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Abstract:

Top-kriging is a method for estimating stream flow-related variables on a river network. Top-kriging treats these variables as emerging
from a two-dimensional spatially continuous process in the landscape. The top-kriging weights are estimated by regularising the point
variogram over the catchment area (kriging support), which accounts for the nested nature of the catchments. We test the top-kriging
method for a comprehensive Austrian data set of low stream flows. We compare it with the regional regression approach where linear
regressionmodels between low stream flow and catchment characteristics are fitted independently for sub-regions of the study area that
are deemed to be homogeneous in terms offlowprocesses. Leave-one-out cross-validation results indicate that top-kriging outperforms
the regional regression on average over the entire study domain. The coefficients of determination (cross-validation) of specific low
stream flows are 0.75 and 0.68 for the top-kriging and regional regression methods, respectively. For locations without upstream data
points, the performances of the twomethods are similar. For locationswith upstreamdata points, top-kriging performsmuch better than
regional regression as it exploits the low flow information of the neighbouring locations. Copyright © 2012 John Wiley & Sons, Ltd.
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INTRODUCTION

The estimation of stream flow-related variables is usually
based on regression methods between the stream flow
variable and physiographic catchment characteristics. If
the study domain is large or very heterogeneous in terms of
the low flow processes, a number of authors have suggested
to split the domain into regions and to apply a regression
relationship to each of the regions independently (e.g.
Nathan and McMahon, 1990; Gustard et al., 1992;
Aschwanden and Kan, 1999; Laaha and Blöschl, 2006b).
This is termed the regional regression approach. Recently,
geostatistical methods have been proposed for stream
networks. One approach is to treat the estimation on a river
network as a one-dimensional problem. Gottschalk (1993a)
was probably the first to develop a method for calculating
covariance along a stream network based on river distance.
Ver Hoef et al. (2006) and Cressie et al. (2006) proposed
a moving average approach for interpolating on the one-
dimensional river system, where the estimation either
proceeds upstream or downstream. Peterson and Ver Hoef
(2010) proposed a combination of these two methods.
Garreta et al. (2009) evaluated the three model types in the
context of summer stream temperature and nitrate concen-
tration and found the combined model to be superior to
each of the individual models.
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The second approach treats the river network as a two-
dimensional problem. In this approach, the runoff process
is conceptualised as a spatially continuous process which
exists at any point in the landscape, and stream flow is the
integral of local runoff over the catchment. Sauquet et al.
(2000) and Gottschalk et al. (2006) proposed a block-
kriging method where spatial dependence of catchments
with different, non-zero support is modelled by a
regularised covariogram. Skøien et al. (2006) extend the
work of Sauquet et al. (2000) to account for the stronger
spatial correlation between nested basins than between
un-nested basins. They showed that their method, known
as topological kriging or top-kriging, can be used, in an
approximate way, for a range of stream flow-related
variables including variables that do not aggregate linearly
and are non-stationary. Also, they apply a kriging with
uncertain data (KUD) estimator (de Marsily, 1986 p. 300;
Merz and Blöschl, 2005) to account for local uncertainties
of the observations.
The aim of this paper is twofold: (1) to test top-kriging

in the context of low stream flows, and (2) to compare it
with the regional regression method which constitutes the
actual benchmark for low stream flow regionalisation. The
analyses will be performed on a comprehensive Austrian
data set.
TOP-KRIGING METHOD

There are two main groups of processes that control stream
flow. The first group consists of runoff generating



Figure 1. Calculation of regularised variogram for two nested catchments
(schematic, from Skøien et al., 2006). Catchment i is nested within
catchment j, Ai and Aj are the respective catchment areas (support), and

s and u are the discretisation points within each catchment
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processes acting over the catchment area. These processes
are continuous in space. The second group is related to
runoff aggregation and routing. These processes are related
to the river network topology. The main idea of top-kriging
is to combine the two groups of processes in a geostatistical
framework. For this, runoff generation is conceptualised as
a spatially continuous process which exists at any point in
the landscape. Instead of observing a pointwise realisation
of this process, data z(A1), z(A2), . . ., z(An) are observed at
stream gauges, where

