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Evaluating the snow component of a flood

forecasting model

T. Nester, R. Kirnbauer, J. Parajka and G. Blöschl
ABSTRACT
The objective of this study is to evaluate the snow routine of a semi-distributed conceptual water

balance model calibrated to streamflow data alone. The model is used for operational flood

forecasting in 57 catchments in Austria and southern Germany with elevations ranging 200–3,800 m

a.s.l. We compared snow water equivalents (SWE) simulated by the hydrologic model with snow

covered area (SCA) derived from a combined product of MODIS (version 5) Terra and Aqua satellite

data for the period 2003–2009 using efficiency measures and a spatial analysis. In the comparison,

thresholds for percent catchment snow cover and a cut-off water equivalent need to be chosen with

care as they affect the snow model efficiency. Results indicate that the model has a tendency to

underestimate snow cover in prealpine areas and forested areas while it performs better in alpine

catchments and open land. The spatial analysis shows that for 88% of the analysed model area snow

cover is modelled correctly on more than 80% of the days. The space borne snow cover data proved

to be very useful for evaluating the snow model. We therefore suggest that the snow data will be

similarly useful for data assimilation in real time flood forecasting.
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INTRODUCTION
Recent flood events in Austria such as the 2002 flood in the

Danube basin have raised the public awareness for the need

for flood warnings to reduce damage to property and life.

Following these floods, operational flood forecasting sys-

tems have been developed for most rivers in Austria.

These include the Kamp River (Blöschl et al. ), the

Inn River (Kirnbauer & Schönlaub ), and the Mur

River (Schatzl & Ruch ).

The challenge of operational forecasting systems is the

need for simple and robust, yet accurate, routines that can

be used with a limited amount of real time data. The fore-

casting is, thus, particularly difficult in mountainous

regions because of the large spatial variability of hydrologic

characteristics and the limited availability of ground based

hydrologic data. As the prediction of streamflow depends

on the accuracy of input data and the state variables of the

model, it is important to estimate state variables such as

soil moisture and snow water equivalent (SWE) well.
Recent studies suggest that remote sensing data may be valu-

able for validating the snow component of hydrological

models and assimilating them into forecast models.

To evaluate snow models, different remote sensing pro-

ducts have been used, especially in alpine regions where

forests do not obstruct the detection of snow. Blöschl &

Kirnbauer () obtained snow cover patterns from aerial

photographs and used them to validate a snow model

(Blöschl et al. ). From the differences between simulated

and observed patterns they evaluated the effects of radiation

and wind transport on the snow distribution. Blöschl et al.

() used SPOT XS satellite data to reduce the biases in

simulated SWE. Garen & Marks () found good agree-

ment between the temporal evolution of simulated and

satellite snow covered area (SCA) for three snowmelt sea-

sons in a basin in Idaho, but they also found that the

satellite data underestimated SCA in forested areas.

Koboltschnig et al. () used LANDSAT TM and
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ASTER L1B data to compare simulated and SCA in a gla-

ciated catchment in the Austrian Alps. Results showed that

the model overestimated the observation by 1–9% in June

and July and by 10–36% in August and September which

they attributed to redistribution of snow by wind or ava-

lanches not included in the model. Schöber et al. ()

used LANDSAT images to evaluate SCA simulations in gla-

ciated catchments in Tyrol and showed an average model

underestimation of 17%. Studies in non-alpine areas include

Wigmosta et al. (), who used NOAA-AVHRR SCA to

validate simulated snow cover patterns in Montana. Roy

et al. () compared MODIS SCA to in situ snow depth

measurements and simulated SCA in a forested study

region in Canada. They developed a direct-insertion

approach defining an empirical threshold for SWE to com-

pensate for discrepancies between modelled SWE and

satellite derived SCA. Zappa () assessed the perform-

ance of distributed snow cover simulations in Switzerland,

adopting skill scores based on contingency tables for a quan-

titative evaluation of snow cover simulations and comparing

NOAA-AVHRR snow cover data to the model results. He

showed that the model captures the observed patterns

with high accuracy and that the scores allow an objective

quantification of such agreement. However, the results of

Zappa () reveal that the largest uncertainties are present

in the regions of the transition zones between the valley

plains and the upper part of the valley slopes.

MODIS snow cover data (SCA) are appealing for

regional scale modelling and validation. The main advan-

tage of MODIS imagery is the high temporal and spatial

resolution and mapping accuracy. Comparisons of MODIS

snow cover data with other satellite products and ground

based snow depth measurements showed mapping accuracy

between 90 and 95% in cloud free conditions, but varying

with land cover, snow conditions and snow depth (see

e.g., Klein & Barnett ; Simic et al. ; Tekeli et al.

; Parajka & Blöschl ; Hall & Riggs ; Pu et al.

; Tong et al. b; Parajka & Blöschl ). The main

limitation, however, is persistent cloud coverage, which

can significantly limit MODIS application for snow cover

mapping and its usefulness for assimilation into hydrologic

models (e.g., Rodell & Houser ; Parajka & Blöschl

b; S ̧orman et al. ; Tong et al. a). Different

methods to reduce cloud coverage have been developed
(see e.g., Parajka & Blöschl a; Gafurov & Bárdossy

; Tong et al. b; Hall et al. ; Parajka et al.

). Parajka & Blöschl () show that MODIS classifi-

cation errors are around 15% in the winter months and

around 1% in summer; however, this is related to the

larger spatial extent of clouds in the winter months. On aver-

age, Parajka & Blöschl () have estimated a spatial

extent of clouds over Austria of 63% for the years 2000–

2005. Recently, MODIS SCA data have been assimilated

into hydrological models (see e.g., Andreadis & Lettenmaier

; Roy et al. ; Thirel et al. ) and used for model

calibration (see e.g., Déry et al. ; Tekeli et al. ;

Udnaes et al. ; Parajka & Blöschl b; Immerzeel

et al. ; Şorman et al. ), mostly indicating that

using MODIS data improves the snow simulations more

than it does the streamflow simulations.

