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a b s t r a c t

Geostatistical methods have been applied only to a limited extent for spatial interpolation in applications
where the observations have an irregular support, such as runoff characteristics along a river network
and population health data. Several studies have shown the potential of such methods, but these
developments have so far not led to easily accessible, versatile, easy to apply and open source software.
Based on the top-kriging approach suggested by Skøien et al. (2006), we will here present the package
rtop, which has been implemented in the statistical environment R (R Core Team, 2013). Taking
advantage of the existing methods in R for analysis of spatial objects (Bivand et al., 2013), and the
extensive possibilities for visualizing the results, rtop makes it easy to apply geostatistical interpolation
methods when observations have a non-point spatial support. The package also offers integration with
the intamap package for automatic interpolation and the possibility to run rtop through a Web Service.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

For many applications where a process has been observed, it is
also necessary to have predictions of the process at locations
without observations; this could be for visualization purposes, for
input in a different model, or for further analysis. There exists an
appealing set of methods for such predictions, based on a model of
spatial correlation between random variables defined at observa-
tion and prediction locations. These are commonly referred to as
geostatistical methods (Isaaks and Srivastava, 1989) due to the
background from mining, although similar methods were also
developed within meteorology (Gandin, 1963) and referred to as
objective methods. Kriging is defined as the best linear unbiased
estimator for spatial data, i.e. a linear interpolation method where
the expected bias is zero and the expected interpolation error is
minimized. One major advantage of these methods is that they can
give an estimate of the prediction uncertainty in addition to the
prediction itself.

Whereas geostatistical and similar methods mostly have been
developed for and applied to observations with point support or a
regular support (e.g. pixels from satellite images), and also to make
predictions for areas or volumes (Journel and Huijbregts, 1978),
many data sources have a more irregular support in time and/or

space, such as runoff related data and aggregated health data. The
literature shows some different approaches to solve the interpola-
tion problem for observations with non-point support (Goovaerts,
2006, 2008; Gottschalk, 1993; Gottschalk et al., 2006; Gotway and
Young, 2002; Kyriakidis, 2004; Sauquet et al., 2000; Skøien et al.,
2006). Although all these studies make similar assumptions and
solve the problem in a similar way, there has not yet been any
easily accessible, easily applicable and open source software that is
able to interpolate such data.

Based on the top-kriging approach suggested in Skøien et al.
(2006), and extended with suggestions by Gottschalk (1993) and
Gottschalk et al. (2011), we present the package rtop, which has
been implemented in the open source statistical environment R (R
Core Team, 2013). The R environment includes a large range of
tools for data analysis and visualization and is a platform where it
is easy to extend the existing system with new methods in a
package system. Several packages already deal with spatial data
within R (Bivand et al., 2013), but none of these can do geostatis-
tical interpolation with a variable spatial support of observations
taken into account. rtop therefore makes it considerably easier to
do such interpolation and to use visualize results, in comparison to
former implementations of the method. And although the top-
kriging method was originally developed for interpolation of
runoff characteristics, we also suggest that the package can be
useful for a number of other analyses such as health statistics from
administrative regions, aggregated forest data and remote sensing
images.
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There are several other R-packages that can do some similar
operations. The dissever-package (Malone et al., 2012) can for
example do downscaling of remote sensing images, but it is based
on regular areas and is not available on CRAN. The SSN-package
(VerHoef and Peterson, 2010) is able to do interpolation along
stream networks, but this is based on a different theory which
does not take the areal support into account. It also requires
preprocessing of the stream network with the STARS geoproces-
sing toolset running under ArcGIS.

The constrainedKriging-package (Hofer and Papritz, 2011) can
do interpolation to irregular blocks, but not from observations
with irregular supports, and does not include variogram fitting
tools comparable to rtop. It is also possible to make extensions to
the gstat-package (Pebesma, 2004) for interpolation between
different supports, but this is currently not in the code itself, and
it is not possible to fit variograms for such observations. It is also
likely that the framework of the INLA-package (Rue et al., 2013)
can deal with the same type of problems as rtop, but such
functionality has, to our knowledge, not yet been implemented.
Also the C-code of the psgp-package (Barillec et al., 2011) can in
theory interpolate observations and predictions with a spatial
support, but this is not available from the R-package.

rtop is currently the only package which provides all necessary
functionality for interpolating data with variable spatial support.
In this paper we demonstrate the package with an example from
hydrology: the interpolation of streamflow along river networks,
where it was earlier necessary to combine the use of spreadsheets,
analyses tools, graphical tools and GIS to perform the interpola-
tion. We show how rtop can be applied to carry out this chain of
analyses within R, to get an easy solution for the river network
problem and other problems of spatial interpolation with a
variable support.

2. Theory

The rtop package is based on the top-kriging method presented
by Skøien et al. (2006), but also includes simplifications suggested
by Gottschalk (1993). The theoretical background of top-kriging is
briefly described below, with some additions regarding validity.

2.1. Assumptions

The methods implemented in the rtop package are mainly
based on two assumptions. The first is that the observed variable
of interest can be seen as the output from a continuous process in
space and/or time. The process is usually not observable at a local
(point) scale, but as an integrate or average over some larger area
or time interval, referred to as spatial or temporal support. This
process can, for example, be the runoff generating process in
hydrology, the probability of a single person contracting a certain
disease in health statistics or spatial analyses of plots of forested
areas. The observed values can then in most cases be seen as the
aggregates (linear averages) of local realizations of the process
over the support, such as runoff per unit area (specific runoff) and
the percentage of a population contracting the disease. The
assumption of a linearly aggregating process can in general be
somewhat relaxed in the sense that the process needs to aggregate
linearly within the range of supports of the observations and
prediction locations. In the case of runoff generation, this means
that we assume that the specific runoff from catchments and
basins can be seen as the average of the runoff generated in sub-
catchments, but that the connection between runoff generation
and runoff might be more complicated and intermittent for
smaller scales.

