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Flood forecast errors and ensemble spread—A case study
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[11 Flood forecasts are generally associated with errors, which can be attributed to
uncertainties in the meteorological forecasts and the hydrologic simulations, and
ensemble spreads are usually considered capable of representing them. To quantify these
two components of the total forecast errors and to compare these to ensemble spreads, an
extended data set is used. Four years of operational flood forecasts at hourly time step with
lead times up to 48 h are evaluated for 43 catchments in Austria and Germany. Catchment
sizes range from 70 to 25,600 kmz, elevations from 200 to 3800 m, and mean annual
precipitation from 700 to 2000 mm. A combination of ECMWF and ALADIN ensemble
forecasts are used as input in a semidistributed conceptual water balance model on an
hourly time step. The results indicate that, for short lead times, the ratio of hydrological
simulation error to precipitation forecast error is 1.2 to 2.7 with increasing catchment size
from 100 to 10,000 km?. For long lead times the ratio of hydrological simulation error to
precipitation forecast error decreases from 1.1 to 0.9 with increasing catchment size. Clear
scaling relationships of the forecast error components with catchment area are found.

A similar scaling is also found for ensemble spreads, which are shown to represent
quantitatively the total forecast error when forecasting floods.
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1. Introduction

[2] One of the main challenges in flood forecasting and
warning is to extend forecast lead times beyond the catch-
ment response time as the forecasts will then rely on rainfall
predictions [Bldschl, 2008]. This is of particular concern in
small and medium sized catchments where the catchment
response times are short and more time is required for flood
response actions.

[3] As the forecast lead time increases the forecast errors
tend to increase. For flood response actions it is therefore
essential to get an indication of the magnitudes of the fore-
cast errors to be expected at any point in time [Montanari,
2007]. There are two main sources of uncertainty that con-
tribute to the flood forecast errors: precipitation forecast
errors and hydrological simulation errors [Krzysztofowicz,
2001] with many independent sources contributing to both
errors (see, e.g., Table 1). The precipitation forecast errors
represent the differences between predicted and observed
(and interpolated) precipitation. Because of the nonlinearity
of the atmospheric system the errors tend to increase drasti-
cally with the forecast lead time. The common approach
to quantifying the precipitation forecast uncertainty are
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ensemble simulations where a numerical weather predic-
tion (NWP) model is run for a number of cases with
slightly different initial conditions. The cases evolve along
different trajectories which produce a range of precipitation
forecasts [Buizza, 2003 ; Grimit and Mass, 2007]. The dif-
ferent cases or ensemble members of precipitation are used
as inputs into a hydrological model to produce a range of
flood forecasts [Demeritt et al., 2007]. The spread of the
ensemble members in terms of flood discharge is then used
as a measure of forecast uncertainty due to uncertain pre-
cipitation forecasts [e.g., Pappenberger et al., 2005]. These
types of ensemble forecasts have been performed for short
range (around 48 h) [e.g., Komma et al., 2007, Thirel et al.,
2008], and medium-range (up to 15 days) forecasts [e.g.,
Gouweleeuw et al., 2005; Roulin and Vannitsem, 2005;
Roulin, 2007; Verbunt et al., 2007; Thielen et al., 2009;
Hopson and Webster, 2010]. A review of ensemble flood
forecasting systems and the additional value of using
ensembles is given by Cloke and Pappenberger [2009].
Most of these studies assume that the precipitation forecast
uncertainty is the main source of uncertainty impacting on
the flood forecasts.

[4] Hydrological simulation errors have been the subject
of numerous studies in hydrology [see, e.g., Montanari and
Brath, 2004 ; Montanari et al., 2009; Weerts et al., 2011;
Coccia and Todini, 2011]. The hydrological simulation
errors represent the differences between predicted and
observed runoff using observed (and interpolated) precipita-
tion. The errors are usually classified into input errors, model
parameter errors, and model structure errors. There are a
range of methods of quantifying the first two types of errors
including Monte Carlo simulations and analytical approaches
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Table 1. Contributions to the Hydrological Simulation Error and
Precipitation Forecast Error

Hydrological Simulation Errors Precipitation Forecast Errors

Parameters of runoff model
Structure of runoff model
Precipitation measurements
Precipitation interpolation

Parameters of atmospheric model
Structure of atmospheric model
Initial conditions

[Montanari et al., 2009]. A typical representative of a method
of estimating the simulation error is Montanari and Grossi
[2008] who infer the probability distribution of the error
through a multiple regression with current forecasted dis-
charges, past forecast error, and past rainfall. Weerts et al.
[2011] proposed to use quantile regressions for the assess-
ment of the relationship between the hydrological forecast
and the associated forecast error. Krzysztofowicz and Kelly
[2000] presented Bayesian theory and a meta-Gaussian
model for estimating the hydrological simulation error.
Coccia and Todini [2011] adapted the model conditional
processor to be used with several joint truncated normal dis-
tributions to reduce the predictive uncertainty. A few studies
have combined the precipitation forecast uncertainty and
hydrological simulation uncertainty. Krzysztofowicz [2001],
for example, presented an analytic numerical of combining
the two uncertainties resulting in a probability of forecast
river stages that is a mixture of two distributions related to
occurrence and nonoccurrence of precipitation. However,
most ensemble flood forecast systems focus on the precipita-
tion forecast uncertainty alone.

[5] In practice, the ensemble spread of the flood fore-
casts is often interpreted as an index of forecast errors
rather than as a quantitative estimate of the errors. How-
ever, it is also of interest to understand how well the en-
semble spread matches the actual forecast errors. Ensemble
forecasts of precipitation are generally used based on two
assumptions: (1) the members of the ensemble are equally
likely, which is a work hypothesis needed to perform the
calculations, and (2) the ensemble spread captures the pre-
cipitation forecast uncertainty, which is a hypothesis that
can be checked a posteriori. However, this is often not the
case. For example, Schaake et al. [2004] analyzed precipi-
tation ensemble forecasts of the US National Centers for
Environmental Prediction (NCEP) over the period 1997-
1999 over the US. They found that the ensembles were bi-
ased and the spread was insufficient to capture measured
precipitation. They proposed different methods for prepro-
cessing the precipitation forecasts in order to remove bias
and adjust the ensemble spread. Similarly, Scherrer et al.
[2004] analyzed ensemble predictions of European Centre
for Medium-Range Weather Forecasts (ECMWF) against
precipitation observed at a rain gauge in Switzerland and
found significant bias which they corrected with a neural
network method. Buizza et al. [2005] compared the ensem-
ble spreads of the methodologies used at the European
Centre for Medium-Range Weather Forecasts (ECMWF),
the Meteorological Service of Canada (MSC), and the US
National Centers for Environmental Prediction (NCEP) for
a 3 month period in 2002. Again, for all systems, the spread
of ensemble forecasts was insufficient to capture reality,
suggesting that preprocessing of the precipitation ensemble
estimates is needed. Similar conclusions were arrived at by
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Hamill et al. [2008] for the ECMWF and the Global Fore-
cast System (GFS) analyzing a longer time period but post-
processing methods do not always improve the ensemble
forecasts of precipitation [Schmeits and Kok, 2010].