In most of the basins in the present study, springtime

streamflow is highly influenced by the water stored in the

snow pack. Especially for flood forecasting it is vital to esti-

mate the available water storage as accurately as possible.

As highlighted in the literature, using MODIS snow cover

data show much promise for model evaluation. However,

most studies evaluated the snow models over a short time

period because prevailing cloud cover limited the available

remote sensing data. Thus, the objective of the present

study is (1) to investigate whether MODIS data with a

large spatial extent of cloud coverage over a basin can be

used for evaluating a snow model, (2) to examine the evalu-

ation method in terms of the thresholds used, and (3) to

analyse the temporal and spatial performance of the snow

component of an operational flood forecasting model using

observed SCA data derived from MODIS. We use a semi-dis-

tributed conceptual hydrological model in a simulation mode

with historical data and MODIS data version 5 (Riggs et al.

) from 2003–2009 as an independent data set.

The paper is organised as follows. The data section gives

details on the study area and the ground and satellite data

used in the paper. The Methods section gives a short

description of the calibration of the model and the error

measures used to evaluate the snow model performance.

In the Results section, a sensitivity analysis to evaluate

threshold values on the snow model performance is carried

out and the errors are analysed in regard to seasonality and

elevation; the model performance is evaluated in space and
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time. The final section discusses the results and concludes

with remarks on potential future applications of remote sen-

sing snow cover data in operational flood forecasting. In

Appendix A (available online at http://www.iwaponline.

com/nh/043/041.pdf), a description of the model is given.
STUDY REGION AND DATA

The flood forecasting system for the Austrian Danube con-

sists of three parts: (1) a meteorological, (2) a hydrological

and (3) a hydraulic model part. The meteorological forecasts

include deterministic and ensemble forecasts of precipi-

tation and air temperature for 48 hours on an hourly time

step; the hydrological model estimates deterministic and

ensemble streamflow forecasts in the Danube tributaries;

and the hydraulic model is run with the results from the

hydrological model to estimate streamflow and water level

for the Danube River. In this study, we focus on the evalu-

ation of the snow model. For this purpose we ran the

hydrological model with observed meteorological data.

The study region includes the tributaries to the Danube

River which cover a large part of Austria and some parts

of Bavaria. Hydrological conditions are quite diverse. In

the alpine west elevations range up to 3,800 m a.s.l. while

the north and east consist of prealpine terrain and lowlands
Figure 1 | Topography of Austria and parts of southern Germany. The stream gauges used in

stations by red circles. Thin black lines are catchment boundaries, the thick black line

of this figure is available in the online version of the paper (http://www.iwaponline
with elevations between 200 and 800 m a.s.l. (Figure 1).

Land use is mainly agricultural in the lowlands, forests in

the medium elevation ranges and alpine vegetation, rocks

and glaciers in the alpine catchments. The alpine catch-

ments are generally wetter with mean annual precipitation

of almost 2,000 mm yr–1 in the west compared to 600 mm

yr–1 in the east.

The hydrologic data set used in this study includes

hourly streamflow data of 57 gauged and telemetered catch-

ments with sizes ranging from 70 to 25,600 km to calibrate

and validate the model. The data set also includes hourly

values of precipitation, air temperature and potential evapo-

transpiration. Precipitation and temperature measurements

for the years 2003 to 2009 were spatially interpolated by

the Central Institute for Meteorology and Geodynamics

(ZAMG) in Vienna using the algorithm implemented in

the INCA system (Steinheimer & Haiden ; Haiden &

Pistotnik ). The INCA system was developed by the

ZAMG mainly for meteorological forecasting, but it can

also be used with historical data. INCA uses output from

surface station observations, radar data and elevation data

to generate gridded weather data. For the precipitation

analysis, a combination of interpolated station data includ-

ing elevation effects and spatially structured radar is used.

The procedure of combining the different data is given in

Haiden et al. (). The spatial distribution of potential
the study are indicated by triangles, precipitation gauges by white circles, weather radar

highlights the catchment Obergäu/Lammer used for detailed analyses. The colour version

.com/nh/toc.htm).

http://www.iwaponline.com/nh/043/041.pdf
http://www.iwaponline.com/nh/043/041.pdf
http://www.iwaponline.com/nh/toc.htm
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evapotranspiration was estimated from hourly temperature

and daily potential sunshine duration by a modified

Blaney-Criddle equation (DVWK ). This method has

been shown to give plausible results in Austria (Parajka

et al. ). To calibrate and verify the model on streamflow

data, the years 2003–2006 were used as calibration period;

2007–2009 were used as a validation period.

Once the hydrologic model was calibrated and in oper-

ational use, we were interested in how the model fits to the

MODIS data which are an independent source of infor-

mation as they were never used for calibration. The

MODIS data used for evaluating the snow routine are

based on daily observations acquired by the Terra and

Aqua satellites of the NASA Earth Observation System.

We used the approach of Parajka & Blöschl (a) to

merge the original Version 5 Terra (MOD10A1) and Aqua

(MYD10A1) MODIS products (Hall et al. , ) in

space and time on a pixel basis. The MODIS snow cover

maps were reclassified from originally 16 pixel classes to

three categories: snow, no snow (land) and clouds. The

snow class was retained as snow. The snow free land class

was retained as no snow (land). The cloud, missing and erro-

neous data classes were combined into clouds. However,

missing and erroneous data represent only a small portion

of the total data. The remaining 11 original classes did not

occur in the computations of this study. Based on the follow-

ing assumptions, four pixels with the size of 500 × 500 m

were aggregated to obtain snow cover maps with a pixel

size of 1 × 1 km: (1) if all four pixels were marked as the

same category, the category of the 1 × 1 km pixel remained

the same, (2) if the number of pixels marked as no snow

was greater than the number of snow pixels, the 1 × 1 km

pixel was classified as no snow, and (3) if the number of

pixels marked as snow was greater or equal than the

number of pixels marked as no snow, the 1 × 1 km pixel

was classified as snow.

