The runoffs
used in this paper are originating mostly from large rivers;
thus, the effect of human interventions (such as
urbanization or agriculture) on storage is expected to be
small, with prevailing effects of the climate (Blöschl
et al., 2007). However, records with evident structural
changes, such as shifts in the mean, which may have been
due to anthropogenic influences such as dam or reservoir
construction, were discarded. Records with missing data
were not considered either. A total of 39 streamflow time
series remained which are the basis of the analyses in this
paper. A brief overview of the dataset, including the number
of records per country with the associated time series
lengths, is shown in Table I. A more detailed overview
including the estimation results, time series length, and
catchment areas is given in Table AI. The geographical
distribution of the stream gauges is shown in Figure 1.
Hydrol. Process. 28, 1573–1586 (2014)



Table I. Number of stream gauges and streamflow record length
by country

Country Number of stations Record lengths (years)

Austria 1 115–115
Czech Republic 2 88–92
Germany 10 82–159
Denmark 4 96–164
Finland 1 100–100
France 1 128–128
Italy 4 59–68
United Kingdom 2 126–135
Spain 3 63
Switzerland 2 96–98
Norway 6 87–127
Romania 1 150–150
Slovakia 2 94–107
Total 39 59–164
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The attributes, for which the correlations were estimated,
can be divided into two categories. The first group is the
catchment characteristics, including climate:

• Log value of the catchment area logAi

• Mean annual air temperature Ti of the catchment area
for the respective gauge for the period 1950–2000.

• Mean annual precipitation Pi of the catchment area for
the respective gauge for the period 1950–2000.

• Mean elevation Ei of the catchment area

The second group contains runoff related characteristics
including record length:

• Log value of the (long-term) mean of daily discharge
log�Qi
Figure 1. Location of the stream gauges in Europe

Copyright © 2012 John Wiley & Sons, Ltd.
• Specific mean discharge qi ¼ �Qi=Ai

• Seasonality of monthly flows expressed by the
maximum Pardé coefficient (Pardé, 1947)

Pki ¼ max
1≤j≤12

12
Ni

XNi

l¼1

Q ið Þ
jlX12

j¼1
Q ið Þ

jl

0
@

1
A (5)
• where Qlj is the mean monthly runoff for month j and
year l. This value ranges between 1 and 12. Low values of
Pki indicate rather uniform distribution of runoff over the
year, whereas high values mean stronger presence of
seasonal variations in runoff (Parajka et al., 2009).

• Log time series length (in days) Ni

Where i=1 . . . 39 is the index of the station and Ni is the
respective series length. The precipitation, elevation and
temperature data were obtained from the Catchment
Characterization and Modelling database (Vogt et al., 2007).
RESULTS

Estimation of the Hurst coefficient

The estimates for each method are shown in Figure 2. On
the horizontal axes are the indices of the gauging stations
ranked based on the periodogram regression estimation
results. The estimatedHurst coefficients range between 0.57
and 1. This means that the analyses indeed suggest long
range dependence for all data sets, using any of themethods.
The aggregated variance method tends to give the lowest H
estimates while the LSV method tends to give the largest H
estimates. Indeed, the according to the LSV method H=1
for 21% of the rivers. Figure 3 shows the H estimates in a
geographical context. According to all methods, except
LSV, the Hurst coefficients are in general lower in Northern
Europe (Norway and Finland) than in Central and Southern
Europe. Another geographically consistent group is the four
Italian catchments with Hurst coefficient lower than those in
Central Europe for all but the aggregated variance method.
The agreement of the estimates is shown in more detail in

Figure 4 as a scatter plot of pairs of estimators. In order to
assess the degree of agreement of the estimators quantita-
tively, Kendall’s t and Spearman’s r were calculated. The
Figure 2. Estimated Hurst coefficients of daily runoff H for all methods.
On the horizontal axes are the indices of the runoff time series, ranked in

ascending order of H of the periodogram regression method

Hydrol. Process. 28, 1573–1586 (2014)



Figure 3. Estimated Hurst coefficients of daily runoff for all estimation methods