[6] The biases and uncertainties of precipitation fore-
casts may amplify when cascaded through the hydrological
system. Komma et al. [2007] showed that for their flood
forecasts the variability of the precipitation ensemble was
amplified for lead times longer than the response time of
the catchment. They used a combination of ECMWF and
ALADIN ensemble forecasts as input into a distributed
hydrologic model in a 620 km? catchment in Austria. They
showed that small errors in rainfall may translate into larger
errors in runoff. As an example Komma et al. [2007]
showed that an uncertainty range of 70% in terms of pre-
cipitation translated into an uncertainty range of 200% in
terms of runoff for a lead time of 48 h. They related this to
the nonlinearity of the catchment response, however, uncer-
tainties such as precipitation measurements and runoff
model parameters may contribute to the amplification of
the uncertainty in terms of runoff. In the context of flood
forecasts it is therefore important to assess the precipitation
uncertainty in terms of the effect on runoff rather than in
terms of comparing forecast precipitation against observed
precipitation. Johnell et al. [2007] used ECMWF ensemble
forecasts to estimate runoff ensemble forecasts using the
HBYV model for 45 catchments in Sweden with areas rang-
ing from 6 to 6110 km? (mean catchment size 647 km?)
They defined the ensemble spread as the range between the
upper and the lower quartile of the runoff ensemble fore-
casts and compared it to the mean absolute error of the me-
dian runoff ensemble forecast. They classified the forecasts
into five classes representing “very small” to “very large”
ensemble spread with each class containing 20% of the fore-
casts. The mean absolute error, defined as the absolute dif-
ference between forecasted and observed discharges
averaged over a number of days and divided by the observed
discharge, increased from 2% for the class of very small
ensembles to 18% for the class of very large ensembles on
forecast day 1, and from 10% for very small ensembles to
75% for very large ensembles on forecast day 9. Errors for
the forecast days 5 to 7 were similar, indicating that the EPS
forecast has its main strength in the second part of the fore-
cast period. Jaun and Ahrens [2009] estimated the runoff
ensembles using downscaled ECMWF ensemble forecasts as
input into the PREVAH model for 23 Swiss catchments with
areas ranging from 610 to 34,550 km® (mean 6000 km?).
They defined the ensemble spread as the half interquartile
runoff ensemble range and compared it to the forecast error
obtained by comparing the median runoff ensemble forecast
error with observed discharge and a reference forecast
obtained by using meteorological observations, respectively.
They found a tendency toward underestimation in the fore-
cast spread when evaluating against the observed discharge
with positive forecast errors 1.5 to 5 times and negative fore-
cast errors 1.5 to 100 times larger than the ensemble spread.
When comparing against the reference forecast, the underes-
timation in the ensemble spread was smaller with factors
around 1.5 to 2 for both positive and negative forecast errors.
However, additional uncertainties during unstable weather
situations were found to be captured by larger ensemble
spreads during flood peaks.
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[7] A comparison with observed discharge and the refer-
ence forecast also allows separating the contributions of the
precipitation forecast errors and the hydrological simulation
errors to the total forecast errors. Understanding the relative
contributions can assist in the future development of ensem-
ble flood forecasting systems. Olsson and Lindstrém [2008]
compared ensemble runoff forecasts in 45 Swedish catch-
ments using forecasted ECMWEF precipitation with observed
runoff and a reference runoff simulation using observed pre-
cipitation. They found that 26% of the runoff simulations
were within the interquartile range of the ensemble spread
when comparing the forecasts to the simulations. This means
that the precipitation ensembles are too narrow as the figure
should be 50%. However, only 14% of the observed runoff
were within the interquartile range of the ensemble spread
when comparing the forecasts to observed runoff highlight-
ing the contribution of the simulation error not accounted for
in the runoff ensembles. They concluded that the contribu-
tions of the precipitation forecasts and the hydrologic simu-
lations to the total error were of similar magnitudes but, for
the rising limbs (i.e., the targets of flood forecasting sys-
tems), the precipitation forecast errors dominated. A similar
analysis of separating the contributions of the precipitation
forecast errors and the hydrological simulation errors was
performed by Addor et al. [2011] who analyzed ensemble
runoff forecasts in a 336 km?® catchment in Switzerland
based on precipitation ensemble forecast of a regional cli-
mate model (COSMO-LEPS). They found around 14% of
the observations were within the interquartile range of the
ensemble spread when comparing forecasts to observed run-
off, but close to 50% of the forecasts were within the inter-
quartile range of the ensemble spread when comparing the
forecasts to simulations. Zappa et al. [2011] superposed dif-
ferent sources of uncertainty in a flood forecasting system.
They used COSMO-LEPS forecasts and the hydrological
model PREVAH for a 186 km” catchment in Switzerland.
The uncertainty from the meteorological forecasts was repre-
sented by the uncertainty of the COSMO-LEPS ensembles
propagated through the hydrologic model. The hydrologic
model uncertainty was taken into account using a Monte
Carlo simulation in which seven parameters of the hydro-
logic model (relevant for surface runoff generation) were
randomly changed. The average runoff ensemble spread for
the seven events analyzed was 130 m®> s~' when PREVAH
was coupled with LEPS. When additionally taking the
hydrological uncertainty into account the ensemble spread
obtained was around 150 m® s~', meaning that the total
uncertainty increased about 15%.

[8] The two main objectives of this study are (1) to quan-
tify the contributions of precipitation forecast errors and
hydrological simulation errors to the total forecast error,
particularly during flood events, and (2) to evaluate the
capability of the runoff ensemble forecasts to represent the
total runoff forecast uncertainty as a function of lead time.
We use a conceptual semidistributed hydrological model
[Bléoschl et al., 2008] coupled to meteorological inputs
(deterministic and ensemble forecasts) based on a combina-
tion of ECMWF and ALADIN forecasts [Haiden et al.,
2010], which is used operationally in the study area. Around
4 years of forecasts and runoff data at hourly time scale for
43 catchments with areas ranging from 70 to 25,600 km? in
Austria and Germany are analyzed. Compared to previous
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studies, this work is based on a more extended amount of
data, being the analysis performed at hourly time scale con-
temporaneously on a considerable number of catchments.
Such an extended database allows us to identify scaling
properties (with catchment area and lead time) of the total
forecast error, of its two components (precipitation forecast
and hydrological simulation errors) and of the runoff en-
semble forecasts.

2. Study Region, Data, and Meteorological
Forecast Inputs

[9] In this study we evaluate the hydrologic forecasts of
the flood forecasting system for the Austrian Danube that is
currently in operational use and has been developed by the
Technical University of Vienna in 2003-2005. The system
consists of (1) a meteorological, (2) a hydrologic, and (3) a
hydraulic model part. The meteorological forecasts include
deterministic and ensemble forecasts of precipitation and
deterministic forecasts of air temperature for a lead time of
48 h on an hourly time step; the output of the hydrologic
model includes deterministic and ensemble runoff forecasts
in the Danube tributaries which are used to run a hydraulic
model to estimate runoff and water level for the Danube
River.

[10] The region is hydrologically diverse covering large
parts of Austria and parts of Bavaria (Figure 1). The west of
the region is Alpine with elevations of up to 3800 m asl
(above sea level), while the north and east consist of prealpine
terrain and lowlands with elevations between 200 and 800 m
asl. Mean annual precipitation is between 600 mm yr*1 in the
east and almost 2000 mm yr ' in the west. The Alpine
catchments generally show much higher runoff depths with
1600 mm yr ', compared to around 100 mm yr " in the east.
Runoff from 43 catchments with sizes ranging from 70 to
25,600 km? (median size around 400 km?) in the study region
are used for the evaluation. The small catchments are mostly
nested catchments. Land use is mainly agricultural in the low-
lands, forested in the medium elevation ranges, and alpine
vegetation, rocks, and glaciers in the alpine catchments. For
the calibration of the model, meteorological and hydrologic
data from 2002 to 2009 were used. For details we refer to
Nester et al. [2011]. In this paper the analyses of the forecasts
are based on a data set consisting of four years of meteorolog-
ical forecasts (2006-2009). Around 35,000 time steps are an-
alyzed in each catchment. Results are presented for all
catchments as well as, in more detail, for four catchments of
different size (300 to 1390 km?) in diverse hydrologic regions
(wet and relatively dry). Catchment characteristics and model
performance in terms of the Nash-Sutcliffe model efficiency
(nsme) and the volume error (VE), which is used as a measure
of bias, of all catchments for the calibration and validation
periods (2003-2006 and 2007-2009, respectively) are sum-
marized in Appendix A. Definitions of the performance
measures are given in Appendix B.

[11] The meteorological data and forecasts were pro-
vided by the Central Institute for Meteorology and Geody-
namics (ZAMG) in Vienna using the INCA (integrated
nowcasting through comprehensive analysis) system which
is discussed in detail by Haiden et al. [2011]. The system
has been developed for use in mountainous terrain and can
be used for the analysis and nowcasting of temperature,
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Topography of Austria and parts of southern Germany. The stream gauges used in the study

are indicated by triangles, precipitation gauges by white circles, and weather radar stations by red circles.
Thin black lines are catchment boundaries, and the thick black lines highlight the catchments Gmunden/
Traun, Greimpersdorf/Ybbs, Haid/Naarn, and Lilienfeld/Traisen, used for detailed analyses.

precipitation amount, and wind fields, among others. The
analysis part of the system combines surface station data
with remote sensing data in a way that the observations at the
station locations are reproduced, whereas the remote sensing
data provide the spatial structure for the interpolation. The
nowcasting part employs classical correlation-based motion
vectors derived from previous consecutive analyses. In the
case of precipitation the nowecast includes an intensity-
dependent elevation effect.

2.1.

[12] For each time step, rain gauge data were spatially
interpolated on a 1 km grid and combined with radar data
as a weighted mean. This approach attempts to combine the
quantitative accuracy of rain gauge data with the spatial ac-
curacy of radar data. The weights were derived from a
comparison of monthly totals of radar and rain gauge data
at the rain gauge locations. In areas where the visibility of
the radar is low (e.g., mountainous catchments) the radar
weights are small, while in areas with high radar visibility
(e.g., lowland catchments) the weights are close to 1
[Haiden et al., 2011]. Currently, 408 online available cli-
mate stations are implemented in INCA; 169 of which lie
within the model region, which equals to one climate sta-
tion every 258 km?. On average, 0.4 stations per 100 km?
are available in the study region. 70% of the stations are
below 1000 m asl, 24% are between 1000 and 2000 m asl
and the remaining 6% are above 2000 m asl with the high-
est station at 3100 m asl.