The average cloud cover over the study region for the

period 2003–2009 (total of 2,555 days) is around 50% for

the combined Aqua-Terra-MODIS data. Cloud coverage is

around 40% in alpine valleys and around 60% over mountai-

nous terrain. Figure 2 (top) shows the spatial distribution of

the cloud coverage for the period 2003–2009 in the model

region. Figure 2 (bottom) shows the long-term ratio of snow

covered days (SCD) for 2003–2009. For every pixel, the
ratio of snow covered days (SMODIS) to snow covered plus

snow free days (LMODIS) was determined; days with cloud

cover were not considered. As expected, the ratio of SCD clo-

sely follows the elevation in the area: in the alpine region the

percentage of snow covered days is much higher than in the

lowlands in the east and north of the Alps. Similarly, the

alpine valleys show a smaller percentage of snow covered

days than the higher elevations. The mean snow cover in

the model region is 30% for cloud free days for 2003–2009.
METHODS

Model structure and calibration

The rainfall runoff model used in this study is a conceptual

hydrological model which is applied in a semi-distributed

mode. The model is operationally used for flood forecasting

for the Austrian Danube tributaries; in this study, however,

we use the model in a simulation mode with historical

data. The structure is similar to that of the HBV model

(Bergstöm ). Detailed information about the model

structure is given in Appendix A and in Blöschl et al.

(). Parameters were estimated manually and separately

for each of the 57 catchments for the entire calibration

period 2003–2006. First, nested catchments were calibrated.

Parameter values of these basins were then considered to be

constant and the remaining parts of the catchment were cali-

brated. The calibration process followed a number of steps

(Blöschl ). The first step was an approximation of the

annual water balance. As snow is a major component of

the water balance in the study area and can influence the

soil moisture state throughout the year, initial parameters

for the slow flow components, for the maximum soil moist-

ure storage and the snow routine were set in this first step.

Then, the initial model parameters were adjusted in order

to reproduce seasonal patterns correctly. Threshold temp-

eratures were adjusted, as well as parameters influencing

the slow components. The last step was to parameterise

the fast flow components and the parameters of the linear

storage cascade by looking at single flood events as well as

a fine tuning of the parameters of the snow and soil moisture

routines. The main goal of the calibration was to estimate

the timing of the rising limbs and the peak discharge as



Figure 2 | Top: cloud cover for the years 2003 to 2009 in the model region. Average cloud cover for the months October to May is 50%. Bottom: long-term ratio of snow covered days (SMODIS)

to snow covered plus snow free days (LMODIS) for the years 2003 to 2009, according to MODIS. The thick black line indicates Austria; thin black lines indicate the model areas. White

indicates no data and area outside the model region. A colour version of this figure is available in the online version of the paper (http://www.iwaponline.com/nh/toc.htm).
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well as the magnitude of the peak discharge as correctly as

possible. After each model run, we visualised the model

simulations and evaluated the results using statistical

measures for the entire calibration period.

For the calibration of the snow routine, the snow cor-

rection factor CS was set to a value of 1, as an elevation-

based correction of precipitation is part of the INCA

system (Haiden & Pistotnik ). The choice of threshold

temperatures was guided by Seibert () who used values

ranging from �1.5 to 2.5 WC and a degree day factor ranging

from 1 to 10 mm WC–1 day–1 for his Monte Carlo based cali-

bration in Sweden. Braun () used a temperature range

from �2.0 to 4.0 WC in lowland and lower-alpine catch-

ments in Switzerland where a mix of rain and snow can

occur, whereas Kienzle () proposed wider threshold

temperatures range from Ts¼�4 WC to Tr¼ 8 WC for
Canada. Merz et al. () preset values of 0 and 2 WC for

the threshold temperatures Ts and Tr, respectively, and pro-

duced accurate streamflow simulations at the daily time

scale. We estimated parameters for Ts from �1.8 to

�0.4 WC and for Tr in the range 0.8 to 1.6 WC in our model

area. The threshold temperatures are well in the range of

other studies. The remaining parameters of the snow rou-

tine are in the range of the parameters in Merz &

Blöschl (), who estimated the parameters with an auto-

matic algorithm. The melt temperature Tm was set to values

in the order of 0.1–0.9 WC; the degree day factor D is in the

range 1.3–2.3 mm WC–1 day–1 and doubles during rain-on-

snow events (Sui & Koehler ). Table 1 gives an over-

view of the range of the calibrated snow routine model

parameters; additional details on the calibration are given

in Nester et al. ().

http://www.iwaponline.com/nh/toc.htm


Table 1 | Hydrologic model parameters of the snow routine

Model parameter Description Min in region Max in region

D Degree day factor (mm.WC�1.day�1) 1.3 2.3

Ts Threshold temperature (WC) �1.8 �0.4

Tr Threshold temperature (WC) 0.8 1.6

Tm Melt temperature (WC) 0.1 0.9

CS Snow correction factor (�) 1.0 1.0
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Figure 3 shows the model results for the winter months

(October to May) for the gauge Obergäu/Lammer (catch-

ment highlighted in Figure 1). The gauge is shown as a

representative example for an alpine catchment with

elevations ranging from 470 to 2,400 m a.s.l. Ten percent
Figure 3 | Observed and simulated hydrographs for the winter seasons 2004–2005 (calibration

model – bottom) for the gauge Obergäu/Lammer. Snow depth measurements for a
of the catchment area is below 750 m a.s.l., 50% of the

area is between 750 and 1,250 m a.s.l., 30% is between

1,250 and 1,750 m a.s.l. and the remaining 10% of the

catchment area is at elevations higher than 1,750 m a.s.l.