Figure 4. Scatter plots of the Hurst coefficients of daily runoff estimated by different estimation methods. Range of the axes is from 0.5 to 1 in all cases
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results are shown in Tables IV and V. All pairs of the
estimators show significant positive correlations at the 95%
significance level. The highest correlations are obtained
Copyright © 2012 John Wiley & Sons, Ltd.
between the R/S and aggregated variance estimators, and
the lowest correlations are obtained between LSV and
aggregated variance estimators.
Hydrol. Process. 28, 1573–1586 (2014)
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One way of comparing the estimators is calculating the
root mean squared error of a respective estimator est

RMSEest ¼ 1
n

Xn
i¼1

Hest
i � �Hall

� �2 !1=2

(6)

where n is the number of data sets and �Hall is the average Hi

of all estimators. The RMSEest values are shown in Table II.
For R/S, periodogram, and the Whittle estimators, the
RMSEest are smaller than 0.06, making the estimators almost
equivalentwith respect to thismeasure. LSV and aggregated
variances estimates are shifted compared to estimates
obtained by the other methods (LSV estimates being
generally higher and aggregated variances estimates being
lower than the estimation averages), while the remaining
estimators are more consistent.
All further evaluations will be done for all estimation

procedures. The illustrative figures, however, will be
presented for the periodogram method, which has the least
RMSE, and the Whittle estimator. The Whittle estimator
figures are included since it is possible to estimate confidence
intervals for this method to illustrate the uncertainty of the
Hurst coefficient estimates. The calculation of the confidence
bounds does not incorporate the uncertainties in the estimator
assumptions (such as normal distribution); thus, the real
confidence bounds would be wider than those calculated as
part of the Hurst coefficient estimation.

Correlation between Hurst coefficient and catchment
attributes

Plots of the Hurst coefficient estimated by periodogram
regression and the Whittle method against the catchment
attributes are shown in Figures 5 and 6. The figures for the
two methods are rather similar, which is in accordance with
the high correlation between the H of the two estimators
(Kendal’s t= 0.47 and Spearman’s r= 0.64; Tables III
and IV). In the case of the Whittle estimator, the 95%
confidence intervals as described in Appendix B are plotted.
The confidence intervals indicate that the correlations are
not just an artifact of the sampling uncertainty. Figures 5
and 6 are complemented by calculating Kendall’s t and
Spearman’s r for all estimation methods and all catchment
attributes (Tables V and VI).
The correlations between the Hurst coefficient and the

catchment attributes are mostly consistent for all methods
of estimation. The least consistent method is LSV which
gives somewhat different results for a number of catchment
attributes (e.g. seasonality).
Table II. Deviations of the H estimates of daily runoff for each
estimation method from the mean of all estimators in terms of

root mean squared error

R/S Periodogram Whittle
Agg.
Var. LSV

RMSE 0.058 0.042 0.047 0.107 0.137
Estimate
mean

0.77 0.85 0.82 0.72 0.95

Copyright © 2012 John Wiley & Sons, Ltd.
Figure 5 shows an almost linearly increasing
dependency between H and catchment area. This effect
is not so pronounced when considering the Whittle
estimator on Figure 6. However, for all estimation
methods, such a positive correlation was tested as
significant. Both figures show that H also increases with
mean annual air temperature. Indeed, both correlation
measures confirm the dependency as significant for all
estimation methods except LSV. A decreasing depen-
dence between H and mean annual precipitation Pi can be
seen in Figures 5 and 6. However, the significance of this
dependence was confirmed only for the periodogram
regression and LSV method (for both Kendall’s t and
Spearman’s r). No clear dependence between the Hurst
coefficients and elevation can be seen on Figure 6 (the
Whittle estimator). A weak decreasing dependence on
the elevation can be seen for the periodogram estimator
on Figure 5. These graphical results are in accordance
with the significance of the correlations measures. Both
Kendall’s t and Spearman’s r are close to zero (< 0.07
in absolute value) for the R/S, Whittle, and aggregated
variance estimators. On the other hand, the periodogram
and LSV methods show significant correlations between
the Hurst coefficient and elevation.
With regards to the runoff-related catchment attributes,