Observed Precipitation Fields

2.2. Precipitation Forecasts

[13] Deterministic precipitation forecasts are generated
over a lead time of 48 h consisting of two components. The
first component, termed nowecasts, is obtained by extrapolat-
ing the interpolated precipitation field using motion vectors
[Steinheimer and Haiden, 2007]. The second component

consists of the forecasts of the ALADIN and ECMWF
numerical weather prediction (NWP) models. The two com-
ponents are combined as a weighted mean. To allow for a
smooth transition between nowcasts and NWP results, the
weights are varied as a function of lead time from full
weight to the nowcasts during the first 2 h, full weight to the
NWP forecasts from 6 h, and a linear transition in between.

2.3. Ensemble Forecasts of Precipitation

[14] The ensemble forecasts of precipitation consist of
three components. The first and second components are the
nowcasts based on the motion vectors and the deterministic
precipitation forecast of the ALADIN model from ZAMG,
as for the precipitation forecast. On top of that, to account
for small scale spatial uncertainty, the ALADIN forecast
are spatially shifted in both the x and y directions to pro-
duce 25 pseudo-ensembles. The third component consists
of 50 ensemble forecasts from the ECMWF model. The 50
ECMWF ensembles are randomly combined with one of
the ALADIN pseudo-ensemble members and with the now-
casts. No uncertainty is assigned to the nowcasts, meaning
that up to a lead time of 2 h all ensemble members are iden-
tical (zero spread) and the spread increases at longer lead
times [Komma et al., 2007]. A verification of INCA precip-
itation forecasts with a lead time of 12 h showed that in the
first 6 h the precipitation amount is underestimated,
whereas in the second half of the forecast period the precip-
itation amount is overestimated which can be attributed to
the increasing influence of the NWP models for longer lead
times [Haiden et al., 2011].

[15] Temperature forecasts are based on a combination
of interpolated station data and ALADIN forecasts. No
temperature ensembles are generated as their effect on the
flood forecasting uncertainty is deemed to be small. Analy-
ses showed that a temperature increase of 1°C increases the
forecast uncertainty for a lead time of 48 h on average on
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the order of 1% in the months March—May when snow melt
is contributing significantly to runoff. We used catchment
mean values of precipitation as input into the hydrologic
model; for the temperature data elevation was additionally
accounted for when averaging over the catchments. All
forecast are generated at an hourly time interval.

[16] For the analysis, hourly discharge data from 43
stream gauges were used. The data were checked for errors
and in cases where a plausible correction could be made
they were corrected. Otherwise they were marked as miss-
ing data.

3. Forecast Model Setup and Evaluation
Methods

3.1.

[17] The rainfall-runoff model used in this paper is a typ-
ical conceptual hydrologic model [Bldschl et al., 2008;
Komma et al., 2008]. We used the model in a semidistrib-
uted configuration with each catchment divided into eleva-
tion zones. The model runs on an hourly time step and
includes a snow routine, a soil moisture routine, and a flow
routing routine [Szolgay, 2004]. Details about calibration
and performance of the model are given by Nester et al.
[2011, 2012]. Two real-time updating procedures are
implemented to increase the accuracy of the forecasts. The
first procedure is based on ensemble Kalman filtering and
is used to assimilate runoff data to update the catchment
soil moisture [Komma et al., 2008]. The second procedure
is an additive error model that exploits the autocorrelation
of the forecast error and involves an exponential decay of
the correction [Komma et al., 2007]. The flood forecasting
system has been in operational use for the Danube since
2008 and is operated by the state governments of Lower
Austria and Upper Austria.

Forecast Model Setup
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[18] In this study we emulate the real-time mode of flood
forecasting in the Austrian Danube tributaries. This means
that we use (1) the same updating procedures and (2) the
same data sets including the associated uncertainties as the
operational system. Errors induced (1) by imperfect water
level observations [see, e.g., Di Baldassarre and Montanari,
2009], (2) by the estimation of runoff using rating curves,
and (3) by data assimilation are neglected. For each forecast-
ing time step #, the model is driven by observed precipitation
and air temperature. Observed runoff for the same time step
is used for the updating. The runoff forecasts are driven by
(a) deterministic precipitation forecasts (and air temperature
forecasts) and (b) 50 ensemble members of the ensemble
precipitation forecasts. The latter give an estimation of the
uncertainty distribution of the runoff forecasts over the lead
time. In line with other forecasting systems, the uncertainty
in the precipitation forecasts was assumed to be the only
source of runoff forecast uncertainty, even though uncer-
tainty due to the rainfall-runoff transformation (which we
analyze in this study) and the uncertainty conveyed by the
data assimilation (e.g., stage measurements and rating-curve
errors) may not be negligible, especially during flood events.

[19] Examples of ensemble runoff forecasts for the
catchment Greimpersdorf are given in Figure 2 for an event
in June 2009. This event was the largest observed event in
the study period with a return period of 30-35 years, which
was due to local convective storms embedded in a large
scale precipitation field. The forecast calculated on 22 June
2009 at 3 a.m. is shown in Figure 2(a). The runoff at the
time of the forecast was around 30 m® s~'. The cumulative
ensemble forecasts of precipitation range between 60 and
100 mm for a lead time of 48 h, while the observed cumula-
tive precipitation was 136 mm. The underestimation is due
to heavy convective storms not captured by the precipita-
tion forecasts. This leads to a significant underestimation of
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Figure 2. Example for ensemble forecasts at Greimpersdorf/Ybbs (1116 km?). (a) Forecast time #, is
22 June 2009, 3 a.m.; and (b) # is 23 June 2009, 3 a.m. Top panels: cumulative precipitation. Bottom
panels: runoff. Red lines are the observations; black lines are the deterministic forecasts; thin blue lines
are ensemble forecasts; and 80% confidence intervals are indicated in light blue.
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runoff over much of the lead time and to missing the sud-
den rise in the hydrograph at time 15 h. However, at the
end of the 48 h lead time, the runoff of the deterministic
forecast run is almost at the level of the observed runoff, as
are some ensemble members. Figure 2(b) shows the fore-
cast run 24 h later. The cumulative ensemble forecasts of
precipitation range between 84 and 121 mm with an
observed precipitation of 116 mm. While the fine scale
structure of the event is not fully captured, the overall shape
of the hydrograph is captured very well. In this case, the en-
semble runs give a very good indication of the forecast
errors to be expected. The example illustrates that the per-
formance of the flood forecasts will likely differ between
events and can change within a single event. In some cases
the ensembles will be representative of the errors but in
others they will not.

3.2. Forecast Evaluation Methods

[20] For a first overview of the performance of the en-
semble runoff forecasts we used two commonly used analy-
sis methods. The first is the rank histogram or Talagrand
diagram [Talagrand et al., 1997, Hamill, 2001], where the
rank of a verification (e.g., the observed runoff) is tallied
relative to the values from an ensemble sorted from lowest
to highest for n time steps. For an ensemble with 50 mem-
bers, there are 50 + 1 bins between two ensemble members
the observed runoff can fall into. Uniform frequencies for
all ranks reflect equiprobability of the observations within
the ensemble distribution [Wilks, 1995]. The second
method is the Brier score (BS) [Brier, 1950]

1

N
BS = = [p(t*) —o(t")), 1)
=1

=|

where p is the forecast probability from the ensemble fore-
cast for time ¢* of exceeding a threshold discharge, o is a
binary value depending on whether the observed discharge
at the time step #* exceeds the threshold discharge (o = 1)
or does not (o = 0), and N is the total number of forecasts
analyzed. BS ranges from 0 to 1. The Brier skill score
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(BSS) measures the improvement of a probabilistic forecast
relative to a reference forecast BS,.r:

BS
BSref .

BSS=1-— 2

[21] The range of the BSS is —oo to 1, with the best score
equal to 1. Positive scores indicate an improvement over
the reference forecast. In order to calculate the BS (equa-
tion (1)) a threshold discharge needs to be chosen. We
focused on high and median flows and selected the 50th
and 90th percentile discharges from hourly data consistent
with other studies [e.g., Rousset-Regimbeau et al., 2007,
Thirel et al., 2008]. In order to calculate the BSS (equation
(2)) a reference forecast needs to be estimated. We chose
the climatological forecast as a reference forecast as pro-
posed by Stefanova and Krishnamurti [2002].

[22] To compare our results with other studies, we
focused on high and median flows by using the 50th and
the 90th percentile derived from hourly observed runoff
data from the years 2006-2009. For calculation of the BSS
[Stefanova and Krishnamurti, 2002] the reference forecast
BS,.r was estimated by using the observed runoff data from
2006 to 2009.

[23] For a more detailed evaluation of the ensemble run-
off forecasts, we used a spread-skill analysis [e.g., Scherrer
et al., 2004 ; Lalaurette et al., 2005]. Figure 3 gives the def-
initions of the terms used. #, denotes the time the forecast is
made and ¢* refers to the time of the predicted runoff. We
examined forecasts lead times (£* — #y) of 1, 3, 6, 12, 24,
and 48 h. As a measure of the ensemble spread we used
two different measures: (1) the standard deviation &.(¢*),
and (2) the range between the upper quartile and the lower

quartile JOR_ (¢*) of the runoff of the ensemble members
for each point in time #*. As a measure of skill we used
both the standard deviation o. and the /QR. of the forecast
error €(#*) which is defined as the difference between the
observed runoff and the deterministic forecast.