The top panels refer to the calibration period of the
period of the hydrological model – top) and 2006–2007 (validation period of the hydrological

single station (Annaberg, 700 m a.s.l.) in the catchment are shown.
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hydrological model and show the winter season 2004–

2005. Starting at the end of October, most of the precipi-

tation is accumulating as snow, and only a small amount

of precipitation is directly contributing to runoff. For com-

parison of the snow model results we plotted modelled

basin average SWE values and observed snow depths of

the only station in the catchment where snow data were

available (elevation 700 m a.s.l.). The peaks in the winter

season are simulated well. At the beginning of March,

the modelled SWE is close to 400 mm; snow melt starts

at the middle of the month. The timing of the rise is simu-

lated well but the peak is overestimated. Until mid April,

the model is overestimating the snow melt induced stream-

flow but the daily characteristics of the snow melt is

reproduced well. Several storm events increase the runoff

rapidly. The lower panels refer to the validation period of

the model, showing the winter season 2006–2007. In this

winter, less snow has been accumulated to a maximum

SWE of around 100 mm. Several short storms directly con-

tribute to the runoff or in a combination of melt and rain,

e.g., in November and in January. Again, the snow melt

starts in the middle of March but in this year the snow

melt period is underestimated by the model. We used

different statistical measures to evaluate the performance

of the model including the Nash & Sutcliffe () coeffi-

cient of efficiency (nsme):

nsme ¼ 1�
Pn

i¼1 Qsim;i �Qobs;i
� �2

Pn
i¼1 Qobs;i �Qobs

� �2 ; (1)

where Qobs,i and Qsim,i are observed and simulated runoff at

hour i, respectively, and Qobs is the mean observed runoff

over the calibration or validation period of n hours. nsme

values can range from �∞ to 1. A perfect match between

simulation and observation implies nsme¼ 1; nsme¼ 0 indi-

cates that the model predictions are as accurate as the mean

of the observed data, and nsme< 0 occurs when the

observed mean is a better predictor than the model. For

the entire calibration period (summer and winter) the

nsme for the gauge Obergäu/Lammer is 0.60, for the vali-

dation period it is 0.69. For the periods shown in Figure 3,

nsme is 0.69 for the winter 2004–2005 and 0.65 for the

winter 2006–2007. Details on the model performance are

given in Nester et al. ().
For the evaluation of the snow model, we had to con-

sider that the model results are available on an hourly

time step whereas MODIS data are available on a daily

basis. Typically, Aqua data are acquired around 1 p.m.

and Terra data around 11 a.m. over Austrian territory.

Therefore we used the model results at 12 noon for the

evaluation. Also the model simulates uniform SWE

within each elevation zone of a catchment, which can be

considered either snow covered or snow free, depending

on a threshold value chosen. Threshold values for snow

depth used in the literature include 2 cm (Tong et al.

b), 2.5 cm (Tekeli et al. ), 3.5 cm (Klein & Barnett

) and 4 cm (Roy et al. ). As a starting point, we

considered simulated SWE larger than the threshold

ξSWE ¼ 2.5 mm as snow covered. In Figure 4 the same

periods as in Figure 3 are plotted in order to evaluate the

temporal evolution of the SCA. The top panels show the

mean hourly catchment temperature in the range from

�10 to 10 WC. The lower panels show basin average SCA

derived from both MODIS and the model results.

MODIS SCA values are shown as circles in different

sizes, the size of the markers referring to the different

cloud coverage classes. Large circles denote days with

cloud coverage less than 50%, when MODIS data contain

a great deal of information. Medium sized circles indicate

less information about the snow extent (cloud coverage

ranging from 50 to 80%). Small circles relate to cloud cov-

erages ranging from 80 to 95%. Hourly model-based SCA

values were calculated only from cloud free pixels for con-

sistency of catchment area. Both figures indicate that the

timing of the snow accumulation is accurately simulated.

The modelled SCA values increase at the same time as

the MODIS SCA. Similarly, the timing of the beginning

of the snow depletion between simulation and observation

matches well. However, when MODIS indicates snow in

October and May, the model is underestimating SCA.

Observed SCA data for the season 2004–2005 (Figure 4

top) indicate that the snow cover in the catchment was

more or less constant (but with varying snow depths as

shown in Figure 3 top), whereas for the season 2006–

2007 (Figure 4 bottom) the observed SCA shows a great

deal of dynamics in terms of snow melt and accumulation.

This is due to the fact that the snow depths observed are

much smaller than in the season 2004–2005, so complete



Figure 4 | Basin average snow covered area (SCA) for the Lammer catchment, 2004–2005 (top) and 2006–2007 (bottom). MODIS data are shown as circles, model results as solid lines. Size

of circles indicates the cloud coverage over the catchment (large circles – cloud coverage less than 50%, medium circles – cloud coverage 50–80% and small circles cloud

coverage 80–95%).
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snow depletion is more likely to occur. The temporal evol-

ution of the SCA from November to March is simulated

well for both the winters shown.

Efficiency and errors for snow covered area

For SCA, the evaluation of the results is not straightforward

as the model is based on elevation zones while the MODIS
data are raster based. Additionally, the model simulates the

amount (volume) of water stored in the form of snow,

whereas MODIS snow cover data contain information

only about the spatial extent of snow (i.e. whether a pixel

is classified as snow, land or missing information). We

used the method of Parajka & Blöschl (b) who com-

pared MODIS snow cover data with SWE model

simulations in an indirect way.
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The comparison is performed in individual elevation

zones of a catchment. Two types of snow error are evalu-

ated. The first, termed model overestimation error (SOE ),

counts the number of days mO when the hydrologic model

simulates zone SWE greater than a threshold, but MODIS

indicates that SCA less than a threshold is present in the

zone, i.e.:

SOE ¼ 1
m � l

Xl

j¼1

mO ∧ (SWE> ξSWE) ∧ (SCA< ξSCA) (2)

where SWE is the simulated snow water equivalent in one

zone, SCA is the MODIS snow covered area within this

zone, m is the number of days where MODIS images are

available (with cloud cover less than a threshold ξC (%)),

l is the number of zones of a particular catchment, ξSWE

(mm) is a threshold that determines when a zone can be

essentially considered snow free in terms of the simulations

and ξSCA (%) is a threshold that determines when a zone can

be essentially considered snow free in terms of the MODIS

data.