a moderate degree of dependence between H and the
mean discharge (log) can be seen in Figures 5 and 6 for
both methods. This is in accordance with the correlations
in Tables V and VI. Unlike for the other catchment
attributes, here the two correlation measures give
significantly different results. Kendall’s t ranges between
0.20 and 0.35 (not significant for R/S and aggregated
variance) and indicates a lower degree of correlation than
Spearman’s rwhich ranges between 0.33 and 0.44where all
methods show significant correlations. When the discharge
is standardized by the catchment area (specific discharge),
the correlations to the Hurst coefficient become more
pronounced. The correlations are negative and relatively
strong with Spearman’s r ranging between �0.40 and
�0.67. H slightly decreases with the seasonality expressed
as the maximum Pardé coefficient (this coefficient was
calculated from nondeseasonalized monthly mean runoffs).
This weak to moderate negative correlation is statistically
significant for all except the LSV estimator. There is very
little correlation betweenH and the length of the runoff time
series with the exception of Spearman’s r=0.21 for LSV
and both correlation coefficients for the aggregated variance
(t= 0.23,r=0.32) method. The figures do not show any
dependence between the Hurst coefficient and the time
series length either.
The correlations described above should be in general

interpreted carefully. The correlations do not include
information about the actual causality between the runoff
and the analyzed climate and storage-based factors.
Further interpretation should be made under consideration
of the physical processes in the catchment and the
correlations between the distinct catchment attributes
(see Tables VII and VIII). For example, it can be seen that
elevation and precipitation are rather strongly positively
Hydrol. Process. 28, 1573–1586 (2014)



Figure 5. Dependency of the Hurst coefficient of daily runoff (estimated using the regression on periodogram) on catchment area, mean annual air
temperature, mean annual precipitation, elevation, mean discharge, specific mean discharge, seasonality of runoff (maximum Pardé coefficient), and the

length of the runoff time series. The green line represents a moving average over five data points
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correlated; thus, a question arises, whether the long-term
dependence in runoff is (partially) caused by elevation,
precipitation, or rather the combination of these two factors.
DISCUSSION AND CONCLUSIONS

The main objective of this study was to analyze correlations
between the Hurst coefficient as a measure of long range
dependence and various climate and storage-related
catchment attributes. As a first step, Hurst coefficients were
estimated for 39 European daily river discharge time series.
Copyright © 2012 John Wiley & Sons, Ltd.
For all estimators, the Hurst coefficients were larger than
0.5. This is in accordance with Koscielny-Bunde et al.
(2006), another large-scale study analyzing daily dis-
charges, where long range dependence was detected in
runoff. When considering those gauges, for which H was
estimated in both studies, both Koscielny-Bunde et al.
(2006) and this analysis find H> 0.8 in the majority of
cases. The only exception is the Severn at Bewdley, where
the estimated values differ by almost 0.2. This may be
related to different record lengths in the two studies and
different estimation method used. In general, a lower bound
Hydrol. Process. 28, 1573–1586 (2014)



Figure 6. Dependency of the Hurst coefficient of daily runoff (estimated using the Whittle method) on catchment area, mean annual air temperature,
mean annual precipitation, elevation, mean discharge, specific mean discharge, seasonality of runoff (maximum Pardé coefficient), and the length of the

runoff time series. Bars indicate 95% confidence intervals of H. The green line depicts a moving average over five data points

Table III. Kendall’s t correlations between the Hurst coefficients of daily runoff estimated by different methods

R/S Periodogram Whittle Agg. Variances LSV Average

R/S 1.00 0.62 0.49 0.67 0.36 0.53
Periodogram 0.62 1.00 0.47 0.56 0.65 0.58
Whittle 0.49 0.47 1.00 0.49 0.30 0.44
Agg. Variance 0.67 0.56 0.49 1.00 0.27 0.49
LSV 0.36 0.65 0.30 0.27 1.00 0.40