z Aið Þ ¼ 1
Aij j

Z
Ai

z xð Þdx (1)

and Ai denotes the spatial support of z(Ai). For stream flow
variables, Ai is the catchment which drains into a river
location xi, and |Ai| is its surface area. If we follow the
stream from the source to the mouth, the support increases
as the catchment area increases. In this context, the transfer
of information between river locations adds up to the area-
to-area change of support problem in geostatistics (e.g.
Gotway and Young, 2002), based on the classical
Euclidean distance metric. For spatial prediction on a river
location x0 with catchment area A0 from non-point samples
z(A1), z(A2), . . ., z(An), the linear block-kriging predictor
given by

ẑ A0ð Þ ¼
Xn
i¼1

liz Aið Þ (2)

is used. Assuming runoff generation as an intrinsic stationary
random process, the optimal weights li can be found by
solving the kriging system:

Xn
j¼1

lj�gij � ljs2i þ m ¼ �g0i i ¼ 1;. . .; n

Xn
i¼1

li ¼ 1

(3)

The �gij refers to the expected semivariance between
two observations i and j with non-zero support (see below),
m is the Lagrange multiplier from the constraint minimisa-
tion, ands2i represents the measurement error or uncertainty
of observation i. The kriging equations (Equation (3))
result from minimising prediction mean squared error
subject to unbiasedness constraints. The use of measure-
ment errors in the kriging equations is termed KUD
(de Marsily, 1986 p. 300).
Since the observations have a non-zero support A, the

expected semivariances �gij between the observations need
to be obtained by regularisation (Cressie, 1993, p. 66).
This means that instead of one variogram model, a family
of variogram models for different catchment areas
(kriging support) is used, which accounts for the different
scales and the nested nature of the catchments. Assuming
the existence of a point semivariogram gp, the expected
semivariance�gij between two observations with catchment
areas Ai and Aj, respectively, is:
Copyright © 2012 John Wiley & Sons, Ltd.
�gij ¼ 0:5 � Var z Aið Þ � z Aj

� �� �
¼ 1

Aij j Aj

�� ��
Z
Aj

Z
Ai

gp s� uð Þ ds du

�0:5 �
"

1

Aij j2
Z
Ai

Z
Ai

gp s� uð Þ ds du

þ 1

Aj

�� ��2
Z
Aj

Z
Aj

gp s� uð Þ ds du

#
(4)

s and u are position vectors within each catchment used for
the integration. The first part of this expression integrates
all the variance between the two catchments, while the
second part subtracts the variance within the catchments.
Consequently, the �gij will be lowest for close-by locations
at the same river, due to the overlapping support. In
top-kriging, the integrals in Equation (4) are computed by
discretising the catchment area into a grid of points,
according to common geostatistical practice. Figure 1
(from Skøien et al., 2006) shows a schematic of two nested
catchments, their discretisation by a square grid, and
the distances between the discretised points within
the catchments.
EXAMPLE OF LOW STREAM FLOWS

Data set

We test the performance of top-kriging for the example
of low stream flows. The data set used in this study consists
of about 8000 catchments in Austria. For 490 of these
catchments, daily streamflowmeasurements Q are available
for the period 1977–1996 (Laaha and Blöschl, 2006a).
Q was standardised by the catchment area to transfer stream
Hydrol. Process. 28, 315–324 (2014)



317SPATIAL PREDICTION ON A RIVER NETWORK: TOP-KRIGING VERSUS REGRESSION
flow into a continuous spatial variable q with point support.
From these data, the specific discharge q95 (ls�1 km�2) that
is exceeded on 95% of the time, Pr(q> q95) = 0.95, was
calculated. q95 was used as the target variable in this study
(seeFigure 2). Themeasurement errors of q95were taken from
Laaha and Blöschl (2005 and 2007). From this assessment,
the observed low flow characteristics exhibit errors between
3% and 24% of q95 for 20- to 5-year stream flow records.
The so-obtained data set of low flow characteristics and their
measurement errors was used in top-kriging estimation.
The top-kriging approachwas comparedwith the regional

regression model presented in Laaha and Blöschl (2006b).
The regression model was fitted to low flow data of
325 Austrian catchments from a 20-year period, and 31
physiographic catchment characteristics were used as
potential predictor variables, including sub-catchment
area (A), topographic elevation (H), topographic slope (S),
precipitation (P), geological classes (G), land use classes
(L), and stream network density (D), see Laaha and Blöschl
(2006a). The comparison of top-kriging and regional
regression performances was carried out on 300 catchments
which constitute the intersection of both data sets.