The second assumption is the general stationarity assumption
for geostatistical methods, i.e., that expected variance between
observations is a function of separation distance. The implementa-
tion of the method does not take non-stationarity of the mean into
account, as commonly done through universal kriging although it
is possible to add an external drift (Laaha et al., 2013). The
standard implementation, however, is a local kriging approach
where only the observations with the highest modeled correla-
tions are used for interpolation. The examples shown in Skøien
et al. (2008) indicate that predictions can be good despite viola-
tions of the stationarity assumptions, whereas estimates of pre-
diction uncertainty may be less reliable. This is similar to ordinary
kriging, and in accordance with general knowledge that the
quality of the predictions is relatively insensitive to the choice of
the variogram, at least as long as there are several observations
within the range of the variogram (e.g. Lark, 2000).

2.2. Kriging

Kriging is an interpolation method where the value of a spatial
variable at locations without observations is predicted as a
weighted average of the observations at the surrounding locations.
By assuming that the expected variance of the process measured
at different locations is only a function of distance, it is possible to
find the weights by solving a set of kriging equations (Cressie,
1991). The prediction ẑð x!0Þ of the variable z at position x!0 (i.e.
the target position) is

ẑð x!0Þ ¼ ∑
n

i ¼ 1
λizð x!iÞ ð1Þ

where λi is the interpolation weight of the measurement at
position x!i and n is the number of neighboring measurements
used for interpolation. The weights λi can be found by solving the
kriging system:

∑
n

j ¼ 1
λjγijþμ¼ γ0i; i¼ 1;…;n

∑
n

j ¼ 1
λj ¼ 1 ð2Þ

where the gamma value γij is the expected semivariance between
two measurements i and j, which can be modeled through a
theoretical variogram model. μ is the Lagrange parameter, which is
a parameter necessary for the unbiasedness constraint
ẑð x!0Þ ¼ zð x!0Þ. We can also, as described in Skøien et al. (2006),
take the uncertainty of the observations into account, by introdu-
cing a term for the measurement error variance si

2 of the
observations in the first line in Eq. (2) above, assuming uncorre-
lated measurement errors. The interpolation method can then be
referred to as kriging with uncertain data (KUD) (de Marsily, 1986),
and similar to factorial kriging with data containing measurement
errors.

2.2.1. Taking area into account
In the methods used here, the spatial variable Z(A) is assumed

to be representative for an area with a non-zero spatial support A:

ZðAÞ ¼ 1
jAj

Z
A

zð x!Þ d x! ð3Þ

where zð x!Þ is the value at location x! and jAj refers to the size of A.
We assume a constant mean, as mentioned above, meaning that
EðZðAiÞ�ZðAjÞÞ ¼ 0. If a non-zero support A is taken into account,
the kriging system remains the same, but the semivariances
between the measurements must be integrated over the supports
(Cressie, 1991, p. 66), as was done in Skøien et al. (2006). We can
assume the existence of a point variogram γp, which is valid at the
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point scale even if the process itself might not be observable at
point scale. Our interest is rather that this point variogram can
describe the scaling of the variability between areas as a function
of their spatial support. The semivariance between two observa-
tions with supports Ai and Aj can then be found through regular-
ization of the variogram (Skøien et al., 2006; Cressie, 1991):

γij ¼ 0:5� VarðZðAiÞ�ZðAjÞÞ ¼
1

jAijjAjj
Z
Ai

Z
Aj

γpðj x
!

i� x!jjÞ d x!i d x!j

�0:5� 1
jAij2

Z
Ai

Z
Ai

γpðj x
!

i� x!jjÞ d x!i d x!j

2
64

þ 1
jAjj2

Z
Aj

Z
Aj

γpðj x
!

i� x!jjÞ d x!i d x!j

3
75 ð4Þ

where x!i and x!j are position vectors within each area used for
the integration. The first part of this expression integrates the
semivariance between the two areas, while the integrated semi-
variance within the areas are subtracted in the second part,
causing the semivariance of Z(A) to decrease with increasing
support. The semivariances are inserted into the kriging matrix
Eq. (2) and the kriging system can be solved in the normal way to
calculate the weights λi for Eq. (1). Eq. (4) always gives a positive
semivariance.

The nugget effect needs a special attention when we are
dealing with observations with a support. Traditionally, this is
the discontinuity that is often seen in a variogram at a distance
infinitesimally larger than zero, caused by measurement errors
and variability at small distances.

The idea behind the regularization of the nugget effect in rtop is
the following. If we assume that small scale variability gives a
nugget variance equal to C0p for a unit area, the nugget variance of
a larger area will be C0p=ðA=A0Þ, where A is the size of the larger
area and A0 is the size of the unit area. This is similar to the
variance of the mean of a set of observations, and follows the
description by Chilés and Delfiner (1999) and Skøien et al. (2006).
For two areas of different sizes, Ai and Aj, the nugget variance will
then be the average of the nugget variances of these two areas, if
they are not overlapping. If they are overlapping, it will also be
necessary to subtract the part of the nugget variance that is
common to the two areas, as the small scale variability will be
equal for the part that is overlapping. The combined nugget effect
for two areas ðAi;AjÞ of different sizes can be then be generalized as

C0ðAi;AjÞ ¼ 0:5
C0p

jAij=jA0j
þ C0p

jAjj=jA0j
�2C0p �MeasðAi \ AjÞ

jAijjAjj=jA0j

� �
ð5Þ

where MeasðAi \ AjÞ represents the area shared by the two areas Ai

and Aj. If they are overlapping, then this will be the area of the
intersection of the two areas, if they are not then this will be zero.
For runoff related variables, the shared area is equal to the smallest
area if they are overlapping. The point nugget effect in Eq. (5) will
depend on the size of the unit area A0, and can therefore appear
unreasonably large if the unit area is small. However, we are, as
mentioned above, not interested in the validity of Eq. (5) at point
scale, but the ability to reproduce area-dependent scaling of the
variability at the size of the observation areas.