1580 E. SZOLGAYOVA ET AL.
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Table IV. Spearman’s r correlations between the Hurst coefficients of daily runoff estimated by different methods

R/S Periodogram Whittle Agg. Variances LSV Average

R/S 1.00 0.80 0.67 0.84 0.52 0.70
Periodogram 0.80 1.00 0.64 0.76 0.81 0.75
Whittle 0.67 0.64 1.00 0.67 0.42 0.60
Agg. Variance 0.84 0.76 0.67 1.00 0.41 0.67
LSV 0.52 0.81 0.42 0.41 1.00 0.54

Table V. Kendall’s t correlations between Hurst coefficients of daily runoff and catchment attributes. Those t, where the independence
hypothesis was rejected on a 95% level, are printed in bold. Rightmost column shows the average t over all estimation methods

R/S Period. Whittle Agg. Var. LSV Average

Log catchment area 0.31 0.40 0.35 0.28 0.42 0.35
Mean ann. temp. 0.35 0.34 0.31 0.51 0.14 0.33
Mean ann. precip. �0.18 �0.30 �0.04 �0.15 �0.37 �0.21
Elevation �0.12 �0.26 �0.04 �0.02 �0.34 �0.14
Log mean discharge 0.21 0.29 0.29 0.20 0.35 0.26
Spec. mean disch. �0.43 �0.47 �0.29 �0.38 �0.42 0.40
Seasonality �0.33 �0.27 �0.35 �0.25 �0.14 �0.27
Time series length �0.08 �0.00 �0.14 �0.23 0.15 �0.06

Table VI. Spearman’s r correlations between Hurst coefficients of daily runoff and catchment attributes. Those r, where the independence
hypothesis was rejected on a 95% level, are printed in bold. Rightmost column shows the average r over all estimation methods

R/S Period. Whittle Agg. Var. LSV Average

Log catchment area 0.45 0.54 0.52 0.45 0.56 0.51
Mean ann. temp. 0.47 0.51 0.41 0.65 0.24 0.46
Mean ann. precip. �0.26 �0.44 �0.02 �0.22 �0.56 �0.30
Elevation �0.19 �0.36 �0.07 �0.03 �0.50 �0.21
Log mean discharge 0.34 0.38 0.42 0.33 0.44 0.38
Spec. mean disch. �0.60 �0.67 �0.40 �0.55 �0.60 �0.57
Seasonality �0.45 �0.36 �0.48 �0.34 �0.20 �0.37
Time series length 0.11 0.02 �0.23 �0.32 0.21 �0.08

Table VII. Kendall’s t correlations between the catchment attributes. Those t, where the independence hypothesis was rejected on a 95%
level, are printed in bold. log(Ai) is the log of the catchment area, Ti and Pi are the mean annual temperature precipitation, respectively, Ei is
the mean catchment elevation, log �Qið Þ and qi are the log mean and specific discharge, Pki is the seasonality expressed by the Pardé

coefficient, and Ni is the time series length in years

log(Ai) Ti Pi Ei log �Qið Þ qi Pki Ni

Log catchment area 1 0.17 �0.17 �0.03 0.82 �0.31 �0.26 0.07
Mean ann. temp 0.17 1 �0.26 �0.24 0.05 �0.46 �0.24 �0.09
Mean ann. precip �0.17 �0.26 1 0.45 �0.03 0.64 �0.03 �0.13
Elevation �0.03 �0.24 0.45 1 0.05 0.43 0.07 �0.32
Log mean discharge 0.82 0.05 �0.03 0.05 1 �0.13 �0.19 0.08
Spec. mean disch. �0.31 �0.46 0.64 0.43 �0.13 1 0.12 �0.07
Seasonality �0.26 �0.24 �0.03 0.07 �0.19 0.12 1 �0.1
Time series length 0.07 �0.09 �0.13 �0.32 0.08 �0.07 �0.1 1
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for the Hurst coefficient of approximately 0.6 is found in
both studies.
Spearman’s r and Kendall’s t were used to compare the