Estimation of variogram

For applying top-kriging, a variogram model is needed,
and following Skøien et al. (2003), a point variogramwith a
nugget effect of the following shape was used:

gp hð Þ ¼ ahb 1� e� h=cð Þd
� �

þ C0p (5)

a, b, c, and d are parameters. a is related to the sill of the
variogram, c is a correlation length, b and d define the long
and short distance slope of the variogram in a log-log plot,
and C0p is the point nugget effect. Despite it is also possible
to usemany of the classical variogrammodels in top-kriging
(e.g. exponential, Gaussian, or spherical variogram), we
have chosen to use the model according to Equation (5) as it
proved well suited in an earlier flood regionalisation study
(Skøien et al., 2003). To ensure a valid kriging model, the
Figure 2. Situation of stream gauges used in this study. Point symbol colours indi
records. Background shading refers to seasonality types (A–E winter seasonality

Copyright © 2012 John Wiley & Sons, Ltd.
point variogram generally needs to be estimated and
modelled with a valid conditionally negative-definite
function based on the data. We proved the validity of the
model for parameters a, b, c, d> 0 and 2b+ d< 1 by
showing that for all z> 0, e� zg(h) is positive definite
(Cressie, 1993, p.86ff). The proof was given through the
sufficient condition that a decreasing real function which is
even and convex on (0;1) is positive definite (e.g. Berg and
Forst, 1975, Theorem 5.4).
For stream flow and related variables the point variogram

cannot be directly fitted to the sample variogram because of
the different support (catchment area) of the measurements.
Rather, it can be determined by the back-calculation
approach of Kyriakidis (2004) and Mockus (1998). In this
approach, a number of theoretical point variograms with
different parameter sets are assumed. Then, each point
variogram model is regularised for all pairs of observations
using Equation (4), in order to find the point variogram
whose regularisations fit best to sample variogram values.
According to Cressie (1985), the sum of weighted squared
residuals between regularised theoretical semivariances and
observed semivariances was used as the optimality criterion.
The observed semivariances were estimated using a
classified variogram estimatorwhich is similar toMatheron’s
(1965) traditional estimator. The classes were defined along
distance between centroids (h), area of the smaller catchment
Ai, and area of the bigger catchment Aj.
From the automatic fitting procedure, we obtained a point

variogram model with parameters a = 112, b = 0.001,
c = 4000, d = 0.100, and C0p = 0.580. Figure 3 shows the
point variogram together with a number of regularised
variograms for different catchment areas. In all cases, a
square catchment shape was assumed. As the catchment
area increases, the gamma values decrease because of the
smoothing effect of regularisation. Due to their different
supports, catchments of different size will always have a
semivariance> 0, also in the hypothetical limiting case
when the centre-to-centre distance is zero. This is the reason
why all variograms between catchments of different size
cate magnitude of specific low flows q95 calculated from observed stream flow
, 1–5 summer seasonality). The area shown is Austria which is 600km across

Hydrol. Process. 28, 315–324 (2014)



Figure 3. Variogram model of q95 top-kriging
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start with an apparent nugget effect. A scatter plot between
the theoretical variogram values gmod and observed
variogram values gobs shows that the variogram fits well
to observations, although the model has a tendency of
underestimating someof the larger gammavalues (Figure 4).
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Figure 4. Goodness-of-fit between theoretical and observed variogram

Table I. Components of the regional regression model. R2 denotes t
flow q95 [ls

Group Region

A–C Alps

1 Flatland and hilly terrain
2 Bohemian Massif
3 Foothills of Alps (Upper Austria)
4 Flyschzone
5 Lower Carinthia
D Pre-Alps (Styria)
E Pre-Alps (Vorarlberg)

Symbols: P, PW, PS mean annual / winter / summer precipitation [102mm]),
percentages of moderate slope [%]; GQ, GL, GC, GGS area percentages of Q
groundwater table [%]; LF, LR, LWE area percentages of forest / rocks / wet

Copyright © 2012 John Wiley & Sons, Ltd.
For the purpose of demonstrating the characteristics of
top-kriging, however, the fit was considered acceptable.