The second error, termed model underestimation error

(SUE ), counts the number of days mU when the hydrologic

model simulates snow less than a threshold in a zone but

MODIS indicates that SCA greater than a threshold is pre-

sent in the zone, i.e.:

SUE ¼ 1
m � l

Xl

j¼1

mU ∧ (SWE< ξSWE) ∧ (SCA> ξSCA) (3)

The percent or fraction of snow covered area,

SCA, within each zone was calculated from the MODIS

data as:

SCA ¼ S
Sþ L

(4)

where S and L represent the number of pixels mapped as

snow and land, respectively, for a given day and a given

zone. The reliability and accuracy of the SCA estimation

depends on the spatial extent of clouds occurring in an

elevation zone. Only those days of the SCA images were

therefore used for a particular day and elevation zone if
the cloud coverage, CC, was less than a threshold ξC:

CC ¼ C
Sþ Lþ C

(5)

where C represents the number of pixels mapped as cloud

covered and CC is the fractional cloud cover for a particular

day and elevation zone. The thresholds ξSWE (mm), ξSCA (%)

and ξC (%) were chosen on the basis of a sensitivity analysis.

The magnitude of the threshold ξC will affect the number of

days for which MODIS images are available. Parajka &

Blöschl (b) suggest a threshold of 60% of cloud coverage;

Hall et al. () used a threshold of 80% to develop the

MODIS cloud-gap-filled snow map product. In this study,

the whole range of cloud coverage is analysed. For 50% of

the MODIS data, the cloud coverage was less than 50%, for

20% of the MODIS data cloud coverage was between 50

and 80% and for 30% of the MODIS data cloud coverage

was larger than 80%. Three different ranges of cloud coverage

are chosen: (1) CC< 50%, (2) 50%<CC< 80% and (3)

CC> 80% over a catchment. The thresholds ξSWE and ξSCA
are used to compare model simulations and MODIS snow

cover observations to define the snow model errors.
RESULTS

Summary statistics of snow model performance and

choice of thresholds

A sensitivity study was carried out to analyse the impact of

different threshold values for ξSWE and ξSCA on Equations

(2) and (3). Figure 5 shows the median overestimation

(left) and underestimation (right) errors for a cloud coverage

<50%. For clarity of presentation, the different cloud cov-

erages are not shown. Overestimation errors decrease with

increasing ξSWE but increase with increasing ξSCA (Figure 5

left); underestimation errors decrease with increasing ξSCA
and increase with increasing ξSWE (Figure 5 right). The

change in overestimation errors is smaller than the change

in underestimation errors. The errors for SCA are less sensi-

tive to the threshold ξSWE than to the threshold ξSCA. The

largest median overestimation errors occur for small

thresholds for SWE and large thresholds for SCA; the



Figure 5 | Sensitivity analysis. Medians of snow overestimation errors (left) and snow underestimation errors (right) for cloud coverage <50%. Threshold values of ξSWE ¼ 2.5 mm and

ξSCA ¼ 30% were chosen for further analyses.
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largest underestimation errors occur for small thresholds for

SCA and large thresholds for SWE. In order to achieve a

compromise between over- and underestimation errors, we

chose a threshold ξSWE ¼ 2.5 mm as the median values and

the percentile differences (P75%–P25%) for the overestima-

tion errors are of the same order of magnitude for cloud

coverage less than 80% (Figure 5 left). The threshold

ξSCA ¼ 30% was chosen as the overestimation errors

increase only slightly from ξSCA ¼ 25–30% compared to the

increase of overestimation errors from ξSCA ¼ 30–50%

(Figure 5 left), and the underestimation errors are clearly

smaller for ξSCA ¼ 30% compared to ξSCA ¼ 25% (Figure 5

right).

Table 2 summarises the overestimation errors for differ-

ent thresholds ξSWE and different cloud coverage at a
Table 2 | Statistical evaluation of the snow error overestimation CDFs for different ξSWE

(mm) and constant ξSCA¼ 30%. The first value is the median; the second

value is the percentile difference (P75%–P25%) over 57 catchments for the

period 2003–2009

ξSWE (mm) CC <50% 50%<CC< 80% CC >80%

0.0 1.3/0.8 2.0/2.0 3.3/2.2

0.1 0.9/0.6 1.6/1.6 2.6/1.9

0.5 0.7/0.6 1.4/0.9 2.2/1.3

1.0 0.5/0.6 1.2/1.1 1.8/1.4

2.5 0.5/0.6 0.8/0.9 1.5/1.2

5.0 0.4/0.7 0.7/0.8 1.2/1.0

10.0 0.4/0.6 0.5/0.8 1.0/0.9
constant threshold ξSCA ¼ 30%. For cloud coverage less

than 50%, the SOE overestimation errors are not very sensitive

to the choice of the threshold ξSWE. The decrease of SOE with

increasing threshold ξSWE is small. Median values range

from 1.3% for a threshold ξSWE ¼ 0 mm and 0.4% for a

threshold ξSWE ¼ 10 mm. The percentile difference (P75%–

P25%) is stable around 0.6% which indicates that the shape

of the cumulative distribution function (CDF) does not

changemuchwith changing thresholds. For a cloud coverage

between 50 and 80%, the results are slightly more sensitive,

with median overestimation errors ranging from 2.0%

(ξSWE ¼ 0 mm) to 0.5% (ξSWE ¼ 10 mm). The percentile differ-

ence (P75%–P25%) is less stable from0.8 to 2.0%. For a cloud

extent of more than 80%, the errors are larger, with medians

ranging from 3.3 to 1.0% for thresholds ξSWE ¼ 0 mm and

ξSWE ¼ 10 mm, respectively. Percentile differences (P75%–

P25%) are in the range of 0.9–2.2%. This shows that the

choice of the thresholds ξSWE is getting more important as

one moves up with the threshold forξC.

Snow underestimation errors are evaluated for different

thresholds of ξSCA but at a constant threshold ξSWE ¼ 2.5 mm.