[24] In order to distinguish between different forecast sit-
uations, we stratify the analysis of forecast errors in classes

ensemble

observed

runoff

forecast
observed

deterministic

pdf of
ensemble forecasts

l\ ensemble spread

P
IQR (1)

5(t")

__

E(t*) forecast error

ty

t* time

Figure 3. Definitions of the time #, the forecast is made and the time #* for which the forecast is made.

Two measures are used for the ensemble spread at time step #*: (1) 5.(¢*), and (2) I/Q7?E (¢%). The forecast

error is denoted as e(¢*).
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of runoff ensemble spreads. Even though classes of precipi-
tation ensemble spreads could have been used instead, the
runoff ensemble spreads allow for taking into account not
only precipitation induced but also snow melt induced
flood events. Small ensemble spreads are more likely to
occur when the runoff is constant or receding, while large
ensemble spreads are more likely to occur when runoff is
rising. Since floods are of interest here, the analysis of fore-
cast errors associated to large ensemble spreads will be
emphasized in the following. We grouped the forecast time
steps t* (for each lead time separately) into 10 classes
according to the ensemble spread of that time step. For
example, class 1 represents 10% of the time steps with the
smallest ensemble spread and class 10 represents 10% of
the time steps with the largest ensemble spread. Each class
had the same number of time steps of n = 3500. For each
class j we estimated the mean ensemble spread of the
classj as

- 1
O = 3 (max 6. ; + mind. ;) 3)
and
—— 1 — —
IOR, ; = 3 (max IQR, ; + min [QRW-). )

[25] Similarly, we calculated the standard deviation o.
of the forecast error £(#*) over the same time steps:

0. = ¢11 > L) - T, )

with € as the mean forecast error over the n time steps. We
also calculated the interquartile range /OR; ; of the forecast
error £(¢*) for each class j. If the ensemble forecasts fully
portray the forecast errors, i.e., the ensembles are perfect,
the ensemble spread and the forecast errors are equal for all
classes j. It is worth noting that, differently from the BSS
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measure, the forecast errors and the ensemble spread do not
account for biases of the forecast estimation. By comparing
forecast errors and ensemble spread we aim to assess if the
runoff ensemble forecasts and the total runoff forecast
errors have the same spread and therefore the first can be
deemed representative of the second.

[26] The other main objective of the paper is to quantify the
contributions of precipitation forecast errors and hydrological
simulation errors to the total forecast error. We analyzed the
errors for two cases of runoff forecasts.

[27] 1. In the first case we used forecasts of deterministic
precipitation as an input to the runoff model.

[28] 2. In the second case we used observed (and interpo-
lated) precipitation data.

[29] These two cases allow us to examine the precipita-
tion forecast errors separately from the hydrological simu-
lation errors. Because of the nonlinearity of the runoff
processes we consider it more appropriate to test the pre-
cipitation forecast errors via their effect on runoff rather
than directly by comparing them against rain gauge data.
This also allows us to compare the precipitation forecast
errors directly with the hydrological simulation errors. This
has been done looking in particular to the largest of ensem-
ble spread classes since floods are of interest here.

4. Results

4.1. Forecast Performance Evaluated by Means of the
Brier Skill Score

[30] An overall view of the performance of the ensemble
runoff forecasts, irrespective of discharge and ensemble
spread, is given in this section. Figure 4 shows a Talagrand
diagram for a forecast lead time of 48 h. Q5, Q25, Q50,
Q75, and Q95 are given for the 43 catchments analyzed in
this study. If the equiprobability of the observations within
the ensemble distribution is given, the ratio of frequency to
expected frequency of the observed runoff falling in one of
the ranks of the ensemble members should be unity. The dia-
gram, however, is U-shaped for all lead times (lead times

freq. / expected freq.

25 30 35 40 45 50

bin number

Figure 4. Talagrand diagram for runoff ensemble forecasts for a lead time of 48 h for all 43 catch-
ments. Median values are shown as continuous line, 25% and 75% quantiles as dashed lines, and 5% and
95% quantiles as dotted lines. The number of the bin which is between two ensemble members is plotted
against the ratio of frequency to expected frequency of the observations falling into each bin for » time

steps.
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from 1 to 24 h are not shown in Figure 4). This means that
the observed runoff is too often lower or higher than the low-
est or highest ensemble member; the ensemble spread is too
narrow. As the lead time increases the U-shape becomes less
distinct which means that the ensemble spread better cap-
tures the uncertainty in the forecasts. However, there are dif-
ferences between the catchments which is shown in Figure 4
with the different quartiles. For a lead time of 48 h, the ratio
of frequency to expected frequency in the middle bins of
ranked ensembles members is between 0.15 and 0.22 for
50% of the catchments (Q75-Q25). In some catchments the
ratio of frequency to expected frequency is below 0.1 for the
middle bins. The mean value of observed runoff outside
the entire range covered by the 50 ensemble members is
70%, while the figure for a perfect ensemble is 2%. It is clear
that on average over all time steps the ensemble forecasts do
not capture the entire range of forecast errors.

[31] Figure 5 shows the Brier skill score BSS for all
catchments analyzed as a function of lead time. Figure 5(a)
gives the BSS for a 50% percentile of runoff as reference
forecast, i.e., it relates to medium and low runoff. Figure
5(b) gives the BSS for a 90% percentile, i.e., it relates to
high flows. For both percentiles the BSS decreases with
increasing lead time. Clearly as the lead time increases, the
skill of the ensemble forecasts to match the forecast errors
decreases. Overall, the skill for medium runoff (50% per-
centile) is higher than for high runoff (90% percentile). For
most of the catchments the 50% BSS ranges between 0.8
and 0.1 at a lead time of 48 h, while the 90% BSS ranges
between 0.6 and 0.0. For high flows it is more difficult for
the ensemble forecasts to match the forecast errors than for
medium flows.

[32] There are a small number of catchments (e.g., Greim-
persdorf indicated by the black dashed line) where the BSS
rapidly decreases after the first hour and increases after 12 h
(Figure 5(a)). This is because low and medium flows in
these catchments are influenced by regulations of hydro-
power plants which have a half-daily cycle not represented
in the hydrologic model. For high flows the influence of the
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regulations is less apparent (Figure 5(b)). While it would be
easily possible to model these cycles provided the informa-
tion is available from the hydropower operators it is not rel-
evant for the flood forecast which are the purpose of this
study.

4.2. Ensemble Spread Versus Total Forecast Error

[33] As discussed in section 3.2, the spread-skill analysis
provides more detailed insight into the performance of the
ensemble forecasts and the contributions of the various
error sources. In Figure 6 the midpoint of each class of
ensemble spread &. and the corresponding spread of the
forecast error o, are shown as a function of lead time for
the four example catchments highlighted in Figure 1. For
ease of comparison, both the ensemble spread and forecast
errors were scaled by the mean annual runoff of each catch-
ment. All time steps for every lead time were assigned into
one of 10 classes of equal size according to the ensemble
spread 6. Class 1 represents 10% of the time steps with the
smallest ensemble spread and class 10 represents 10% of
the time steps with the largest ensemble spread. Then we
calculated the midpoint of the ensemble spreads for each
class and the standard deviation of the forecast errors for
each class according to equations (3) and (5). Figure 6 shows
the results for the lead times 12 h (light gray squares), 24 h
(dark gray triangles), and 48 h (black circles) hours. If the
ensemble standard deviation and the forecast error standard
deviation match, the points are close to the 1:1 line. On
average, the standard deviation of the forecast error is 23
times bigger than the ensemble standard deviation. For short
lead times, in particular the ensemble spread is small. This is
because the ensemble spread is related to the precipitation
forecasts, while for lead times shorter than the catchment
response time the runoff mainly depends on observed precip-
itation [Komma et al., 2007]. For lead times of 48 h the
errors are twice and up to five times larger than the ensem-
bles. Several reasons contribute to this. First, parts of the
errors can be explained by the fact that we used real-time data
and we only corrected obvious errors, whereas runoff

Brier Skill Score

Gmunden

(a) 50% percentile

0.0

(b) 90% percentile

0 12 24

lead time (h)

12 24

lead time (h)

Figure 5. Brier skill score BSS as a function of lead time, computed using observed river flow as refer-
ence for a runoff exceeding the (a) 50% percentile and (b) 90% percentile. The focus in the left figure is
on predicting low and medium runoff, the focus in the right is on predicting high runoff. Thick lines refer

to the catchments used for detailed analyses.
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Figure 6. Ensemble spread 4. versus standard deviation of total forecast errors o, both scaled by
mean runoff (MQ). Ensemble spread is plotted at the midpoint of the classes. Light gray squares indicate
a lead time of 12 h, dark gray triangles 24 h, and black circles 48 h. The thin line is the 1:1 line.

variations on the order of a few m® s™' were not corrected.
Second, short events with fast discharge increase in the catch-
ments Haid (Figure 6(a)) and Lilienfeld (Figure 6(d)) are
underestimated by the forecasts. Third, the runoff at the gauge
Gmunden (Figure 6(c)) is influenced by the retention effects
of a lake in the catchments. Interestingly the shapes of the
forecast errors and the ensembles are remarkably similar. In
Haid both the forecast errors and the ensemble spread
increases significantly for lead times beyond 24 h. In Lilien-
feld both remain constant. The similarity of the shapes
suggests that the ensembles do capture the important charac-
teristics of the errors.