Regression model

For application of the regression model, the study domain
was subdivided into eight geographically contiguous
regions of similar low flow seasonality (Figure 2). For each
region, a multiple regression relationship between low flow
characteristic q95 and catchment characteristics was fitted to
data. Nested catchments were split into sub-catchments
between subsequent stream gauges. To minimise inter-
correlations and multicollinearity, a stepwise regression
approach was adopted usingMallow’s Cp (Weisberg, 1985,
p. 216) as the criterion of optimality. The method was made
more robust by an interactive outlier detection based on
Cook’s distance criterion.
The resulting regional regression models are shown in

Table I. The equations suggest that precipitation is one of
the most important controls of low flows in Austria. It
determines the water fluxes into the catchment which are
available during the recession periods. Hence, it has a
positive effect on low flows in both, Alpine and lowland
regions. The positive effect on winter low flows in the Alps
may be related to a tendency of precipitation periods to be
generally warmer than dry winter periods. Catchment
topography is represented in all regional models, generally
by one altitude parameter or by one slope parameter. The
topography further has a strong influence on precipitation,
and appears as an equally important control of low flows in
Austria as precipitation. Altitude has a positive effect on
summer low flows (less evaporation) and a negative effect
on winter low flows (lower temperature), which is most
pronounced in the highest alpine ranges. Slope generally has
a positive effect on low flows; it is possibly correlated with
storage volume in high mountains. Catchment geology is
represented in many regional models. Low flows increase
with the porosity of the formations, so that sediments and
limestone formations have a positive effect on low flows,
and crystalline rocks have a negative effect on low flows.
Land use seems to play a subordinate role. Apart from forest
areas, the proportion of rocks and the proportion of wetlands
appear in the regression models of the alpine regions, but
he goodness-of-fit coefficient of determination; q̂95 predicted low
�1 km�2]

R2 Model

51% q̂95 = 0.67 + 0.40∙P+ 0.17∙GQ � 0.01∙GC

+6.43∙LWE+ 0.14∙SM � 0.04∙LR � 0.20∙H0

71% q̂95 = �0.12 + 0.11∙SM+0.05∙GGS + 0.02∙GC

64% q̂95 = �3.31 + 1.96∙PW
68% q̂95 = �10.04 � 0.76∙D+3.27∙P � 2.22∙H0

63% q̂95 = �6.17 + 0.06∙GL+ 2.07∙PS � 0.06∙LF

83% q̂95 = �17.48 + 3.56∙D+20.06∙LWE

89% q̂95 = �7.99 + 1.08∙P+ 0.04∙LF

60% q̂95 = 18.20 � 0.18∙SMO

H0 altitude of the stream gauge [102m], SM mean slope [%], and SSL area
uaternary sediments / Limestone / Crystalline rock / areas with shallow
land [%]; D stream network density [102m/km2].

Hydrol. Process. 28, 315–324 (2014)
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they are rather associated with high mountains or
hydrological conditions than with classical land uses.
The coefficients of determination of Table I show

that the regional regression model based on seasonality
regions performs well in most regions, with coefficients of
determination ranging from 60 to 80%. The exception is the
Alpine, winter low flow-dominated region, where
the coefficient of determination is only 51%. This low
coefficient of determination may be related to lumping
three types of seasonality (A, B, C) that do not form
contiguous regions into a single contiguous region. The
regression model for the Pre-Alps of Styria exhibits a
larger coefficient of determination of 89%. Overall, the
results show that the seasonality characteristics seem to
contain a lot of information highly relevant to low flow
regionalisation.
In addition to average errors represented by the

coefficient of determination, it is important to have an
understanding of the errors committed when predicting
at an individual, ungauged site. The regression standard
error of predicting individual observations represents the
uncertainty of regression estimates and is given by:

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ se2 q̂950ð Þ

p
(6)
Figure 5. Estimated specific low

Copyright © 2012 John Wiley & Sons, Ltd.
where s is the standard deviation of the residuals of multiple
regression, andse q̂950ð Þis the standard error of the predicted
mean value q̂950 (Draper and Smith, 1998, p. 130).
The resulting standard errors range between 0.4 and
2.8 ls�1 km�2, depending on the region.