estimators between each other, obtaining significant positive
correlations. This indicates that the estimation results are
consistent, even if we cannot verify how far they are varying
from the real Hurst coefficients of the data. In order to
obtain as realistic results as possible, we deseasonalized the
data prior to the analysis, thus avoiding systematic errors
Copyright © 2012 John Wiley & Sons, Ltd.
which the periodogram and R/S estimators produce in
presence of seasonality (Montanari et al., 1999b). The
strong correlation between R/S and the periodogram
regression (t= 0.62,r=0.80) is in accordance with an
economic study, comparing these two methods on stock
returns (Blasco and Santamaría, 1996).
Rather than in the exact value ofH, we were interested in

the strength of the long range dependence compared to those
of the other catchments in the study. Since the estimators
Hydrol. Process. 28, 1573–1586 (2014)



Table VIII. Spearman’s r correlations between the catchment attributes. Those r, where the independence hypothesis was rejected on a 95%
level, are printed in bold. log(Ai) is the log of the catchment area, Ti and Pi are themean annual temperature precipitation, respectively, Ei is the
mean catchment elevation, log �Qið Þand qi are the logmean and specific discharge, Pki is the seasonality expressed by the Pardé coefficient, and

Ni is the time series length in years

log(Ai) Ti Pi Ei log �Qið Þ qi Pki Ni

Log catchment area 1 0.30 �0.24 �0.04 0.94 �0.44 �0.38 0.10
Mean ann. temp. 0.30 1 �0.33 �0.33 0.10 �0.63 �0.34 �0.12
Mean ann. precip. �0.24 �0.33 1 0.58 �0.05 0.80 �0.04 �0.18
Elevation �0.04 �0.33 0.58 1 0.08 0.59 0.11 �0.46
Log mean discharge 0.94 0.10 �0.05 0.08 1 �0.19 �0.29 0.14
Spec.mean disch. �0.44 �0.63 0.80 0.59 �0.19 1 0.23 �0.11
Seasonality �0.38 �0.34 �0.04 0.11 �0.29 0.23 1 �0.15
Time series length 0.10 �0.12 �0.18 �0.46 0.14 �0.11 �0.15 1

Figure 7. Hurst coefficients of daily runoff for the stations at the Danube
River. Stations are ordered according to their position on the river,
Regensburg being the closest to the spring of the Danube and Orsova the

most downstream of the stations analyzed
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gave sufficiently consistent results, it was possible to
conduct an analysis of the correlations between Hurst
coefficients (indicating the strength of the long range
dependence) and the selected catchment attributes.
For this purpose, eight catchments attributes such as area,

elevation, precipitation, and temperature were used. For
each of them, Spearman’s r and Kendall’s t correlations
between H and the respective catchment attribute were
calculated. The dependencies between the Hurst coefficient
and the catchment attributes were mostly consistent for
all methods of estimation. The analysis showed that the
strength of the long range dependence does not significantly
depend on the elevation and time series length. Positive
dependence was found for mean discharge, catchment area,
andmean annual temperature. On the other hand, long range
dependence depends negatively onmean specific discharge,
mean annual precipitation, and seasonality. The correlation
betweenmean annual precipitation and the Hurst coefficient
was significant only for estimates obtained by two of the
applied estimation methods. These results are in general
agreement with the results of Gudmundsson et al. (2011),
who analyze correlations of low-frequency components of
runoff. Both studies found significant negative correlations
between mean precipitation/mean runoff (standardized by
area) and the low-frequency component of runoff (meaning
high Hurst coefficients in our case). Positive correlations
with air temperature are in accordance with this study as
well. The positive correlation with catchment area is in
accordance with Mudelsee (2007).
No significant correlation was found between the time

series length and the Hurst coefficient. This might imply
that the drawbacks of the Hurst coefficient estimation
procedures are not due to data scarcity, rather than due to
imperfect choice of the estimation method or the
unknown properties of the measured runoff.
The hydrological interpretations of the results can be