2.2.2. A simplification for regularization
It is computationally expensive to compute and integrate the

semivariogram values for all different pairs of distances between
the different areas. When fitting the variogram model to a
variogram cloud or to binned variograms through an iterative
optimization procedure, all semivariogram values between points
within the different areas have to be recomputed for each iteration

step. Gottschalk (1993) and Gottschalk et al. (2011) suggested to
simplify this calculation for regularization of covariances, by
applying the covariance model on the averaged distance, dn,
between areas instead of integrating the covariance function for
all distances between the areas, as is usually done when regular-
izing:

dn

ij ¼
1

jAijjAjj
Z
Ai

Z
Aj

ðj x!i� x!jjÞ d x!i d x!j ð6Þ

We can also use dn

ij for semivariograms, and find the regularized
semivariance between the two areas as

γnij ¼ γpðdn

ijÞ�0:5� ½γpðdn

iiÞþγpðdn

jjÞ� ð7Þ

where dn

ii represents the average distances within Ai. We will later
refer to this distance as the Ghosh (1951)-distance.

Averaging distances is mathematically simpler and computa-
tionally faster than calculating the semivariogram values for all
distances between two areas and it only has to be done once,
whereas traditional regularization implies that the regularized
semivariogram has to be recomputed for all candidate variogram
models. The effect of the approximation depends on the variogram
and the configuration of areas, but Gottschalk et al. (2011) indicate
that the approximation will usually give a good result for different
types of variograms, although the best results can be expected for
variograms which are close to linear shape, particularly near the
origin.

3. The rtop package

The new package rtop is based on a reimplementation of
the top-kriging method presented by Skøien et al. (2006) in
the statistical language/environment R (R Core Team, 2013). The
original implementation was in FORTRAN, whereas the rtop
package is almost entirely implemented as R code. Some compu-
tationally demanding functions have been kept in FORTRAN for
faster computation. The main functions have been implemented
using the S3 object handling of R, making it easier to use the same
functions for different types of objects. The package uses spatial
objects as defined in the sp-package (Bivand et al., 2013). It is
therefore straightforward to use existing functionality for import/
export of data and for visualization and analysis.

3.1. Creating an object for interpolation

The easiest interface to the methods in rtop is to store all variables
(such as observations, prediction locations and parameters) in an
rtop-object, which is created by a call to createRtopObject. The
different functions will take this object as an argument and add
their results as new elements of it. The only necessary object in the
call to createRtopObject is a SpatialPolygonsDataFrame with the
observed values (divided by support areas) and observation support,
although it would also be common to add a SpatialPolygons-object
with the prediction locations. Shapefiles or other standard formats
with the polygons can be imported with tools in rgdal (Keitt et al.,
2012) or other packages. It is also possible to use files describing the
coordinates of the polygons.

The user can set a range of parameters, all of them with default
values. A list of the most important parameters with their default
values is given in Table 1, a complete list is given in the help file of
getRtopParams. Some of the parameters will be further explained
in the application section.

The integration in rtop is based on discretized areas. The
discretization of the polygons is done once and the coordinates
of the discretization points are added to the rtop-object. It is
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possible to choose a random discretization, but experiments
indicate that regularly gridded discretization give numerically better
results for the same number of discretization points. As the size of
areas can differ by several orders of magnitude, we use an adaptive
grid where the resolution scales with the area. Starting with a coarse
grid covering the region of interest, this grid will for a certain area be
refined until a requested minimum number of points is within the
area. This method also assures that points used to discretize a large
support will be reused when discretizing smaller supports within the
large one, e.g. subcatchments within larger catchments. Fig. 1 gives
an example where one area (gray) is overlapping another (white).
The areas are discretized into 21 and 31 points, small points
indicating the smallest area, large points indicating the largest area.
The points from the largest area within the smallest area coincide
with some, but not all the points within the smallest area.

3.2. Variogram modeling and interpolation

The function rtopVariogram will calculate a sample variogram
based on the observations. The package supports both binned
variograms and variogram clouds. The variogram cloud is almost
identical to the variogram cloud from gstat (Pebesma, 2004), with
columns for the area sizes added. The binned variogram is not only
based on distance, but also on combinations of support areas. It is

therefore a function of three independent variables (distance, smal-
lest support, largest support) instead of the traditional variogram
which is only a function of distance. This can also be understood as
having a set of distance based variograms for different combinations
of support areas. The bins for distances and support are created with
regular spacing in the log10-domain. The distance between the
centers of gravity for the two areas is used for the distance-axis.