Spatial estimates and error standard deviations

The fitted models were applied to estimate specific low
flows q95 for 8000 nodes of the river network. Assuming
sub-catchments as homogeneous units with constant q95,
these estimates are representative for the river segment
upstream of the node and can thus be plotted as vector maps
of the stream network.
The spatial estimates obtained by top-kriging and regional

regression are presented in Figure 5. Although estimated
patterns of both models are similar on a larger scale, there
are clear differences in terms of small-scale variability, and
top-kriging yields more heterogeneous patterns than
regression. The small-scale variability of estimates corre-
sponds with the weight a model gives to local information
relative to regional information. Regression is fitted to a
regional data set without local weighting of data points.
Thus, the variability of estimates solely originates from the
spatial variability of predictors reflecting topography and
stream flows q95 (ls�1 km�2)

Hydrol. Process. 28, 315–324 (2014)
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climate of the study area. Top-kriging, however, distributes
weights according to proximity and topology of catchments,
depending on the chosen variogram model and the size of
the local neighbourhood. For the setting used in this study,
much weight is given to local data, and the patterns of top-
kriging estimates are therefore more heterogeneous than
regression estimates.
The uncertainties estimated by top-kriging and regression

are very different for most of the stream network. The
prediction errors of regression (Figure 6b) are nearly
constant over large areas which, to some degree, correspond
to the geographic regions described in section 3.3. They
basically reflect the estimation variance of each regional
regression model. The prediction errors of top-kriging
(Figure 6a) are more heterogeneous. Top-kriging gives
relatively small uncertainties on the main river with error
standard deviations between 0 and 1 ls�1 km�2. This is only
slightly larger than the error standard deviations of the
observations. On the other hand, the uncertainties of
some of the tributaries are considerably larger, in particular
of those tributaries where no observations are available.
It is interesting that the uncertainty also increases substan-
tially with decreasing catchment area. For some of the
smallest catchments, error standard deviations of more than
Figure 6. Error standard deviation of spatial es

Copyright © 2012 John Wiley & Sons, Ltd.
8 ls�1 km�2 are estimated. The higher uncertainty for the
smallest catchments is very realistic, because catchments of
such size are underrepresented in the sample. Hence, their
prediction will be subject to additional downscaling errors.
Because of the tree structure of river networks, scale issues
constitute a typical problem in river network modelling
(Blöschl and Sivapalan, 1995; Skøien and Blöschl, 2006).
Top-kriging explicitly takes scaling into account, since it is
actually one solution to the traditional change of support
problem in geostatistics (Gotway and Young, 2002). Top-
kriging is therefore the natural way of predicting stream
flow-related variables on a river network. Regression,
however, ignores the differences of the support along the
river network.

Cross-validation

In order to examine the relative performances of models
more quantitatively, we performed leave-one-out cross-
validation where one withholds the stream flow observation
of a particular data point,makes an estimate for that location,
and then compares the estimate with the stream flow
observation, repeating the procedure for all data points. This
procedure emulates the case of estimating at sites without
stream flow observation. For top-kriging, we used the
timates of low stream flows q95 (ls�1 km�2)

Hydrol. Process. 28, 315–324 (2014)
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variogrammodel obtained from all n observations to predict
by kriging each point in turn using the remaining n�1
observations (e.g. see Cressie, 1993, p102). The approach
therefore assumes a known variogram model. For regional
regression, the model consists of individual regressions for
contiguous sub-regions (section 3.3). Because of the large
number of observations, the boundaries will not change
much when leaving out single data points, so we did not
change the regions in the cross-validation. For each point in
turn, we updated the regression equation for remaining n�1
data points, and the so-obtained regression model was used
to predict low flows at the site of interest. From the resulting
vector of cv-errors of each model, the cross-validation
error variance Vcv, the root mean squared error rmsecv, the
coefficient of determination R2

cv, and the bias of cross-
validation estimates biascv were estimated:

Vcv ¼ 1
n

Xn
i¼1

ecv;i
� �2

(7)

rmsecv ¼
ffiffiffiffiffiffiffi
Vcv

p
(8)

R2
cv ¼

Vq � Vcv

Vq
(9)

biascv ¼ 1
n

Xn
i¼1

ecv;i
� �

(10)

In these equations, ecv,i is the cv-residual of a model for
catchment i, and Vq is the spatial variance of the observed
specific low flow discharges q95. The root mean squared
error rmsecv and the coefficient of determination R2

cv

provide composite measures of systematic and random
errors, whereas the of cross-validation estimates biascv
provides a measure of systematic errors only. In addition,
relative error measures rrmsecv = rmsecv / mean(q95) and
rbiascv = biascv / mean (q95) were calculated.
The results of the cross-validation are shown in Figure 7

in terms of the error distribution for the set of 300
catchments, and residual statistics are presented in Table II.
All residual statistics (R2

cv, rmsecv, biascv, etc.) were estimated
without using the 5% outliers for robustness. These outliers
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Figure 7. Scatter plots of predicted versus observed specific low st

Copyright © 2012 John Wiley & Sons, Ltd.
can be explained by karst effects or seepage and are hence not
genuinely attributable to regionalisation errors. Figure 7,
however, does include these outliers. The results indicate that
top-kriging (R2

cv = 0.75, rmsecv = 1.781 ls�1 km�2) clearly
outperforms regression, which gives R2

cv of 0.68 and rmsecv
of 1.999 ls�1 km�2. The regression estimates are nearly
unbiased (biascv =�0.032 ls�1 km�2), while top-kriging
slightly overestimates low stream flows (biascv = 0.294
ls�1 km�2

, rbiascv = 0.05). The possible reasons will be
assessed through regional examples in the next section.

Regional performances

The first example is a typical situation of Tyrolean High-
Alps. Catchments in this region are small, and many of the
catchments are headwater catchment, i.e. catchments
without upstream data point. Figure 8 shows the estimates
(left panels) and error standard deviations (right panels) of
top-kriging and regression plotted along the stream network.
The observations are shown as circles, using the same colour
coding as for the estimates. The results of both models differ
substantially. Close to a gauge, top-kriging estimates fit very
well to the observations, and kriging errors are of the same
magnitude as measurement errors. The prediction errors of
regression, however, are much larger than measurement
errors, indicating a lower performance of regression in close
proximity to gauges. The relative performances of models
change when moving from the gauges to the headwater
catchments (e.g. region indicated by the ellipses in Figure 8).
Low flow discharges of Alpine catchments are expected to
decrease with catchment altitude, as they are controlled by
freezing processes which are more intense for higher
altitudes. The expected low flow patterns are fairly well
reproduced by regression, as altitude is parameterised in the
regression model. Top-kriging, however, overestimates
these values. The reason is that top-kriging distributes
weights according to integral distances of catchment areas
and therefore gives most weight to neighbouring gauges at
the same river. Sources therefore correspond to a boundary
area of top-kriging, and effects similar to the well-known
boundary effects of ordinary-kriging occur. The boundary
effects are reflected in top-kriging standard deviations
(Figure 8c) which increase whenmoving from valleys to the
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Table II. Predictive performance of top-kriging (TK) and regional regression (Reg) for different data situations (all catchments,
headwater catchments, non-headwater catchments)

Situation All catchments Headwater Non-headwater

Model TK Reg TK Reg TK Reg

R2
cv (-) 0.75 0.68 0.59 0.56 0.91 0.82

rmsecv (ls
�1 km�2) 1.781 1.999 2.355 2.427 0.951 1.392

biascv (ls
�1 km�2) 0.294 �0.032 0.558 0.119 0.036 �0.167

rrmsecv (-) 0.31 0.34 0.40 0.41 0.16 0.24
rbiascv (-) 0.05 �0.01 0.10 0.02 0.01 �0.03