discussed in terms of catchment area effects, catchment
wetness, and snow processes. Catchment area effects are
reflected by two attributes, catchment area itself and river
discharge which are highly correlated with catchment area.
The positive correlations of H with both attributes suggest
that catchment storage will strongly affect the long range
dependence of runoff. Onemay expect larger storage in larger
catchments, both due to groundwater (particularly during low
flow periods) and inundations (particularly during flood
Copyright © 2012 John Wiley & Sons, Ltd.
periods). Indeed, catchment response times tend to increase
with catchment area (e.g. Gaál et al., 2012). The long-term
component of stream flow variability is relatively more
important compared to the short-term component when the
Hurst coefficient is high. This may be caused by the large
storage capacities of a catchment. To examine this effect in
more detail, Figure 7 showsH forfive stations at theDanube.
There is no clear increasing trend of H with the position in
the stream. This may be due to the size and complexity and
the number of anthropogenic influences in the Danube
basin. Further explanatory factors might be the high
correlations between the discharges of the Danube stations.
Catchment wetness effects are reflected by mean annual

precipitation and mean specific discharge. The negative
correlations ofHwith both attributes suggest wet catchments
exhibit low Hurst coefficients while dry catchments exhibit
large Hurst coefficients. Apparently, for wet catchments, the
short-term variability is stronger than the long-term
variability. In contrast, in dry catchments, there is stronger
variability on a long-term scale. This is not surprising for
two reasons. Wet catchments tend to have frequent rainfall
events without a clear low flow season which increases the
short-termvariability relative to dry catchments. Also, in dry
catchments, the between year variability of streamflow may
Hydrol. Process. 28, 1573–1586 (2014)
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be relatively large as runoff is more sensitive to rainfall
fluctuations than in wet catchments (Harman et al., 2011).
Snow processes are reflected by air temperature and the

seasonality index. The positive correlations of H with air
temperature and the negative correlations of H with the
seasonality (maximumPardé coefficient) suggest that snow-
dominated areas (low air temperature, large seasonal runoff
fluctuations, and therefore large seasonality) have less long
range dependence (and more short-term fluctuations) than
catchments where snow processes are less important.
Apparently, a snow-dominated stream flow regimes tends
to smooth out the fluctuations between years while there is
significant short-termvariability that deviates from themean
seasonal variation.
The findings of this study have important implications for

stochastic hydrological modelling especially in water
resources management and reservoir operation. For example,
in order to determine the supply risk from a reservoir, long-
term perspective is of interest; thus, the long range
dependence needs to be incorporated into the model. This
study suggests that, depending on the climate and catchment
characteristics, these types of models needed to be para-
meterised in a different way. From a more theoretical
perspective, it is also of interest to identify the main factors
related to climate and storage that influence the long range
dependence of stream flow at a regional scale.
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the Hurst coefficient estimates from all five methods. Ni is the time
2), and Pi is the mean annual precipitation (mm)