The theoretical point variogram cannot be fitted directly from the
sample data, due to the different support of the observations. Instead,
the function fitVariogram optimizes a point variogram whose
regularized semivariogram values yield best fit to the sample
variogram values. This can be referred to as a back-calculation of
the sample variogram (Skøien et al., 2006), similar to the deconvolu-
tion method described by Goovaerts (2008). Regularized semivario-
gram values are found from the variogram model for all the
combinations of support sizes and distances of pairs of observations,
or from the averaged distances and areas of the binned variogram. If
binned observations are used, the support is approximated by
squares, which allows the areas to partly overlap. Different variogram
models are available and also different least squares methods for the
fitting. The optimization procedure is based on the Shuffle Complex
Evolution Method (Duan et al., 1992).

The interpolation function (rtopKrige) solves the kriging system
based on the regularized semivariances. These are computed in a
separate regularization function, and are stored in the rtop-object
if it is necessary to redo parts of the analysis, as this is the
computationally expensive part of the interpolation.

The kriging result is added to the rtop-object as a SpatialPoly-
gonsDataFrame of name predictions. This element will be the same
as predictionLocations, with the predictions and prediction errors
added, using notation for a single interpolation variable from gstat
(Pebesma, 2004).

3.3. Interfacing the INTAMAP package

The rtop-package has also been developed so that it is possible
to use it through the intamap-package (Pebesma et al., 2011)
which is an R package for automatic interpolation. The intamap-
package is developed to run as the computational back-end of a
Web Service, and integration with this package thus makes it easy
also to access rtop through a Web Service.

The linking is possible due to a similar structure between the two
packages, and some adaptions of the rtop-package. Both packages use
a single object for passing data to and from functions. Most of the

Fig. 1. Discretization of two different areas, small dots in smallest area, large points
in largest area.

Table 1
Some of the most important parameters of rtop and their default values.

model ¼ “Ex1” Variogram model type, other models are Exp, Gau, Ga1, Sph, Sp1, Fra, where the 1 denotes a fractal version of

the variogram. The fractal version is obtained by multiplying the standard variogram by db , as in Skøien et al.
(2006). It can be shown that this is positive definite for small b (Laaha et al., 2014)

nugget ¼ FALSE Logical; if point nugget effect should be estimated
unc ¼ TRUE Logical; if TRUE it will look for observations errors in column unc
rresol ¼ 25 Minimum number of discretization points in each element (area or line)
cloud ¼ FALSE logical; if true use the variogram cloud
amul ¼ 2 Defines the number of areal bins within one order of magnitude
dmul ¼ 3 Defines the number of distance bins within one order of magnitude
fit.method ¼ 9 Defines the type of Least Square method for fitting of variogram. The methods 1–7 correspond to the similar

methods in gstat. Methods 8 and 9 are derived from the weighted least squares method suggested by Cressie
(1985)

gDist ¼ TRUE Use Ghosh-distance (Gottschalk et al., 2011) when fitting variograms and computing covariance matrices
(also possible to set individually with gDistEst and gDistPred)

maxdist ¼ Inf Maximum distance between prediction location and observation locations
nmax ¼ 10 For local kriging: the number of nearest observations to be used for kriging prediction, where nearest is

defined as the observations with the lowest modeled semivariance
hstype ¼ “regular” Sampling type for binned variograms
rstype ¼ “rtop” Sampling type for the elements, method “rtop” as described in Section 2.2.1
cv ¼ FALSE Logical; for cross-validation of observations
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element names within an object are equal, such as observations,
predictionLocations and params. The resulting predictions are also
similar to the prediction-format gstat (Pebesma, 2004). Both packages
modify and use parameters in a similar way, so that the parameters of
one package can easily be extended with the parameters of the other
package.

The rtop-package adds new methods for two of the main
functions of intamap: estimateParameters.rtop and spatialPredict.
rtop; these are wrapper functions around rtopFitVariogram and
rtopKrige. It is necessary to call the function useRtopWithIntamap
to be able to use the two packages together.

4. Example

In the example application we use top-kriging for prediction of a
hydrologic characteristic (average summer runoff) along river net-
works in the federal country of Upper Austria. The average summer
runoff is interpolated from the gauge locations to locations on the
river where runoff measurements were absent. The top-kriging
approach is applicable if we assume that the average runoff is a
linear aggregate of all runoffs generated within the upstream
contributing area. Runoff prediction at ungauged locations is a
fundamental issue in hydrology and has been the objective of a 10
years initiative of the International Association of Hydrological
Sciences (IAHS) just concluded in 2013 (Blöschl et al., 2013).

4.1. Data

The example application uses average summer runoff from 134
runoff gauges in the federal country of Upper Austria, including
their catchment polygons. This is a subset of an extensive data set
similar to the one analyzed by Skøien et al. (2006) and Skøien and
Blöschl (2007). For this example we will also use a polygon
shapefile of 542 catchments for predictions, and a line shapefile
of 720 river segments matching the network IDs of either
observations or prediction locations. A subset of this limited data
set is also included in the rtop package, but to be able to reproduce
the example in this paper it is necessary to download the example
data from a web site at the Vienna University of Technology,1

or conveniently with the function downloadRtopExampleData.

Different runs can give some deviations of the results due to the
use of random numbers in some functions, but set.seed(1) in the
start of the script assures that the results are reproduced exactly.

4.2. Starting the process

The polygons of the catchments are read from shapefiles, and
have the observations attached. In the example, the runoff has
been given as runoff per time unit, m3 s�1, which is a function of
catchment area. However, top-kriging requires the average runoff
per unit area (specific runoff in m3=s=km2).

library(rtop)

library(rgdal)

set.seed(1)

downloadRtopExampleData()

rpath ¼ system.file("extdata", package ¼ "rtop")

observations ¼ readOGR(rpath, "observations")

Fig. 2. Relationship between spatial variance of observations and area size, size of
circles is proportional to the number of observations in each bin. Fig. 3. Comparison of observed and regularized semivariogram values. Size of circle

is relative to the number of pairs in each bin.