Contrary to the overestimation errors, the underestimation

errors SUE are more sensitive to the threshold ξSCA
which was expected from the results in Figure 5. The SUE
underestimation errors are largest for the restrictive threshold

ξSCA ¼ 0 (the graph for ξSCA ¼ 0 is not shown in Figure 5, as

the errors are too large). The errors decrease as the threshold

gets less restrictive (increasing ξSCA), as one would expect. For

example, for ξSCA ¼ 10% and ξSWE ¼ 2.5 mm (linewith triangle
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markers) the SUE errors are 6.8% for half the basins, for ξSCA ¼
30% and ξSWE ¼ 2.5 mm (thick solid line) the SUE errors are

3.4%. The percentile difference (P75%–P25%) is not very

stable and is larger than that of Parajka & Blöschl (b). In

this study, for a threshold ξSCA ¼ 15% the percentile difference

is 3.8%, compared to 2.4% inParajka&Blöschl (b) and for

a threshold ξSCA ¼ 30% the difference in this study is 3.0% com-

pared to 1.1% in the above paper. However, they used slightly

larger cloud coverage (50% vs. 60%), smaller catchments,

especially in alpine areas, and fewer catchments in prealpine

areas. Table 3 summarises the underestimation errors for

tddifferent thresholds ξSCA and different cloud coverages. The

results suggest that the use of a threshold of ξC is necessary, as

the amount of information clearly decreases with the increase

of cloud coverage.
Table 3 | Statistical evaluation of snow error underestimation errors for different ξSCA (%)

and cloud coverage. ξSWE¼ 2.5 mm. The first value is the median; the second

value is the percentile difference (P75%–P25%) over 57 catchments for the

period 2003–2009

ξSCA (%) CC <50% 50%<CC< 80% CC >80%

0 12.5/7.5 19.5/11.2 14.1/9.6

5 8.4/5.3 15.5/9.9 13.1/8.7

10 6.8/4.4 13.1/8.7 12.5/7.4

15 5.7/3.8 10.7/7.0 11.5/6.8

25 4.1/3.2 7.2/5.8 9.5/5.7

30 3.4/3.0 6.4/5.5 8.9/5.0

50 2.0/1.6 3.1/3.3 5.9/3.8

Figure 6 | Seasonal distribution of snow overestimation SOE (solid lines) and underestimation S

and ξSCA ¼ 30%.
Figure 6 shows the seasonal distribution of the median

overestimation errors SOE and the median underestimation

errors SUE for the thresholds ξSWE ¼ 2.5 mm and ξSCA ¼
30%. As expected, overestimation errors are small with the

largest values in the range of 0.2% in the months February

to April. Underestimation errors do have a clear seasonal

cycle with peaks in March and April and October. For a

SCA threshold ξSCA ¼ 30% the largest error is around 0.8%

in November. These results confirm Figure 4, where we

showed an underestimation of snow by the model in the

accumulation and depletion phases. With increasing cloud

cover, the overestimation errors increase slightly whereas

the increase in underestimation errors is more obvious.

Interestingly, a threshold value ξSCA ¼ 30% leads to underes-

timation errors in the summer months for cloud coverage

larger than 50%. This indicates that some areas are

marked as snow covered in MODIS whereas the model

simulated no snow. Parajka & Blöschl () found that

the difference may be due to the cloud mask used in the

snow mapping algorithm, where MODIS misclassified

clouds as snow in summer months. Parajka et al. () com-

pared MODIS maps with grid maps of mean daily air

temperatures in Austria and found a maximum of 1.4% of

the pixels classified as snow in July and 3.2% of the pixels

classified as snow in May when the mean air temperature

was higher than 10 WC. We find similar values in prealpine

regions in this study, with 1.6% of the pixels classified as

snow in July and 5.8% of the pixels classified as snow in

May.
U
E (dashed lines) errors. Median values 2003–2009 for thresholds ξSWE ¼ 2.5 mm
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Further insight into the snow model results is provided

by Figure 7. For each catchment, the overestimation errors

SOE and underestimation errors SUE are analysed as a function

of mean catchment elevation for the period 2003–2009. We

show only the errors for the thresholds ξSWE ¼ 2.5 mm and

ξSCA ¼ 30%. Open circles indicate overestimation errors

and dark circles indicate underestimation errors. For a

cloud cover less than 50%, the overestimation errors are in

the range of 0–2%, whereas the underestimation errors are

larger with values ranging from 1 to 11%. With increasing

cloud cover, the overestimation errors increase only slightly

whereas the underestimation errors increase rapidly. Inter-

estingly, the biggest differences between over- and

underestimation errors can be observed for a mean catch-

ment elevation smaller than 1,000 m a.s.l. For mean

elevations larger than 1,000 m a.s.l., the difference is much

smaller, indicating that the performance of the snow

model is much better for higher altitudes. Zappa ()

showed similar results in his study for Switzerland. There

are several reasons for larger underestimation errors. First,

the poorer performance of the snow model in the lower

catchments can be attributed to the use of 500 m elevation

zones. There are a number of catchments in prealpine

areas with only one elevation zone, resulting in a SCA of

either 0 (snow free) or 100% (snow covered), whereas in

MODIS a more precise distinction of snow cover is possible.

A second reason for the underestimation errors is misclassi-

fication of clouds as snow during summer months, as stated

above. Another possibility for larger underestimation errors
Figure 7 | Snow overestimation SOE (open circles) and underestimation SUE errors (dark circles

and ξSCA ¼ 30%. Both snow overestimation and underestimation errors increase as
is that the majority of the errors occur during the melt periods.

Therefore, areas that experience frequent melt during the

winter may tend to have poorer performance statistics than

areas that have a consistent snowpack for several months.

Spatial analysis of snow model performance

The spatial validation of the snow routine was carried out on

a pixel by pixel basis. The threshold ξSWE is used for the dis-

tinction of snow cover in this analysis; a threshold for cloud

cover ξC is not needed as only pixels that are not cloud cov-

ered in the MODIS data are accounted for; and the

threshold ξSCA is not needed as the validation is carried

out on the pixel scale and not on the catchment scale.