Figure 8. Regional example Tyrol: q95 low flow predictions in ungauged basins by top-kriging (a) and regression (b) for an Alpine region in Austria.
(c) and (d) indicate error standard deviations. The area shown is 100 km across. Ellipses indicate a region where top-kriging extrapolates from gauges

situated in the valleys to headwater catchments (without upstream data point) leading to systematic overestimation

a)

d)

c)

b)

Figure 9. Regional example river Mur: q95 low flow predictions in ungauged basins by top-kriging (a) and regression (b) for a major river in Austria. (c) and
(d) indicate error standard deviations. The area shown is 100km across. For large rivers and high gauging density (see ellipsis) top-kriging outperforms regression
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sources. In this situation, top-kriging extrapolates the higher
values from gauges in the valleys to the headwaters.
The second example is the river Mur and tributaries in

low Alps of Styria, southern Austria. The river Mur is one
of the major rivers in Austria, and river sites are related to
large catchment areas (up to 4400 km2). Estimates and
error standard deviations of top-kriging and regression are
presented in Figure 9. Along the main river, top-kriging
and regression estimates are consistent with observations.
The estimates of top-kriging are also consistent with
observations for the larger tributaries, but this is clearly
not true for regression. For locations without upstream
data point, however, top-kriging yields a rather arbitrary
pattern, while regression estimates show the expected
decrease with catchment altitude. The relative perfor-
mances of both methods are manifested in the error
standard deviations (Figure 9c,d). The errors of top-
kriging are low for large rivers and a high gauging
density, and the errors increase in the tributaries with
decreasing catchment area. The errors of regression are
nearly constant in this region. They do not seem to
contain a lot of information about the regional perform-
ance of the model.
To generalise the findings from the regional examples

to the whole study area, we conducted a stratified cross-
validation analysis where catchments were separated in
headwater catchments (without upstream gauge) and non-
headwater catchments (with upstream gauge). For the
Austrian setting, headwater catchments typically correspond
to small catchments situated in Alpine areas (example 1),
and non-headwater catchments correspond to larger catch-
ments (example 2).
Table II indicates that for non-headwater catchments, top-

kriging is nearly unbiased (biascv = 0.036 ls�1 km�2) and
regression yields a slightly negative bias of �0.167
ls�1 km�2. These biases are small compared to observed
low flows in Austria, and systematic errors are a minor
problem for the relatively large non-headwater catchments.
For headwater catchments, the systematic error of regression
is also low (biascv = 0.119 ls�1 km�2), but top-kriging
exhibits somewhat larger systematic errors (biascv = 0.558
ls�1 km�2), corresponding to an average overestimation of
10%.As it has been discussed above, low flow discharges of
Alpine catchments are expected to decrease with catchment
altitude, and using spatial information from a downstream
gauge is clearly a biased procedure. For top-kriging, the
altitude gradient of low flows may result in non-stationary
increments which violate the assumption of intrinsic
stationarity. Hence, top-kriging estimates could be further
improved by including the altitude gradient in the model, by
an approach similar to external drift kriging (Wackernagel,
1995). This will likely reduce the bias of headwater
catchments and increase the predictive performance of
top-kriging over the regression model. Laaha et al. (2012)
tested top-kriging with external drift to water temperatures
in Austria. The approach assumes a deterministic relation-
ship between water temperature and catchment altitude,
through performing top-kriging on the residuals of an initial
regressionmodel. Their analysis showed that themodel with
Copyright © 2012 John Wiley & Sons, Ltd.
external drift was indeed free of regional biases. From the
assumptions, the approach seems notably well suited when
the auxiliary variable has a much lower measurement error
than the target variable. Otherwise, a combined co-kriging
and top-kriging approach would be better suited to include
auxiliary information in the top-kriging model. This,
however, would require a more complex algorithm which
includes cross-variograms in all steps of the analysis.
We finally assess the total predictive performance of

models. For headwater catchments, top-kriging (R2
cv = 0.59,

rmsecv = 2.355 ls�1 km�2) exhibits somewhat higher
coefficient of determination and a somewhat lower root
mean squared error than regression (R2

cv = 0.56, rmsecv =
2.427 ls�1 km�2). For the non-headwater catchments, the
predictive performances are generally higher than for
headwater catchments. Here, top-kriging (R2