1e−06

1e−05

1e−04

1e−03

1e−02

distance

ga
m

m
a

5 10 20 50

● point
300 vs 75
300 vs 30
75 vs 30
300 vs 300
75 vs 75

Fig. 4. Sample variogram and regularized semivariograms as a function of distance
and area. Solid lines represent regularized semivariograms of equally sized
catchments and dotted lines represent combinations of catchments sizes. Point
size is relative to the number of pairs in each bin.1 http://www.hydro.tuwien.ac.at/downloads.html
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predictionLocations¼readOGR(rpath,

"predictionLocations")

observations$obs ¼ observations$QSUMMER_OB/
observations$AREASQKM

The easiest way to use the functionality in the rtop-package is
by creating a particular rtop-object. Building the object can take
some time, as the function also will start building some of the
elements necessary at a later stage. We use the option gDist¼TRUE
(the simplification presented in Section 2.2.2) which will reduce
computation time.

rtopObj ¼ createRtopObject(observations,

predictionLocations,

formulaString ¼ obs�1, params ¼ list

(gDist¼TRUE, rresol ¼ 25))

To allow for more control over the different steps, it is also
possible to directly call the functions below by using the required
elements of the rtop object as arguments.

4.3. Variogram model

A sample variogram can be estimated as a variogram cloud or a
binned variogram, as explained in Section 3.2, and we can fit a
point variogram model with rtopFitVariogram. The fitting function
will call the function that creates the sample variogram (rtopVar-
iogram) if this is not a part of the rtopObject that is given as an
argument.

rtopObj ¼ rtopFitVariogram(rtopObj)

The output to the console indicates the convergence of the
optimization routine. “Best” refers to the best value of the error
function so far, “function convergence” gives the relative improve-
ment for the last kstop (usually 5) iteration cycles, and “parameter
convergence” gives the variability of the current set of parameters
relative to a stop criterion. Both criteria have to be below 1 for the
optimization procedure to stop.

The function checkVario can create up to four figures. The first
two explore the data before variogram fitting and interpolation,
whereas the last two show the correspondence between the
sample variogram and the fitted variogram. Three of these plots
are shown in Figs. 2–4.

rtopObj ¼ checkVario(rtopObj, cloud ¼ TRUE,

identify ¼ TRUE,

acor ¼ 0.000001)

The extra parameters to this function is cloud, a logical defining
whether to compare the individual semivariances with the reg-
ularized ones (as a variogram cloud) and identify, a logical that
makes it possible to identify catchment pairs for which the
semivariance is particularly large, and might not follow the
homogeneity assumption. acor is a variable that can be used to
transform the unit of the area label used in figures, e.g. from
square meters to square kilometers (giving labels as 1 km2 instead
of 1,000,000 m2 if the projection of the data sets is based on
meters).

Fig. 2 shows the relationship between area and dispersion
variance. The observations have been ordered in classes according
to their area, and the dispersion variance has been calculated from
the observations from each area class. One of the assumptions of
top-kriging is that the dispersion variance decreases with

increasing area, what should be visible from this figure. The sizes
of the dots are relative to the number of observations in each
area class.

The function also produces a figure (not included in this article)
showing the sample variogram cloud of the observations. It is
normal that some pairs of catchments exhibit quite large semi-
variances also for small distances, this can particularly be the case
for combinations of small and large catchments. However, large
differences could indicate deviations from the stationarity
assumption and might need further examination. In the
example in this paper, many of the high values are caused by
catchment 27 (14.0 km2), which has higher floods than its neigh-
bors. We do not have any other information that give reason to
exclude this catchment, and will continue using it in the further
analysis.

Fig. 3 shows a log–log scatter plot of regularized semivariogram
values plotted against the sample variogram values from a fitted
variogram model. The diagonal line is the 1:1 line, which would
represent a perfect fit. We can see that most of the points are
centered around the diagonal line, although there is quite a large
scatter. Such deviations can still be expected, similar to the
difference between a cloud variogram and a fitted variogram
model. The size of the dots is relative to the number of pairs in
each bin for binned variograms, showing that the largest outliers
are mainly bins with few pairs.

The last plot produced by checkVario (Fig. 4) is a comparison
between some selected bins of the sample variogram and the
regularized semivariance for those bins. The numbers in the key
refer to the combinations of areas, e.g., 300 vs 75 means the
regularized semivariogram as a function of distance for two
catchments of sizes 300 and 75 km2, respectively. The regular-
ized semivariances for the variogram model in this figure are
based on quadratic catchments, whereas natural catchments
usually are more stretched. We can see that the regularization
is not fully able to reproduce the variance reduction as a
function of area particularly for large distances. A part of
the reason for this is the (automatic) choice of areas for com-
parison. The fit appears slightly better for a different set of
areas, such as

rtopObj ¼ checkVario(rtopObj, acor ¼ 0.000001,

acomp ¼ data.frame (acl1 ¼ c(2,2,2,2,3,3,3,4,4),

acl2 ¼c(2,3,4,5,3,4,5,4,5)))
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Fig. 5. Scatter plots of observations and cross-validation predictions from the two
interpolation methods.
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where acomp is used to select the combination of area bins. The fit still
appears to be suboptimal, which could be a result of a suboptimal
optimization result or because the real variance reduction is more
complex than what we try to model with the methods in this paper.
However, the general tendency is correct that smaller catchments have
higher semivariances for large distances than the larger catchments.