[34] In the catchment Haid (Figure 6(a)), the ensemble
spread does not capture the forecast errors in the first nine
classes. The ensemble spread is around 10 times smaller
than the forecast errors, whereas in the class with the larg-
est ensemble forecasts the spread is larger than the forecast
error by a factor of 2.0-2.5. The forecast errors almost dou-
ble in this class when increasing the lead time from 24 to

48 h. The catchments Greimpersdorf (Figure 6(b)) and
Gmunden show a similar behavior. The ensemble spread in
the first 9 classes is up to 5 times smaller than the forecast
errors. With increasing ensemble spread this factor decreases
and the values are much closer to the 1:l-line, indicating that
the ensemble spread is almost able to capture the forecast
errors when the spread is large.

[35] Figure 7 shows the spread-skill analysis using the
IQR as a measure for the ensemble spread and the forecast
errors. Again, if the ensemble spread and the forecast errors
match, the points are on the 1:1 line. The ensemble spread
using the IQR as measure is about 2 times larger than the
ensemble spread using the standard deviation in Figure 6.
The forecast errors using the IQR are about half of the fore-
cast errors using the standard deviation as measure. How-
ever, the factors between ensemble spread and forecast
error are of similar magnitude as in Figure 6. It is important
to note that the classes of ensemble spread used in Figure 7
do not necessarily include the same time steps as in Figure 6.
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Figure 7. Same as Figure 6, but with the interquartile range as a measure for the ensemble spread

@25 and the total forecast errors IOR..

Despite the different values of ensemble spread and forecast
errors the figures look similar, but there are some small dif-
ferences between the shapes in Figures 6 and 7. For example,
for the class of the largest 10% of ensembles at the gauge
Greimpersdorf (Figure 7(b)) the ensemble spread for a lead
time of 24 h is larger than then ensemble spread for 48 h
using the IQR which can be attributed to the fact that the
classes do not include the same time steps.

[36] Figure 8(a) shows the CDFs of the Spearman’s rank
correlation coefficient r; between the ensemble standard
deviation ¢, and the standard deviation of the total forecast
error 0. for all 43 catchments analyzed for different lead
times. It shows that for a lead time of 12 h 75% of the
Spearman’s rank correlation coefficients 7, are larger than
0.88, for a lead time of 24 h 75% of the values are larger
than 0.95, and for a lead time 48 h 75% of the values are
larger than 0.92. Similar results are obtained for the Spear-
man’s rank correlation coefficient r; between the ensemble

interquartile range 1/Q7€ . and the interquartile range of the

total forecast error /QR. (Figure 8(b)) For a lead time of
12 h 75% of the Spearman’s rank correlation coefficients r
are larger than 0.95, for a lead time of 24 h 75% of the val-
ues are larger than 0.97, and for a lead time 48 h 75% of
the values are larger than 0.98. This indicates that although
the ensemble spreads are too narrow to capture the total
forecast errors they still are a good indicator of the forecast
error.

[37] The results of the spread-skill analyses using the
standard deviation and the IQR as measure for the ensem-
ble spread are consistent in terms of the shape of the fig-
ures. For the first nine classes, the forecast errors are up to
10 times larger than the ensemble spread. For the 10% of
the largest ensemble spreads, this factor is lower. Analyses

showed that 1/Q7?E is about 2 times larger than 4., whereas

IOR. is about 2 times smaller than o.. As @2 . and G. are

correlated, we will focus on 4. as a measure of the ensem-
ble spread for the remainder of this work.
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Figure 8. CDFs of the Spearman rank correlation coefficient 7, between ensemble spread and total
forecast error for all 43 catchments analyzed. (a) Ensemble spread 6. and total forecast error o., and (b)

ensemble spread I/Q7?E and total forecast error IQR.. Light gray squares indicate a lead time of 12 h, dark
gray triangles 24 h, and black circles 48 h. Each point indicates the Spearman rank correlation coefficient

rg of a single catchment.

4.3. Contributions to the Forecast Error

[38] Figure 6 shows the total forecast errors where no
distinction between the individual error sources is made. It
is now of interest to examine the contributions of the pre-
cipitation forecasts and the hydrologic simulations to the
total forecast errors. We analyzed the errors for two cases
of runoff forecasts: (a) In the first case we used forecasts of
deterministic precipitation as input in the runoff model as
in Figures 6 to 8. (b) In the second case we used observed
(and interpolated) precipitation data. In the second case, the
precipitation forecast error is absent and the entire error is
what we term hydrological simulation error. This error is
due to precipitation measurement and interpolation, water
level measurement and estimation of discharge and the
structure and the parameters of the runoff model (Table 1).
The first case also includes error components from the pa-
rameters and the structure of the atmospheric model and
the initial conditions.

[39] For each time step we calculated the differences
between observed runoff and the two cases of runoft fore-
casts. Using the same 10 classes of ensemble spread, we
calculated the standard deviation of the hydrological simu-
lation error opysim. Assuming that the precipitation forecast
errors and the hydrological simulation errors are independ-
ent, the variances are additive and the precipitation forecast
error standard deviation o, can be calculated as

Opfor = 4/ 052 - Uhysim2~ (6)

[40] Note that equation (6) can be easily generalized to
incorporate dependence between the errors. For instance,
Di Baldassarre and Montanari [2009] assumed perfect pos-
itive correlation between the errors when dealing with rat-
ing curves uncertainty in river flow data. The individual
process contributions to the error (Table 1) do not suggest
any direct dependencies, as the hydrological simulation

errors are mainly related to the hydrological model while
the precipitation forecast errors are mainly related to the
atmospheric model which is parameterized independently.
A detailed error analysis was, however, considered beyond
of the scope of this paper.

[41] We do not directly compare precipitation forecasts
with precipitation measurements. The main reason is that
the time scales relevant for the comparison depend on the
catchment response. For example, in a catchment with a
fast response, one would have to compare, say, precipita-
tion forecast with a 6 h aggregation level, while for slowly
responding catchments the aggregation level would have to
be 24 h or more. Also, the nonlinearity of the runoff proc-
esses does not allow a direct comparison of rainfall errors
(unit mm) with runoff errors (unit m* s™'). We therefore
consider it more appropriate to back-calculate the contribu-
tion of the precipitation forecasts from equation (6).

[42] Figure 9 shows the contributions to the total forecast
errors for the four catchments. For clarity, only the results
for the lead time of 48 h are shown. For small ensemble
spreads the entire error is made up of hydrological simula-
tion error. For larger ensemble spreads, the contribution of
the precipitation forecast error increases and for the largest
ensemble class, it is larger than the hydrological simulation
error. This is the class of major interest because the large
ensemble spreads are assumed to typically occur during the
rising limbs of events, which could reveal to be the flood
events that we want to forecast, while the small ensemble
spreads typically occur during recessions or constant runoff
periods. There are some apparent differences between the
catchments. In the smaller catchments (Haid and Lilien-
feld) the hydrological simulation error is larger than the
precipitation forecast errors for all but the largest ensemble
class. For Haid the precipitation forecast errors for of the
largest ensemble class is about twice the hydrological sim-
ulation error, while for Lilienfeld they are similar. This is
because Haid is drier than Lilienfeld (380 mm mean annual
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Figure 9. Components of the forecast errors for a lead time of 48 h for four catchments. Total forecast
errors o are indicated as solid lines (and are identical with black circles in Figure 5), hydrological simu-
lation errors opysim are indicated as dashed lines, and precipitation forecast errors oy, as dashed-dotted
lines. Ensemble spread is plotted at the midpoint of the classes. The thin line is the 1:1 line.

runoff as opposed to 860 mm in Lilienfeld), so one would
expect larger hydrological simulation errors [Nester et al.,
2011]. The errors in Greimpersdorf are similar to the errors
in Lilienfeld. Both catchments have similar mean annual
runoff depths and mean annual precipitation, however,
Greimpersdorf is 3.5 times the size of Lilienfeld. The pre-
cipitation forecast errors are somewhat larger in Greimpers-
dorf, which can be attributed to the smaller number of
precipitation stations per 100 km? in the catchments (1.2 in
Lilienfeld and 0.4 in Greimpersdorf). This means that the
spatial pattern of, e.g., small scale summer storms can be
captured better in the catchment with higher precipitation
density. The runoff in Gmunden is influenced by the reten-
tion effects of a lake, which is not explicitly modeled.
However, the lake retention affects mainly low runoff sit-
uations, and flood peaks are not affected. This explains that
for the small classes of ensemble spread the precipitation
forecast error is zero, and the hydrological simulation error
makes up 100% of the total forecast error.