Figure 8 shows the spatial validation of the snow routine

carried out on a pixel basis. As an example for a day with

almost no cloud coverage, the extent of the snow cover is

shown for February 3, 2008, according to MODIS data (top)

andmodel results (bottom). No data and clouds are indicated

by white areas, snow is shown as grey and snow free areas are

shown as green. (The colour version of Figure 8 is available in

the online version of the paper (http://www.iwaponline.

com/nh/toc.htm).) MODIS data indicate that the mountai-

nous regions are snow covered: the Alps are covered with

snowwith the exception of some valleys; also in the northern

part of Austria the higher elevation pixels are snow covered.

For determining snow cover from the model results, a

threshold ξSWE ¼ 2.5 mmwas used. The results showa similar

extent of the snow cover as the MODIS data: 81.5% of the
) as a function of elevation. The period is 2003–2009, thresholds ξSWE ¼ 2.5 mm

the cloud coverage increases.

http://www.iwaponline.com/nh/toc.htm
http://www.iwaponline.com/nh/toc.htm


Figure 8 | Example pattern in the snow melt phase (3 February 2008). Top refers to

MODIS data, bottom to model. White indicates cloud covered (no data avail-

able), green: snow free, grey: snow covered. Only model SWE larger than a

threshold ξSWE ¼ 2.5 mm were considered as snow. The colour version of this

figure is available in the online version of the paper (http://www.iwaponline.

com/nh/toc.htm).
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pixels are correctly classified as snow covered and snow free,

respectively, with alpine valleys and prealpine lowlands not

covered by snow. 12.3% of the pixels are underestimated by

the model, 4.7% of the pixels are overestimated by the

model and 1.5% of the pixels do not contain data.
Figure 9 | Bias of the model results relative to MODIS data for the period 2003–2009. Red indic

positive bias. Only model SWE larger than 2.5 mm was considered as snow. The co

iwaponline.com/nh/toc.htm).
Figure 8 shows an example of a single day. To gain

insight into the performance of the snow model for the

entire evaluation period 2003–2009, we compared all avail-

able MODIS snow cover maps with the model results. We

used two different measures. First, we compared the differ-

ence of days with simulated and observed snow cover on a

pixel basis. Second, we calculated the hit rate H between

MODIS and model results for snow covered days and

snow free days.

For every pixel, the bias was calculated as

bias ¼ SMODEL

SMODEL þ LMODEL
� SMODIS

SMODIS þ LMODIS

� �
× 100 (6)

where SMODEL and LMODEL refer to the number of days with

snow cover and no snow, respectively, according to the

model; and SMODIS and LMODIS refer to the number of days

with snow cover and no snow, respectively, according to

MODIS. Only days marked as cloud free in MODIS were

considered. For the distinction of SMODEL and LMODEL,

the threshold ξSWE ¼ 2.5 mm was used. For simplicity, we

used the terms positive bias when more days are snow

covered in the model than MODIS and negative bias when

fewer days are snow covered in the model than MODIS.

The spatial distribution of the bias (Figure 9) shows that

in the prealpine parts MODIS indicates snow cover on more

days than the model results whereas in alpine regions the

model tends to indicate snow cover on more days than
ates negative bias (fewer days are snow covered in the model than MODIS), blue indicates

lour version of this figure is available in the online version of the paper (http://www.

http://www.iwaponline.com/nh/toc.htm
http://www.iwaponline.com/nh/toc.htm
http://www.iwaponline.com/nh/toc.htm
http://www.iwaponline.com/nh/toc.htm
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MODIS. On average, the negative bias is on the order of

15% of the cloud free days. The negative bias is even

larger in parts of a prealpine catchment in the middle of

the model area. There may be two reasons for this. First,

the model structure for this catchment comprises a single

elevation zone. Therefore, the temperature is assumed to

be the same throughout the whole catchment, resulting in

uniform SWE across the catchment. The topography, how-

ever, does vary by about 400 m within this catchment, so

local differences in temperatures are possible. Second, the

area underestimated by the model is covered by both coni-

ferous and deciduous forests according to a land cover

map (EEA, CORINE Land Cover ) which can cause

problems in MODIS snow detection. For example, Simic

et al. () showed that MODIS products give realistic

snow cover maps for an average of 93% of the days, with

lower percentages for evergreen forests where MODIS has

a tendency to overestimate snow. Hall et al. () showed

that MODIS has a tendency to underestimate snow in a

forested area. The influence of land cover is analysed in

more detail in Figure 10. Error CDFs with values derived

from Figure 9 show hardly any difference for positive bias

between forested and open land (left) whereas there is a

clear difference for negative bias between forests and

open land (right) with larger values for forests. This

may be related to the model structure. We estimated

parameters based on the land use and geology, but the use

of a semi-distributed model requires mean parameters for
Figure 10 | CDFs of positive and negative biases (%) for forests and open land, pixel values. L
each elevation zone. The use of a distributed model with

hydrological response units could perhaps improve the

snow model, but further analysis would be required to

verify this.

Figure 11 shows the performance of the snow model for

the winter seasons (October–May) of the years 2003–2009

for all cloud free days. The overall degree of agreement

between MODIS and the model results is represented by

the hit rate H (Wilks ):

H ¼ aþ d
aþ bþ cþ d

(7)

with a, b, c, and d defined as in Table 4. Results show that

the overall accuracy of the snow model is good with 98%

of the model area having a hit rate H larger than 70% for

the winter seasons of 2003–2009. Eighty-eight percent of

the model area has a hit rate H larger 80 and 1.5% of the

model area has have a hit rate H between 60 and 70%.

The highest hit rates occur in the high elevations in the wes-

tern part of Austria, which is not surprising as the snow

model simulates snow in high elevations quite accurately

and MODIS indicates snow cover in these areas. In the

low parts of the model area, the hit rate H is also high

(around 90%). This can be attributed to the fact that the

model simulates no snow and the MODIS data confirm

this. The medium elevation ranges show a smaller hit rate

(around 70–80%), which is related to forest cover in these

areas.
and use taken from Corine. Threshold ξSWE ¼ 2.5 mm.