From the figure we can also note that variogram values do not
approach zero for small distances for pairs of catchments with
different areas. This is because two catchments can share the same
centroid, but the smallest will then be a tributary of the larger
catchments, and there will be a variance between the observations
of these catchments.

4.4. Interpolation

In this subsection we present the results from interpolating the
mean summer runoff (using Eq. (1)) to new locations along the

river network, as well as a cross-validation of the ability to predict
at the observation locations.

4.4.1. Cross-validation
Cross-validation in rtop can be done easily by calling rtopKrige

with the parameter cv¼TRUE. See Section 4.4.2 for further options.
The result is in the predictions element of rtopObj, with column
names similar to those from cross-validation with krige in gstat.

rtopObj ¼ rtopKrige(rtopObj, cv¼TRUE)

predictions ¼ rtopObj$predictions
sstot ¼ sum((predictions$obs - mean(predictions

$obs))b2)
rtopsserr ¼ sum((predictions$obs - predictions

$var1.pred)b2)
rtoprsq ¼ 1 - rtopsserr/sstot

summary(predictions)

Fig. 5 presents the results from a leave-one-out-cross-valida-
tion carried out for the catchments above in the form of a scatter
plot with the observations of mean summer runoff on one axis and
the predictions on the other axis. We have also added the results
for the same catchments based on ordinary point kriging using the
center-of-gravity of each catchment and from the constrained
kriging approach of Hofer and Papritz (2011), using the point

Table 2
Some statistics (mean, R2, mean absolute error and mean error) from cross-
validation of the example data set with top-kriging, point kriging and constrained
kriging.

Summary statistic Top-kriging Constrained kriging Point kriging

Mean 0.03 0.031 0.031
R2 0.72 0.66 0.65
ME �0.00038 0.00053 0.00031
MAE 0.0068 0.0078 0.008
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Fig. 6. Top left: Relationship between kriging standard error and area. Top right: Relationship between residual and kriging standard errors. Lines represent þ/- two times
the kriging standard error. Bottom left: Histogram of z-score (residuals/kriging standard error) for top-kriging. Bottom center: Histogram of z-score for constrained kriging.
Bottom right: Histogram of z-score for point kriging. The lines represent the normal distribution for all bottom panels.
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variogram estimated by rtop. Point kriging was done with the
automap-package (Hiemstra et al., 2008), which is a wrapper for
automatic interpolation based on gstat (Pebesma, 2004).

The figure indicates that all methods perform reasonably well,
although there is a slightly larger scatter for the point kriging. All
methods fail in predicting the two highest observations correctly,
whereas point kriging overestimates some catchments, most likely
as a result of giving too large weights to the two small catchments
with high observations.

Table 2 shows some summary statistics of the cross-validation
from the three methods. Top-kriging performs slightly better for
the coefficient of determination (R2) and mean average error
(MAE). The small MAEs show that all methods are practically
unbiased, but (R2) increases from 0.65 to 0.71 for this example,
whereas the mean absolute error is slightly reduced from 25–26 to
22 percent of the mean of the observations (0.031 m3/s/km2).

Geostatistical interpolation methods will also give an estimate
of the prediction error in addition to the prediction itself in the
form of an estimated kriging variance or a kriging standard error
(square root of the kriging variance) . Fig. 6 shows the prediction
errors from the three methods in different ways.

The top left panel shows the relationship between the area and
the kriging standard error. Whereas the kriging standard errors from
top-kriging and constrained kriging decrease with increasing catch-
ment area, the kriging standard errors from point kriging are
independent of the catchment area. The decreasing trend from top-
kriging corresponds to our expectations, as stream flow is an
integrating process, so the specific runoff tends to vary more
smoothly along the stream for large catchments, and should thus
also be easier to interpolate. The decreasing trend is stronger for top-
kriging than for constrained kriging, although some of the difference
might depend on parameter settings in constrained kriging.

The top right panel shows the relationship between the cross-
validation residuals and the kriging standard error. Here we can
notice that all the catchments with a low kriging standard error from
top-kriging also have low residuals. The low kriging standard errors
therefore seem justified. The two lines correspond to þ/� two times
the kriging standard error, and the top-kriging residuals are in most
cases within these lines. The kriging standard errors from point
kriging are always high, whereas the kriging standard errors from
constrained kriging are somewhat smaller. There are, however, more
points from constrained kriging which are plotted outside the lines.

The two panels on the bottom show the z-score (residual divided
by kriging standard error) of the three methods (2, 6 and 1 z-scores
have absolute values above 7 for top-kriging, constrained kriging and
point kriging, respectively). This z-score should ideally have a N (0,1)
distribution, which is plotted with a line in the figure. We can see

that neither of the methods gives a z-score with a normal distribu-
tion, but top-kriging and constrained kriging deviates less from this
distribution than point kriging.

4.4.2. Prediction
The aim of top-kriging is to predict for locations without

measurements. Predictions can be made by a call to rtopKrige as
for the cross-validation:

rtopObj ¼ rtopKrige(rtopObj)

The function will first create variance matrices between the
observations catchments and between observation catchments
and prediction catchments if these are not already a part of
rtopObj. The result will be in the element called prediction of
rtopObj, accessible as rtopObj$predictions.

Some optional parameters to this function (also possible in the
cross-validation above) are nmax, the maximum number of
neighbors in a kriging neighborhood, maxdist, the maximum
distance to neighbors and wlim, which is an upper limit to the
sum of the absolute weights. Whereas the first two are for local
kriging, partly to avoid wrong results if the assumption of a
constant mean is wrong, and for reduction of computation time,
the last parameter is a method to limit the effect of possible
numerical problems that cause large weights, both positive and
negative.