[43] To assess the error contributions for all catchments,
the forecast errors scaled with mean catchment runoft have
been plotted against catchment size in Figure 10 for differ-
ent lead times. As the main interest in this study is on the

forecasting of floods the values of the top ensemble spread
(largest 10%) are shown. Light gray squares indicate a lead
time of 12 h, dark gray triangles represent a lead time of
24 h, and black circles stand for a lead time of 48 h. A lin-
ear regression was fitted to the errors of the individual
catchments in the logarithmic domain:

Oe

M

=a-A"+q, (7

where o (dimension km_zﬁ) and (3 (dimensionless) are

coefficients, 4 is the catchment area (km?), MQ is the mean
catchment runoff (m> s™'), and < is the dimensionless error
of the regression. The gray shades of the regression lines in
Figure 10 match those of the symbols for different lead
times. All errors decrease very clearly with catchment area,
although the rate of decrease differs with the error compo-
nent and the lead time (Tables 2 and 3). The precipitation
forecast errors (Figure 10(c)) decrease with catchment area.
The precipitation forecast errors also decrease with
decreasing lead time (from 48 to 12 h). As the lead times
get close to the catchment response time, any errors of fore-
casted precipitation will no longer affect the runoff
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Figure 10. Errors scaled by mean catchment runoff versus catchment area for the top class (largest
10%) of ensemble spreads for 43 catchments. (a) Total forecast errors o., (b) hydrological simulation
EITOrS Ohysim, and (c) precipitation forecast errors oy, The regression lines relate to different forecast
lead times according to the gray scale. (*) The hydrological simulation error includes precipitation mea-

surement and interpolation errors.

forecasts. This is particularly the case for the large catch-
ments where the response times are longer than in the small
catchments. Because of this the 12 h precipitation forecast
errors in the large catchments are very small and therefore
the dependence on area is stronger (3 = —0.695) than for
48 h (6 = —0.433). Table 2 gives the values of the slopes
and the 90% confidence interval for the slope parameter of
the regression [Kottegoda and Rosso, 1997, p. 352]. For the
precipitation forecast error, the slopes of the regressions are
significantly different for the lead times analyzed. The
hydrological simulation errors (Figure 10(b)) decrease with
catchment area due to the aggregation effects, while there
is much less dependence on the lead time. This can be
attributed to the updating procedures implemented in the
model. Komma et al. [2008] showed that these updating
procedures can reduce the error in particular for short lead
times. For short lead times (up to 810 h) the additive error
model reduces the errors significantly, whereas the Ensem-
ble Kalman filtering reduces errors for the entire lead time.
Without updating the model states one would not expect
any dependence as these are strictly simulations. The
decrease in the errors from 48 to 12 h (e.g., 1.18 to 1.02 for
catchment areas of 1000 km?) points to the value of the
updating procedure for cases when the ensemble spread is
large (top 10% of ensemble spreads). For the catchment areas

of 10,000 km? the relative effect of the updating is about
twice as big (0.40 to 0.31 for catchment areas of 1000 km?)
which is related to the longer response times and therefore
longer autocorrelation in the hydrographs of the large catch-
ments. For the hydrological simulation errors, the slopes of
the regressions for the different lead times are not significantly
different (i.e., the 90% confidence intervals for each lead time
contain the estimated slopes for the other lead times). The
total forecast errors (Figure 10(a)) are the combined result of
the two error components. There is again a strong dependence
on catchment area and a moderate dependence on the forecast
lead time. The slopes of the regressions show a similar behav-
ior as the slopes of the precipitation forecast error.

[44] Tt is now of interest to compare the error compo-
nents as a function of catchment scale and lead time. For
the 48 h lead time the precipitation forecast errors and
hydrological simulation errors are of similar magnitudes.
As the lead time decreases, the hydrological simulation
errors change little while the precipitation forecast errors
do, in particular in the large catchments. Obviously, for
very short lead times the precipitation forecast errors would
be zero. It is important to note, however, that this analysis is
for those 10% of the time steps with the largest ensemble
spreads, i.e., for a total of 36 days per year which not only
includes floods. If individual large events were examined,

Table 2. Slopes (3 (-) of the Regression (Equation (7)) of Ensemble Spread 4., Total Forecast Errors ., Hydrological Simulation Errors
Ohysim» and Precipitation Forecast Errors oy, (All Scaled by Mean Catchment Runoff) Against Catchment Area As Shown in Figures 10

and 11 for the Top Class (Largest 10%) of Ensemble Spreads®

Slope 3 (-) of 5.

Slope 5 (-) of o,

Slope 3 (—) of Opysim Slope 3 (=) of Opgor

Lead Time (h) (90% Confidence Interval) (90% Confidence Interval) (90% Confidence Interval) (90% Confidence Interval)
12 —0.754 (—0.603, —0.904) —0.555 (—0.475, —0.635) —0.522 (—0.441, —0.603) —0.695 (—0.590, —0.800)
24 —0.626 (—0.497, —0.754) —0.534 (—0.452, —0.617) —0.499 (—0.422, —0.576) —0.593 (—0.481, —0.705)
48 —0.557 (—0.426, —0.687) —0.458 (—0.383, —0.534) —0.471 (—0.401, —0.541) —0.433 (—0.337, —0.529)

*Values in parentheses are the 90% confidence intervals for the mean of the regressions.
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Table 3. Mean Ensemble Spread 4., Total Forecast Errors o,
Hydrological Simulation Errors oy,ysim, and Precipitation Forecast
Errors e, (All Scaled by Mean Catchment Runoff) From the
Regressions Against Catchment Area As in Figures 10 and 11 for
the Top Class (Largest 10%) of Ensemble Spreads

Lead  10°km’ ~10°km® ~10*km®
Time (h) a-S/(7-5/0-hysim/o-pfnr &e/gs/ahysiln/gpfnr a'a/O-s/a-hysim/o-pfor
12 4.97/4.27/3.38/2.80  0.88/1.19/1.02/0.56  0.15/0.33/0.31/0.11
24 6.71/5.17/3.61/3.66  1.59/1.51/1.15/0.93  0.38/0.44/0.36/0.24
48 6.32/4.97/3.49/3.27 1.75/1.73/1.18/1.21  0.49/0.60/0.40/0.45

and in particular the rising limbs, the relative magnitudes of
the two error sources may change with the precipitation fore-
cast errors becoming much more important than the hydro-
logical simulation errors [see e.g., Bldschl et al., 2008].

[45] Figure 11 shows a similar analysis as Figure 10,
however with the ensemble spread plotted against the catch-
ment area. Tables 2 and 3 give the associated slopes and
magnitudes of the ensemble spread along with those of the
total forecast, the hydrologic simulation, and the precipita-
tion forecast errors. Overall, the scaling characteristics of
the ensemble spreads are very similar as those of the fore-
cast errors. The decrease with catchment area is very simi-
lar. The slope of the dependency between ensemble spread
and area also increases with decreasing lead time, similar to
that of the forecast error, although it is somewhat steeper for
the shortest lead time. Similarly the magnitudes of the en-
semble spread and the total forecast errors compare well for
all lead times and catchment areas with a tendency of under-
estimates for shorter lead times an larger catchment areas.

[46] Figure 12 summarizes the spread-skill relationship
for a lead time of 48 h for all analyzed catchments. Only the
time steps corresponding to the top 10% of the ensemble
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Figure 11. Ensemble spread scaled by mean catchment

runoff versus catchment area for the top class (largest 10%)
of ensemble spreads for 43 catchments.
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spreads are represented. Figure 12(a) shows the relation
between ensemble spread and total forecast error, Figure
12(b) shows the relation between ensemble spread and pre-
cipitation forecast error, estimated according to equation
(6). The size of the circles indicates the catchment area. The
thin line indicates the 1:1 line.

[47] From Figure 12(a) it becomes apparent that on aver-
age the total forecast errors and the ensemble spreads are of
similar magnitude for all catchments as the points are close
to the 1:1 line. For small catchments the ensemble spread
is on average larger than the total forecast error by a factor
of 1.4, and for large catchments the factor is 0.9. In Figure
12(b) the points are somewhat farther from the 1:1 line,
especially for the small catchments where the ensemble
spread is bigger than the precipitation forecast error by an
average factor of 2.3. For the large catchments, the factor is
1.3. This indicates that on average, the ensemble spread is
representing the precipitation forecast errors and the total
forecast errors for the top 10% of the ensemble spreads,
meaning that the model uncertainty has not to be consid-
ered for the case of large ensemble spreads.