Hurst coefficient

Pi R/S Period. Whittle A.Var. LSV

20 646 0.84 0.98 0.75 0.78 1
83 1213 0.78 0.83 0.9 0.72 0.91
53 1230 0.8 0.89 0.89 0.75 0.94
53 961 0.82 0.9 0.86 0.77 0.99
31 904 0.83 0.93 0.89 0.75 1
70 992 0.77 0.89 0.86 0.74 0.98
32 807 0.83 0.96 0.96 0.78 1
99 846 0.82 0.92 0.91 0.79 0.99
13 1563 0.82 0.89 0.89 0.81 0.94
40 525 0.78 0.96 0.94 0.8 1
34 679 0.85 0.84 0.85 0.84 0.96
23 665 0.82 0.9 0.94 0.73 0.99
96 664 0.79 0.88 0.87 0.74 0.99
43 1288 0.77 0.75 0.79 0.7 0.84
66 793 0.78 0.84 0.82 0.73 0.97
20 1868 0.71 0.74 0.84 0.64 0.95
26 646 0.69 0.79 0.73 0.6 0.97
87 789 0.76 0.85 0.86 0.71 0.97
55 1087 0.72 0.76 0.79 0.64 0.88
00 751 0.77 0.96 0.91 0.76 1
49 567 0.77 0.95 0.77 0.71 1
06 649 0.76 0.83 0.76 0.71 0.97
66 1699 0.69 0.75 0.71 0.6 0.94
39 612 0.71 0.75 0.59 0.58 0.95
31 676 0.78 0.84 0.79 0.74 0.96
95 860 0.79 0.83 0.9 0.75 0.93
65 742 0.74 0.78 0.76 0.67 0.93
82 1006 0.68 0.7 0.82 0.6 0.95
32 878 0.78 0.93 0.86 0.73 1
25 916 0.74 0.79 0.68 0.64 0.95
82 1279 0.74 0.72 0.76 0.73 0.86
22 871 0.75 0.82 0.79 0.74 0.88
85 881 0.73 0.78 0.78 0.76 0.88
48 685 0.84 0.97 0.91 0.78 1
51 651 0.75 0.77 0.73 0.7 0.94
18 925 0.77 0.82 0.83 0.69 0.94
10 1090 0.7 0.75 0.78 0.64 0.88
02 2096 0.73 0.77 0.71 0.67 0.94
20 737 0.83 0.91 0.91 0.79 0.96
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APPENDIX B. HURST COEFFICIENT ESTIMATION
METHODS
RESCALED RANGE STATISTICS

Assume observation time series of length N and let
Y nð Þ ¼

Xn

i¼1
Xi be a series of partial sums of the runoff

time series Xt.
Then, the rescaled rangeR/S(n) (Hurst, 1951) is defined as

R=S nð Þ ¼ max0≤t≤n Y tð Þ � t
nY nð Þð Þ �min0≤t≤n Y tð Þ � t

nY nð Þð Þ
1
n

Xn

i¼1
X2
i � 1

n2
Y nð Þ2

� �1=2
(7)

In case of long memory

E R=S nð Þð Þ � CnH as n ! 1 (8)

where C is a constant, n is the number of observations,
and H is the Hurst coefficient.
By taking the logarithm of Equation (8), we obtain

ln E
R nð Þ
S nð Þ

� �� �
¼ Hln nð Þ þ ln Cð Þ (9)

Now, let us consider a subdivision of the time series
into K blocks of size N/K, and let ki= iN/K be the starting
points of each block. In order to obtain the estimator of H,
Equation (7) is first evaluated for each n and ki as far as
ki+ n≤N, thus obtaining a series R(ki,n)/S(ki,n) for each
starting point ki and for each length textitn. The Hurst
coefficient estimate is then given by the slope of a
regression line between ln(n) and the logarithm of the
rescaled range R(ki,n)/S(ki,n).
According to Teverovsky et al. (1995), the ‘low end’ of

the plot is not suitable for estimation, since any possible
short range dependence in the time series would result in
a ‘transient zone’ (as described in Salas et al., 1979) in
this area. The very high end of the plot is not suited either,
since here too few points are present to make ‘reliable
estimates’. For this reason, we estimated the Hurst
coefficient only from the R(ki,n)/S(ki,n) from the central
part of the plot (Montanari et al., 1997).
REGRESSION ON THE PERIODOGRAM

Geweke and Porter-Hudak (1983) showed, that when
considering the periodogram of the time series given by

I lð Þ ¼ 1
2pN

XN�1

j¼0

Xje
�ijl

 !�����
�����
2

o ¼ 2pk
N

;8k ¼ 1; . . . ; T

	 


(10)

where T ¼ ul n�1
2

� �
, l are the frequencies, the following

equation holds:

ln I lð Þð Þ � c� dln 4sin2 l=2ð Þ� �
(11)

where c is a constant (dependent on the variance of the
time series).
Copyright © 2012 John Wiley & Sons, Ltd.
Thus, fitting a regression line on the logarithm of the
frequencies and logarithm of the periodogram delivers an
estimate for d with d= 1� 2H. T gives the upper limit for
the frequencies used in the regression. As suggested in
Taqqu and Teverovsky (1998), we use ul= 0, 1, i.e. the
bottom 10% of the frequencies.
WHITTLE ESTIMATOR