To plot the predictions on the river network, it is necessary to
join the predicted values with the river network shape file. In the
example in this paper, we match the code EZGID of the prediction
(and observation) catchments with the code EZGA of the river
network.

rnet ¼ readOGR(rpath, "riverNetwork")

pred ¼ rtopObj$predictions
rnet$pred ¼ predvar1.pred[match(rnet$EZGA, pred

$EZGID)]
spplot(rnet, "pred", col.regions ¼ bpy.colors())

At this point, the river network only contains the segments with
predictions, and there will be some missing lines for all the segments
that represent observations. We can therefore add these observations
to the network, and also create a dot with a color code equal to the
river network at the gaging stations to see where observations have
been made:

at ¼ seq(0, max(rnet$pred, na.rm ¼TRUE), 0.01)

cols ¼ bpy.colors(length(at))
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cobs ¼ observations@data[, c("XSTATION",

"YSTATION", "obs")]

names(cobs) ¼ c("x", "y", "obs")

coordinates(cobs) ¼ � x þ y

cobs$class ¼ findInterval(cobs$obs, at)

spplot(rnet, "pred", col.regions ¼ bpy.colors(),

at ¼ at,

panel ¼ function(x, y, ...){
panel.polygonsplot(x, y, ...)

sp.points(cobs[, "obs"], cex ¼ 1, pch ¼ 16,

col ¼ cols[cobs$class]))})

This makes it easy to visualize how the predictions match the
observations, as seen in the left panel of Fig. 7. One can easily see
that the observations are fairly consistent with the observations.
The deviations are mostly in areas where there are large devia-
tions between adjacent stations.

We can also look at the uncertainty of the predictions by plotting
the coefficient of variation (CV: kriging standard deviation divided
by the prediction itself). This is shown in the right panel of Fig. 7,
where the river segments are colored according to the CV and the
stations are shown as dots. We can notice two things. First of all the
CV is consistently higher for the segments representing small
catchments, the larger catchments have smaller CV. We can also
note that the CV is slightly higher in the northern part of the figure,
something that comes from the lower observations and predictions

in this region. Note that we have clipped some of the lowest values
of the variance, some being negative due to the numerical issues,
and some of the highest values of the CV, for better contrasts.

After visualizing the result, it is also easy to write the result in
any vector format, such as a shapefile

writeOGR(rnet, dsn, layer, "ESRI Shapefile")

where dsn and layer refer to the directory and the name of the
shapefile to be created, respectively.

4.5. Prediction efficiency and limitations

The computation time will, in addition to the number of
observation and prediction locations, depend on the parameter
settings, such as the choice between Ghosh-distance or full
integration of the variogram, and on the number of discretization
points. The optimal choice of the latter will depend on the
correlation structure and on the distribution of observation loca-
tions. However, below we will show some analyses of different
parameter settings for illustrational purposes.

The computation time particularly depends on the choice
between Ghosh-distance and full integration of the semivario-
gram. Fig. 8 shows the computation time for doing different tasks
of the interpolation process, depending on the number of observa-
tions and predictions, and of different parameter settings. There is
first of all a large difference in computation time depending on the
use of Ghosh-distance (dashed lines) or integration of the vario-
gram (solid lines). Second, the total computation time appears

0 20 40 60 80 100 120 140

0

100

200

300

400

observations

tim
e 

(s
ec

on
ds

)

●

●

●

●

●

●

●

●

●● ●● ●● ●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● complete integration
● complete Ghosh
● createRtopObject integration
● createRtopObject Ghosh
● fitVariogram integration
● fitVariogram Ghosh
● krige integration
● krige Ghosh

0 100 200 300 400 500

0

100

200

300

400

predictions

tim
e 

(s
ec

on
ds

)

●

●

●

●

●

●

●

●

●● ●● ●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● complete integration
● complete Ghosh
● createRtopObject integration
● createRtopObject Ghosh
● fitVariogram integration
● fitVariogram Ghosh
● krige integration
● krige Ghosh

0 20 40 60 80 100
0

200

600

1000

1400

discretization points

tim
e 

(s
ec

on
ds

)

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●●●● ●● ●● ●● ●● ●●●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●● ●● ●●

●
●

●

●

●

●

● complete integration
● complete Ghosh
● createRtopObject integration
● createRtopObject Ghosh
● fitVariogram integration
● fitVariogram Ghosh
● krige integration
● krige Ghosh

Fig. 8. Computation time for different parts of the interpolation process as a function of observations, prediction locations and resolution. The number of observations,
prediction locations and discretization points are 134, 542 and 50, respectively, for the cases where they are not varied.

0 20 40 60 80

0.66

0.68

0.70

0.72

0.74

Resolution

R
−s

qu
ar

ed

Ghosh
integration

0 20 40 60 80

0.00

0.05

0.10

0.15

Resolution

R
el

at
iv

e 
pr

ed
ic

tio
n 

er
ro

r

Ghosh
integration

0 20 40 60 80

0.0

0.5

1.0

1.5

Resolution

R
el

at
iv

e 
va

ria
nc

e 
er

ro
r

Ghosh
integration

Fig. 9. Prediction efficiency as a function of resolution. Panels from the left: R-squared, relative prediction error (compared to an average of predictions with high resolution
interpolation) and relative kriging variance error (compared to the same predictions).

J.O. Skøien et al. / Computers & Geosciences 67 (2014) 180–190188



Author's personal copy

linearly dependent on the number of observations and the number
of prediction locations. The resolution seems on the other hand to
have an O2 effect on the computation time for full integration,
whereas the effect is less pronounced when using the Ghosh-
distance; there is only a small increase in computation time with
increasing resolution.