5. Discussion

[48] Even though not a main objective of this study, we
discuss hereafter the overall performance of the flood
forecasting system since it is operational. For a lead time of
24 h we obtain mean Brier Skill Scores BSS of 0.40 and,
for a lead time of 48 h, the mean value was 0.25 when
using the 90% percentile of runoff as reference forecast.
These values are consistent with performances of other
forecasting systems reported in literature. Addor et al.
[2011] showed similar BSS values in the range of 0.30-
0.50 for a lead time of one day and 0.10-0.30 for a lead
time of 2 days, when evaluating the PREVAH model with
COSMO-LEPS ensembles run on an hourly time step in a
336 km?® catchment. Rousset-Regimbeau et al. [2007] and
Thirel et al. [2008] evaluated ensemble runoff forecasts for
900 French catchments with areas ranging from 240 to
112,000 km?. They used ECMWF forecasts as input into a
coupled land surface and hydrogeological model run on a
3 h time step. Slightly larger BSS values can be expected
due to averaging effects [e.g., Skoien et al., 2003] in both
time and scale. Indeed, Rousset-Regimbeau et al. [2007]
who analyzed ensemble forecasts with a lead time up to
10 days found BSS values in the range of 0.4 to 1.0 for
one-day runoff forecasts and in the range of 0.3 to 1 for
five-day forecasts using the 90% percentile of runoff as ref-
erence forecast. Larger BSS values were obtained in large
catchments, while lower BSS were generally found in
smaller basins. Also Thirel et al. [2008] who focused on
short range forecasts up to 2 days reported mean BSS of
0.90 for the first day of the forecast and 0.85 for the second
day of the forecast.

[49] The first main objective of this study is to quantify
the contributions of precipitation forecast errors and
hydrological simulation errors to the total forecast error,
particularly during flood events. We compare estimated
runoff obtained by using forecasted precipitation and
observed precipitation as input into the hydrologic model.
To distinguish between different forecast situations, we
stratify the analysis of forecast errors in classes of
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(a) Ensemble spread, scaled by mean runoff versus total forecast errors, scaled by mean

runoff for the top 10% of the ensemble. (b) Ensemble spread, scaled by mean runoff versus precipitation
forecast error, scaled by mean runoff for the top 10% of the ensemble spreads. Only the lead time of
48 h is represented. The size of the circles indicates the size of the catchments.

ensemble spreads. As expected, the analyses revealed that
for small ensemble spreads, which indicate a small meteor-
ological uncertainty and are more likely to occur when the
runoff is constant or falling, the hydrological simulation
error accounts for almost 100% of the total errors. With
increasing ensemble spread the uncertainty from meteorol-
ogy increases and is the main source of uncertainty for
large ensemble spreads, which are more likely to occur
when runoff is growing and therefore in situations of flood
prognosis. For the largest 10% of the ensemble spreads in
the four focus catchments, the contributions of the precipita-
tion forecast errors account for 60%—-85% of the error var-
iance, whereas the hydrological simulation errors account
for 15%—-40% of the error variance. Olsson and Lindstrém
[2008] found that for all phases of runoff the contributions
of the meteorological and hydrological simulation errors are
similar, and only for the rising limb the uncertainty in the
meteorological forecasts dominated. However, Olsson and
Lindstrém [2008] used a daily time step which reduces the
anthropogenic variability introduced by the operation of res-
ervoirs and lakes which are not taken into account in this
study.

[s0] For short lead times, the hydrological simulation
error is the main source of uncertainty, as would be
expected. For a lead time of 12 h, the ratio of the hydrologi-
cal simulation error and the precipitation forecast error
increases from 1.2 to 2.7 with the catchment size increasing
from 100 to 10,000 km?. For long lead times, the precipita-
tion forecast error is dominant. For lead times of 48 h, the
ratio of hydrological simulation error to precipitation fore-
cast error decreases from 1.1 to 0.9 with increasing catch-
ment size. This is due to two reasons: (1) for short lead
times the uncertainty in the precipitation forecasts is small
as no uncertainty is attributed to the meteorological ensem-
ble in the first two hours [Komma et al., 2007] and (2) the
response time of the catchments is longer than the lead
time of the forecasts, meaning that it takes the input vari-
ability from the meteorological ensemble forecasts longer
to reach the basin outlet than the lead time of the forecast
[Renner et al., 2009].

[s1] All errors decrease clearly with increasing catchment
area and decreasing lead time. The decrease of precipitation
forecast errors with catchment area can be attributed to aver-
aging effects as discussed by Sivapalan [2003] and Skoien
and Bloschl [2006] (i.e., the catchment acts as a space-time
filter on precipitation, especially for increasing catchment
areas, meaning that for bigger catchments the accuracy
required in predicted spatial location and temporal dynamics
of precipitation is lower). The precipitation forecast error
scales with 8 = —0.695 for a lead time of 12 h, and 8 =
—0.433 for a lead time of 48 h. The smaller errors for short
lead times and large catchments can be attributed to the fact
that runoff in large catchments does not depend much on the
future precipitation at short lead times, but on the observed
precipitation. The runoff in small catchments, which have
shorter response times, are more dependent on the future pre-
cipitation, even at short lead times. In fact, a lead time of
12 h can be deemed large in a small catchment, characterized
by a small response time. For the 48 h lead time, the runoff
in large catchments is affected more by the future precipita-
tion, which is reflected in the smaller scaling factor, because
48 h can be deemed as short in comparison to large response
times. The hydrological simulation error (Figure 10(b)) also
decreases with catchment area, but the dependence on the
lead time is smaller (8 = —0.522 for 12 h lead time and § =
—0.471 for 48 h lead time). Two reasons contribute to this:
(1) the more linear (smoothed) response in large catchments
is easier to model than the larger nonlinearities in small
catchments [e.g., Rogger et al., 2012] and (2), as showed by
Komma et al. [2008], updating procedures can reduce the
error of forecasts in particular for short lead times and large
catchments. Komma et al. [2008] analyzed rising limbs and
showed errors 12% smaller compared to forecasts without
updating for a lead time of 12 h. The total forecast errors as a
combination of the two components show again a strong de-
pendence on catchment area and a moderate dependence on
the forecast lead time (8 = —0.555 and —0.458 for lead
times of 12 and 48 h, respectively). Having the variability of
forecast errors decreasing with catchment size is partly due
to the fact that the variability of streamflow is lower in large
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catchments. In fact the coefficient of variation of the entire
runoff hydrographs scales with —0.254 with catchment area
for the 43 catchments in this study. This slope is much lower
than the one of a random field (scaling factor —0.5) because
of the spatial and temporal correlation of rainfall and runoff
production over the catchments [Viglione et al., 2010a,
2010b]. Similar values are found by Merz and Bldschl
[2003] who focused on the evaluation of mean annual flood
and further distinguished different runoff situations. They
found coefficients of variation in the range of —0.205 for
snowmelt induced floods and —0.413 for flash floods, which
are less spatially and temporally organized [Viglione et al.,
2010b]. Since the scaling factors for the forecast errors are
higher (in absolute value), we can conclude that the perform-
ance of the forecasting system increases with catchment size.

[52] The second objective of this study is to evaluate the
capability of the runoff ensemble forecasts to represent the
total forecast error as a function of lead time. Ensemble
forecasts have been considered a suitable tool for quantify-
ing and communicating the uncertainties of forecasts [see
e.g., Hlavcova et al., 2006; Demeritt et al., 2007], as the
spread of the ensemble members can be used as a measure
of forecast uncertainty [Buizza, 2003]. In the studies of
Johnell et al. [2007], which is based on ECMWF ensemble
forecasts and Jaun and Ahrens [2009], which is based on
downscaled ECMWF ensemble forecasts, forecast errors
increased with increasing ensemble spread and with increas-
ing runoff for all catchments. Johnell et al. [2007] showed
an increase of the mean absolute error of the ensemble me-
dian with increasing ensemble spread class from 5% to 30%,
averaged over all catchments which is smaller than the mean
absolute error of the deterministic forecasts in this study. For
a lead time of 48 h, we have estimated values in the order of
8% to 40% for the large catchments, and values in the order
of 15% to 140% for small catchments. The larger errors can
be attributed to the facts that we use an hourly time step and
Johnell et al. [2007] used a daily time step for estimating
runoff. Komma et al. [2007] analyzed the forecasts of five
flood events in a 600 km* catchment in Austria and found
mean normalized absolute errors of about 40% when evalu-
ating the entire events at a lead time of 48 h, which is some-
what lower than the values in this study for medium
catchments. In the study of Komma et al. [2007] the number
of precipitation stations per 100 km? is 1.3, while in this
study on average 0.4 stations per 100 km? are available. An
increasing number of precipitation stations per catchment as
discussed by Merz et al. [2009] allows better estimates of
catchment precipitation, which further reduces the forecast
errors in larger catchments. Jaun and Ahrens [2009] who
evaluated daily forecasts for 23 catchments in Switzerland
show ensemble spreads and forecast errors of similar magni-
tude for large ensemble spreads. For small ensemble spreads
positive forecast errors were 1.5 to 5 times larger than the
(small) ensemble spread, and with increasing ensemble
spread the factor between error and spread decreased to a
value of 0.9 for large ensemble spreads. For negative fore-
cast errors, the factor was larger in the range of 1.5 to 100
for small ensemble spreads and decreased to a factor of 1.3
for large ensemble spreads. Jaun and Ahrens [2009] con-
cluded that the uncertainty is covered by the ensemble with
appropriate spread. For small ensemble spreads we observe
total forecast errors which are larger than the ensemble
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spread by a factor in the range of 10 to 100 for all lead times.
For large ensemble spreads the total forecast errors and the
ensemble spreads are much closer to the 1:1 line. On aver-
age, for a lead time of 48 h the ensemble spread is larger
than the total forecast error by a factor of 1.4 for small catch-
ments, and for large catchments the factor is 0.9. This indi-
cates that the ensemble spread is representative of the total
forecast errors in situations with large ensemble spreads,
which are of particular interest for flood forecasting, but
there is still potential to improve the spread-skill relationship
also for small ensemble spreads [see e.g., Schaake et al.,
2004 ; Olsson and Lindstrom, 2008]. Even if the ensemble
spread does not always capture the magnitude of the forecast
error, there is a clear correlation between the two, as shown
by calculating the Spearman’s rank correlation, meaning that
the ensemble spread can always be used as an index of fore-
cast errors. For the ensemble spread the scaling factor is
large in absolute values for short lead times (—0.754 for
12 h), for the same reason, i.e., the runoff in large catch-
ments does not depend much on the future precipitation at
short lead times, but on the observed precipitation.