The Whittle estimator is a likelihood-based method from
the frequency domain. The Hurst coefficient is obtained
by minimizing the function

Q Hð Þ ¼
Z p

�p

I lð Þ
f l;Hð Þ dl (12)

where I(l) is defined as in Equation (10) and f(l,H) is the
spectral density. While performing the actual minimization,
Equation (12) is discretized to Beran (1994)

Q Hð Þ ¼
XN�1ð Þ=2½ �

j¼1

I lj
� �

f lj;H
� � (13)

and it is assumed that the data follows either a fractionally
integrated moving average process ARFIMA(p,d,q) or a
fractional Gaussian noise (with d=H� 0.5). We assumed
an ARFIMA(p,d,q) process.
The parameters p, q were obtained by fitting a ARFIMA

(p,d,q) model to some of the runoff series for all
combinations of the parameters based on the (partial)
autocorrelation function. We then selected the most
appropriate model based on the minimum of the Akaike
criterion. Since the choice of p = 1, q= 1 was suitable for
the series analyzed, we used these parameters for all time
series in the study.
For the Whittle estimator, construction of confidence

intervals is possible. We constructed 95% confidence
intervals as (H� 1.96(V/N)0.5,H+ 1.96(V/N)0.5). Where

V = 2D� 1 with Dij ¼ 1=2p
Z p

�p

@

@θi
logf lð Þ @

@θj
logf lð Þdl is

the estimator of variance obtained from Equation (13)
(Rosse, 1996).
AGGREGATED VARIANCE

Consider the averaged aggregated series

Xk
i ¼

1
k

Xik
l¼ i�1ð Þkþ1

Xl i ¼ 1; 2; . . . N=kb c (14)

Then, the variance of this series is estimated by

Var^X kð Þ ¼
XN=k

i¼l
X kð Þ
l � �X

� �2
N=k

(15)

One plots the logarithm of the variances (Equation (15))
of the aggregated series (Equation (14)) against the
respective aggregation length k. The points so obtained
should lie on a straight line with slope 2H-2 from which H
Hydrol. Process. 28, 1573–1586 (2014)
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was estimated by regression. Only the central region of the
plot was considered in the regression, since the short range
dependencies affect the low end of the plot and an
insufficient number of blocks affects the high end of the
plot (Teverovsky et al., 1995).
LSV

Another method in the temporal domain is the LSV method
(Tyralis andKoutsoyiannis, 2011). LSV estimatesH and the
variance of the time series simultaneously, offering an
unbiased estimator of both parameters, if the assumption of
self-similarity and normal distribution of the data is fulfilled.
The method is based on an unbiased estimator of the
variance of Xn for long range-dependent time series derived
in Beran (1994). Denote gt =Cov[Xt,Xt+ t] the autocovar-
iance function of Xt. Then, based on

E S2
� � ¼ N � 1� 2

XN�1

k¼1
1� k=Nð Þrk

N � 1
g0: (16)

and on the property of the series Z(k)

Var Z kð Þ
� �

¼ k2Hg0 (17)
Copyright © 2012 John Wiley & Sons, Ltd.
one obtains a bias for the variance estimate on all scales
(depending on H):

E S2 kð Þ
� �

¼ N=k � N=kð Þ2H�1

N=k � 1
gk0 (18)

Where Z(k) is defined as

Z kð Þ
i ¼ kX kð Þ

i (19)

and S2(k)

S2 kð Þ ¼
XN=k

i¼1
Z kð Þ
i � �Z Nð Þ

i

� �2
N=k � 1

(20)

By minimizing an error function

e2 s2;H
� � ¼ Xn=10½ �

k¼1

E S2 kð Þ� �� s2 kð Þ� �2
kp

(21)

(which is done numerically) one obtains the estimate for
H. This method furthermore allows a graphical depiction
of the standard deviation against all scales (a climacogram
Koutsoyiannis, 2010), thus providing a way to visually
verify the validity of the scaling law for each scale.
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