The effect of different parameters on the computation errors
will depend on the spatial correlation and on the distribution of
observation and prediction locations. However, for the example in
this paper, we can in the left panel of Fig. 9 see that good results
(high R2) can be achieved with relatively few discretization points.
This figure is based on an average of 10 cross-validation runs (the
variogram refitted every time) with different resolution, and the
highest R2 is observed when the number of discretization points is
set to 10, which means that there can be 10–40 discretization
points per catchment. There is only a small difference between the
results using Ghosh-distance and full integration.

The two next panels are also based on a comparison with the
average of the results from 10 cross-validations per resolution.
However, here we compare with an average of the cross-validation
results using full integration and 100 discretization points, as these
are the results that correspond to what should in theory be the
best prediction. The absolute prediction error (kriging variance
error) for each pixel has been found by subtracting and dividing by
the prediction (kriging variance) of the average described above,
and then taking the norm. These relative errors reach a relatively
stable level for 10–15 discretization points for the predictions and
15–25 discretization points for the kriging variance. It is therefore
in many cases not necessary to use a large number of discretiza-
tion points, not even for a good kriging variance.

5. Conclusions

An R package for interpolating observations with a non-point
support has been developed. This package is easy to use, is an
open source, and is developed within the R environment, which
can handle a large range of formats of input and output, and
simplifies creation of graphical output and diagnostics. The versa-
tility of R makes it possible to make most, if not all, of the analyses
within one framework, where it was earlier necessary to exchange
data between spreadsheets, visualization tools, analysis tools and
GIS. Some other R packages have some of the functionalities in
rtop, but none of them are able to fit variograms and make
predictions from a set of shapefiles without preprocessing.

The coefficients of determination (R2) of the predictions indi-
cate that rtop performs better than the other two methods,
although the differences in the visual comparisons were minor
in the example in this paper. We did not fully explore all possible
parameter settings of the constrainedKriging-package, so that it is
possible that better results could be obtained with further experi-
mentation with these. A possible reason for the small visual
differences is that large rivers in Upper Austria are draining a
range of different geological formations, which contributes to the
large differences in the observed values of specific discharge. The
diversity of hydrogeological conditions then violates the statio-
narity assumption of kriging, and an alternative approach could be
to split the study area into homogeneous regions.

However, we will claim that the method is based on a
conceptually better theory than ordinary point kriging for the
same data, and publishing an R package for this method allows for
using geostatistical methods within a field where such methods
have only been used in a limited set of applications. The method
also estimates kriging standard errors that can be used as a
measure of the prediction uncertainty, which cannot be correctly
estimated with ordinary kriging from this type of data.

The methods provided by this package are optimal in the least
squares sense as long as the main underlying assumption, the
intrinsic hypothesis, is valid. Particularly when used for streamflow
prediction, the data set will often consist of a combination of highly
variable runoff with large uncertainty and short spatial correlation in
and close to mountains, and lower specific runoff with lower
uncertainty and longer distance correlation in flatter regions. Further
developments should probably focus on methods which can improve
the predictions for these cases. A second limitation is that the method
is not likely to perform well when the size of the prediction areas is
very different from the size of the observed areas.

The prediction efficiency of top-kriging will to a large degree
depend on the density of gauges. Although not tested here, it is likely
that the difference between point kriging and top-kriging will be
larger for higher gauge density. Top-kriging explicitly takes the
nested structure of the catchments into account and will therefore
give better predictions for highly nested datasets. The difference is
likely to be smaller where few of the gauges are nested. For non-
overlapping data (such as some administrative records), the advan-
tage will depend on the configuration of administrative boundaries.
Estimates of prediction uncertainty will in all cases be better with a
top-kriging approach, as point kriging does not take the lower
sampling uncertainty for larger supports into account.

There are several choices to be made by the users of this
package. Our results indicate that the use of Ghosh-distance
achieves similar results as the integration of the variogram. The
small differences observed in Fig. 9 are most likely not significant.
And although we only looked at one particular example in this
paper, it seems like the number of discretization points can be
kept fairly low. Use of Ghosh-distance and the number of dis-
cretization points are currently the two most important choices
regarding computational speed. Liu and Journel (2009) have
suggested an alternative method for integration of the variogram,
based on a fast fourier transform (FFT), a method which has been
parallelized by Guan et al. (2011).

We have not properly analysed the memory consumption, as it
will depend on more than the parameter settings. However, for
this example, the largest memory consumption is caused by the
shapefiles of the catchments. With more regular polygons, and a
larger number of prediction locations or observation locations, the
covariance matrices can be even larger. These are matrices of size
nObs� nObs and nObs� nPred where nObs and nPred are the
number or observation locations and prediction locations, respec-
tively. This will, depending on the available memory, usually not
be an issue before the number of observations or predictions is in
the order of several thousands. A large number of prediction
locations are not a problem as long as the number of observation
locations is not too high (much more than 1000).

Some tests (not shown in this paper) also indicate that it is
preferable, both from a computational and a numerical point of
view to work with binned variograms when the number of
observations is in the order of 30–40 or higher, similar to what
is done for similar cases in ordinary kriging. The use of a nugget
effect in regularization is rather uncommon. When redoing the
examples of this paper with a separate regularization of the
nugget effect, this effect will for many pairs of catchments be of
the same magnitude as the regularized semivariance. An alter-
native could be to use a nested variogramwith a short range (1 km
in the example of this paper) for the small scale variability.
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