6. Conclusions

[53] In this study we perform an error analysis on the
forecasts of an operational flood forecasting system for the
Danube tributaries in Austria and Germany. We carried out
a spread-skill analysis with two different measures for the
spread, the standard deviation and the interquartile range.
Both analyses are consistent in terms of the results: For the
90% of the time steps with small ensemble spreads the
forecast errors are larger than the ensemble spread and for
the 10% of the time steps with the largest ensemble spreads
the forecast errors and the ensemble spread are of similar
magnitude. For flood forecasting we are mainly interested in
the 10% of the time steps with the largest ensemble spreads,
which are typically occurring during the rising limbs of flood
events. For these time steps, clear scaling relationships of
the forecast error components with catchment area have
been found and discussed. The results indicate that the fore-
cast error components, the hydrological simulation error,
and the precipitation forecast error, decrease with increasing
catchment size. As one would expect, the error component
of the hydrological simulation does not differ significantly
with increasing lead time, whereas the error component of
the precipitation forecast differs significantly with changing
lead time. For short lead times, the ratio of the hydrological
simulation error to precipitation forecast error is 1.2 to 2.7
with increasing catchment size from 100 to 10,000 km?. For
long lead times the ratio of hydrological simulation error to
precipitation forecast error decreases from 1.1 to 0.9 with
increasing catchment size. A similar scaling is also found for
ensemble spreads, which are shown to represent quantita-
tively the total forecast error when forecasting floods.

[s4] We believe that this kind of scaling analysis of the
forecast errors should be performed in other case studies as
well, e.g., in other climates and using different models. Com-
paring different studies is needed for understanding, which is
the idea underlying the so called comparative hydrology, in
which simple indices are used for quantifying similarities of
processes and models across scales [McDonnell and Woods,
2004 ; Bldschl, 2006].
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runoff over the calibration or validation period of » hours.
nsme values can range from —oo to 1. A perfect match
between simulation and observation implies nsme = 1;
nsme = 0 indicates that the model predictions are as accu-
rate as the mean of the observed data, and nsme <0 occurs
when the observed mean is a better predictor than the

Appendix A

[55] A summary of catchment characteristics (area, mean
annual precipitation, runoff and temperature, and difference
in elevation) as well as model performance measures (Nes-
ter et al. [2011]) is given in Table A1.

model.
Appendix B [57] As a measure of bias the volume error VE was used:
[56] Statistical measures used to evaluate the model per-
formance include the Nash and Sutcliffe [1970] coefficient . .,
of efficiency (nsme): Z Osimi — Z Oobs.
5 (O - O =S =
sim,i — Yobs,i .
nsme = 1 — i:n] , (B1) ; Qs

Z (Qobsﬁi - %)2

i=1

) [s8] The value can be positive or negative, with a VE of
where Qobs; and Ogim,; are observed and simulated runoff  an unbiased model being 0. Values larger and smaller than
at hour i, respectively, and Qg is the mean observed 0 imply over- and underestimation, respectively.

Table Al. Stream Gauges Used for Detailed Analyzes®

Gauge/Catchment Area (km?) MAP (mmyr ')  MAR (mmyr ') MAT (°C) Ah(m)  nsme (calib/valid) VE (calib/valid)
Molln/Steyrling 129 1705 865 7.3 1349 0.58/0.67 0.30/0.14
Erlaufboden/Erlauf 136 1590 1190 6.1 1290 0.73/0.66 0.01/-0.05
Oberkappel/Ranna 139 1055 620 8.2 464 0.69/0.57 —0.02/—0.20
Krenstetten/Urlbach 156 1050 430 8.6 475 0.61/0.72 0.16/0.08
Kremsmiinster/Krems 161 1260 540 8.7 931 0.66/0.72 0.06/0.05
Haging/Antiesen 165 1030 440 8.9 430 0.70/0.70 0.03/0.19
Cholerakapelle/Schwechat 181 890 260 8.9 609 0.79/0.50 0.14/-0.01
Obermihl/K1. Miihl 200 950 480 8.6 626 0.64/0.52 —0.01/-0.10
Siegersdorf/Gr. Tulln 204 815 200 9.2 720 0.46/0.64 0.60/0.35
Rottenegg/Rodl 227 960 385 7.7 765 0.62/0.36 0.05/0.12
St. Georgen/Gusen 263 860 250 8.2 655 0.70/0.68 0.11/-0.06
Atzenbrugg/Perschling 268 820 200 9.1 593 0.62/0.72 0.25/0.22
Hirtenberg/Triesting 287 960 230 8.7 758 0.58/0.63 —0.08/—0.20
Hofstetten/Pielach 290 1425 690 8.2 1002 0.81/0.62 —0.05/0.00
Imbach/Krems 306 720 210 7.7 704 0.33/0.42 -0.22/0.00
Haid/Naarn* 306 915 380 7.3 810 0.75/0.65 0.19/0.19
Lilienfeld/Traisen* 333 1440 860 7.3 1275 0.85/0.69 —0.12/0.00
Pfaffing/Aschach 353 975 330 8.5 419 0.55/0.49 0.30/0.40
Fraham/Innbach 362 940 340 8.5 509 0.62/0.60 —0.06/0.12
Obergéu/Lammer 395 1860 1215 5.6 1910 0.59/0.69 0.10/0.01
Teufelmiihle/Gr. Miihl 450 1055 580 7.6 896 0.72/0.49 0.13/-0.02
Penningersteg/Alm 459 1600 960 7.7 2038 0.46/0.62 0.17/0.19
Opponitz/Ybbs 507 1800 1140 6.6 1471 0.84/0.79 0.17/0.07
Klaus/Steyr 542 1750 1530 6.6 1946 0.59/0.58 0.02/-0.21
Wildalpen/Salza 592 1630 1150 5.9 1942 0.74/0.73 0.06/0.00
Niederndorf/Erlauf 595 1460 750 7.6 1551 0.79/0.73 0.09/-0.03
Schwertberg/Aist 605 885 305 7.6 788 0.69/0.65 0.06/—0.02
Windpassing/Traisen 735 1270 640 7.9 1354 0.80/0.75 —0.09/-0.10
Ruhstorf/Rott 1,052 840 220 8.4 223 0.58/0.07 0.03/0.13
Rosenheim/Mangfall 1099 1520 430 7.9 1386 0.71/0.36 —0.13/0.03
Greimpersdorf/Ybbs* 1,116 1480 840 7.5 1607 0.86/0.80 —0.02/0.02
Siezenheim/Saalach 1,139 1730 910 5.9 2370 0.71/0.74 0.08/0.05
Fischerau/Ager 1,260 1360 720 8.2 1403 0.77/0.43 0.04/0.03
Gmunden/Traun* 1,390 1810 1425 6.3 2499 0.76/0.78 —0.01/-0.10
Golling/Salzach 3,161 1630 1100 39 3059 0.63/0.73 0.03/0.02
Wels/Traun 3,426 1600 855 7.4 2603 0.82/0.85 0.06/0.02
Innsbruck/Inn 5,792 1110 825 1.5 3357 0.71/0.74 —0.04/0.03
Steyr/Enns 5915 1510 1060 6.1 2556 0.80/0.71 0.09/-0.02
Oberndorf/Salzach 6,120 1650 1020 5.1 3156 0.65/0.74 0.07/—-0.02
Brixlegg/Inn 8,503 1190 900 2.0 3420 0.73/0.76 —0.04/0.00
Rosenheim/Inn 10,186 1285 820 3.4 3473 0.68/0.76 0.08/0.03
Wasserburg/Inn 11,977 1270 800 39 3495 0.65/0.73 —0.06/0.03
Schirding/Inn 25,664 1340 830 5.1 3632 0.77/0.80 0.00/0.07

“MAP, MAR, and MAT (2002-2009) is mean annual precipitation, runoff, and temperature, respectively. A# is the difference in elevation within the
catchment. nsme stands for Nash-Sutcliffe model efficiency, VE stands for volume error (figures are for the calibration period/validation period) (from
Nester et al. [2011a]). *denote catchments used for detailed analyzes.
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