cv = 0.91,
rmsecv = 0.911 ls�1 km�2) clearly outperforms regression
(R2

cv = 0.82, rmsecv = 1.392 ls
�1 km�2). The cross-validation

analysis confirms the findings from the regional examples
that top-kriging performs clearly better for the larger non-
headwater catchments than regression. For smaller
catchments in the tributaries and headwater catchments,
the performance of top-kriging is indeed reduced because of
the bias, but, nevertheless, still higher than the performance
of the regression model. These findings correspond well
with the results of Castiglioni et al. (2011)where top-kriging
was compared with a smooth regional estimation method,
known as physiographical space-based interpolation (PSBI)
(Castiglioni et al., 2009) for the case of predicting low flows
of 51 catchments in central Italy. Overall, top-kriging and
PSBI have comparable performances (Nash–Sutcliffe
efficiencies in cross-validation of 0.89 and 0.83, respect-
ively), but top-kriging outperforms PSBI at larger river
branches while PSBI performs better for headwater
catchments. The main idea of PSBI is to apply standard
point-kriging methods in a transformed space of catchment
characteristics instead of kriging in geographical space.
Consequently, PSBI and regressionmodels exploit the same
kind of information, i.e. the catchment characteristics, and
this explains the similar features of both concepts. The
correlations along the stream network are accounted for only
indirectly through the catchment characteristics. However,
top-kriging exploits the spatial correlations of low flows in
an explicit way. Top-kriging is a best linear unbiased
geostatistical estimation method which takes the specific
structure of river networks into account.
CONCLUSIONS

We compared the performance of top-kriging relative to the
regional regression model proposed by Laaha and Blöschl
(2006b) by leave-one-out cross-validation. Regional regres-
sion is the standard regionalisation approach in low flow
hydrology and constitutes a benchmark for any innovative
model.On average, over theAustrian study area, top-kriging
explains 75% of the variance of the low flows, while the
regression models explain 68%. The performance of top-
kriging mainly depends on the (intrinsic) homogeneity of
Hydrol. Process. 28, 315–324 (2014)
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the observations and the density of the gauging network in
the region. One would expect the performance of top-
kriging to increase with increasing density of the network
and increasing catchment size. The latter is because runoff is
an integrating process, so low flows tend to vary more
smoothly along the stream for large catchments. The
analyses of the data set in this paper indicate that this is
indeed the case. Table II suggests that top-kriging explains
91% and 59% of the variances in the non-headwater and
headwater catchments, respectively. The median catchment
sizes of these two groups of catchments are 252 and 62 km2.
The performance of the regressionmodel, in contrast, hinges
on the availability of meaningful catchment characteristics
used in the regression model and the degree of correlation of
these catchment characteristics with the low flows. Low
flow generation is mainly governed by subsurface processes
which are not accessible by area-wide data collection
techniques, such as remote sensing. Thismakes it difficult to
collect meaningful catchment characteristics. The choice
between top-kriging and the regression model should
therefore mainly depend on data availability and the
characteristics of the observations, as the two methods use
different sources of information. The data characteristics of
this case study give some guidance on the choice of method:
For top-kriging, the network density is relevant (490
observation points over 84 000 km2). For the regression
models, the standard error is relevant (0.4 to 2.5 ls�1 km�2,
depending on the region).
From the conceptualisation of stream flow generation

processes, the distribution of kriging weights, the
predictive performance, and the distribution of uncer-
tainty along the stream network, top-kriging appears
notably well adapted for the stream network problem.
Top-kriging is easy to apply as it does not require
additional auxiliary data. This is a major advantage over
the classical regression approach if the auxiliary data are
not well correlated with the variable of interest or
unavailable. Also, top-kriging can be extended to
combine the strengths of regional regression and top-
kriging which is a topic we are currently exploring. Top-
kriging also offers advantages over one-dimensional
conceptualisations of correlations along the stream
network, as there is no need for a decision whether to
estimate the variable from upstream or downstream
neighbours, or a combination thereof. We therefore
suggest that top-kriging is the most natural method of
spatial predictions on river networks.
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