Table 4 | Definitions for Eq. (7)

MODIS snow MODIS no snow

Model snow a b

Model no snow c d

Figure 11 | Hit rate H of snow simulations for the winter season (October–May) in the period 2003–2009. Days with clouds are not considered. Threshold ξSWE ¼ 2.5 mm. A colour version

of this figure is available in the online version of the paper (http://www.iwaponline.com/nh/toc.htm).
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DISCUSSION AND CONCLUSIONS

We have evaluated the snow model component of a concep-

tual semi-distributed hydrologic model run on an hourly

time step. The model is used operationally for flood forecast-

ing, but for this study we used it in a simulation mode with

historical data. Parameters of the hydrologic model have

been calibrated for 57 catchments manually in a three step

routine. The annual water balance is approximated in a

first step, seasonal patterns of streamflow were sought to

be modelled correctly in a second step. The third step

included the parameterisation of the fast flow components

to correctly estimate the timing of the rising limbs and the

peaks. This approach assured to account for different hydro-

logical situations throughout the catchments.

A comparison of the temporal evolution of the SCA

derived from MODIS data and SCA estimated from model

results indicates good agreement between observed and

simulated SCA values when cloud coverage is less than

80%. The timing of the snow accumulation and depletion

periods is simulated well. However, discrepancies between
model and MODIS are observed at the beginning and end

of each snow season, but, as Klein & Barnett () noted,

‘This is perhaps not surprising as at these times, when

snow would be expected to be thinnest and most patchy.’

We further evaluated the performance of the snow

model using various error measures (Parajka & Blöschl

b). Simulated SWE and SCA estimated from a combi-

nation of MODIS (version 5) Terra and Aqua snow cover

maps (Parajka & Blöschl a) were compared for each

day on the catchment scale. The selection of the cloud

threshold ξC was found to be the most important factor for

the evaluation of the snow model. Previous studies have

used different thresholds for cloud coverage. For example,

Şorman et al. () used a threshold of 20% to calibrate a

hydrologic model on streamflow and SCA data, Hall et al.

() used MODIS data with cloud coverage up to 80%

for the development of a cloud-gap-filled MODIS daily

snow cover product. Rodell & Houser () used MODIS

data when only 6% of the MODIS maps were cloud free.

Results indicate that the errors are similar for CC< 50%

and for 50%<CC< 80%, but there are clear differences

for CC> 80%. Therefore, we propose to use a threshold

value ξC ¼ 80%. The remaining threshold values were

selected based upon a sensitivity study. It showed that

results are less sensitive to the threshold for SWE than

they are to the threshold for SCA. Based on the sensitivity

study we selected threshold values ξSWE ¼ 2.5 mm and

ξSCA ¼ 30% for the error analysis. We believe that the

http://www.iwaponline.com/nh/toc.htm
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chosen thresholds can be also used as in regions with similar

physiographic characteristics. The value chosen for ξSWE is

within the range of threshold values in the literature (i.e.,

Tong et al. b; Roy et al. ); whereas the value

chosen for ξSCA is slightly larger than the threshold used in

Parajka & Blöschl (b). Results indicate that snow under-

estimation errors are larger than snow overestimation errors

and that the thresholds have to be chosen with care as they

have a large impact on the snow model efficiency. Interest-

ingly, overestimation errors are not as sensitive to the

threshold for cloud coverage ξC as are underestimation

errors, and the seasonal error distribution shows that the

model tends to underestimate snow in the summer

months. This may be due to misclassification of clouds as

snow in the MODIS data (Parajka & Blöschl ). Parajka

et al. () state, ‘This misclassification occurs frequently,

but tends to affect only a small area.’ The error distribution

as a function of elevation shows that larger underestimation

errors occur in prealpine regions.

We also compared the spatial extent of simulated SCA

and MODIS SCA data on a pixel basis taking into account

only cloud free pixels. Generally, the snow model perform-

ance can be classified as good for the winter periods from

2003 to 2009. Eighty-eight percent of the model area is cor-

rectly classified as snow covered or snow free on more than

80% of the days. This value is similar to Strasser & Mauser

() who have shown an accuracy of 84% in their study in

Northern Germany and Zappa () who has shown an

accuracy of 87% in a study in Switzerland. However, there

are some discrepancies between simulated and observed

SCA. The spatial evaluation indicates that at very high alti-

tudes, the model tends to simulate snow on more days

than what MODIS observes. This is in line with Koboltsch-

nig et al. (). They attributed this to the fact that ridges

and steep slopes at high altitudes are snow covered in the

simulation whereas snow is expected to be blown away or

redistributed by avalanches. In the transition zones from

lowland to alpine areas, the model tends to underestimate

the quantitiy of snow covered days. Two reasons may con-

tribute to this; elevation changes not accounted for in the

model structure; and underestimation of snow cover in

forested areas. Analyses indicate that 500 m elevation

zones may not be detailed enough to estimate SWE in the

transition zones accurately. In this context Zappa ()
noted that the disagreement in the transition zones may be

due to uncertainties in observed precipitation, local and

regional temperature gradients and in the model parameters.

The underestimation of the remote sensing SCA in forested

areas has already been shown in Simic et al. () and the

MODIS product summary page (MODIS ) states that

‘the maximum expected errors are 15% for forests, 10%

for mixed agriculture and forest, and 5% for other land

covers’. The performance of the snow model in the tran-

sition zones could perhaps be improved using a spatially

distributed model and a process based analysis of snow dis-

tribution patterns as proposed by Sturm & Wagner ().

To confirm this, further analyses are required.

Overall, the comparison of simulated and observed SCA

facilitated useful insights into the model performance as a

function of space and time as well as other factors. Because

of the usefulness in model evaluation, we would expect the

snow cover data to be equally useful for data assimilation in

a real time mode. This will be examined in future studies.
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