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The Sentinel-1 will carry onboard a C-band radar instrument that will map the European continent once
every four days and the global land surface at least once every twelve days with finest 5×20 m spatial
resolution. The high temporal sampling rate and operational configuration make Sentinel-1 of interest for op-
erational soil moisture monitoring. Currently, updated soil moisture data are made available at 1 km spatial
resolution as a demonstration service using Global Mode (GM) measurements from the Advanced Synthetic
Aperture Radar (ASAR) onboard ENVISAT. The service demonstrates the potential of the C-band observations
to monitor variations in soil moisture. Importantly, a retrieval error estimate is also available; these are need-
ed to assimilate observations into models. The retrieval error is estimated by propagating sensor errors
through the retrieval model.
In this work, the existing ASAR GM retrieval error product is evaluated using independent top soil moisture
estimates produced by the grid-based landscape hydrological model (AWRA-L) developed within the Austra-
lian Water Resources Assessment system (AWRA). The ASAR GM retrieval error estimate, an assumed prior
AWRA-L error estimate and the variance in the respective datasets were used to spatially predict the root
mean square error (RMSE) and the Pearson's correlation coefficient R between the two datasets. These
were compared with the RMSE calculated directly from the two datasets. The predicted and computed
RMSE showed a very high level of agreement in spatial patterns as well as good quantitative agreement;
the RMSE was predicted within accuracy of 4% of saturated soil moisture over 89% of the Australian land
mass. Predicted and calculated R maps corresponded within accuracy of 10% over 61% of the continent. The
strong correspondence between the predicted and calculated RMSE and R builds confidence in the retrieval
error model and derived ASAR GM error estimates.
The ASAR GM and Sentinel-1 have the same basic physical measurement characteristics, and therefore very
similar retrieval error estimation method can be applied. Because of the expected improvements in radiomet-
ric resolution of the Sentinel-1 backscatter measurements, soil moisture estimation errors can be expected to
be an order of magnitude less than those for ASAR GM. This opens the possibility for operationally available
medium resolution soil moisture estimates with very well-specified errors that can be assimilated into
hydrological or crop yield models, with potentially large benefits for land-atmosphere fluxes, crop growth,
and water balance monitoring and modelling.

Crown Copyright © 2012 Published by Elsevier Inc. All rights reserved.
1. Introduction

To support the operational use of Synthetic Aperture Radar (SAR)
earth observation systems, the European Space Agency (ESA) is
developing Sentinel-1, a constellation of two polar-orbiting C-band
radar satellites. Much like its SAR predecessors (Earth Resource Satellite,
ENVISAT and RADARSAT) the Sentinel-1 will operate at a medium
).
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spatial resolution, but with a greatly improved revisit period. Each of
the Sentinel-1 satellites is expected to provide coverage over Europe
and Canada once every four days and global coverage in twelve days
or less. Given the high temporal sampling and the operational
configuration Sentinel-1 is expected to be beneficial for operational
monitoring of dynamic processes in hydrology and phenology.

The benefit of a C-band SAR monitoring service in hydrology has
already been demonstrated within the scope of the Soil Moisture for
Hydrometeorologic Applications (SHARE) project (http://www.ipf.
tuwien.ac.at/radar/share/) (Bartsch, 2008; Doubkova et al., 2009).
SHARE is one of the ESA's Data User Element (DUE) Tiger Innovator
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projects. Within the project a soil moisture dataset at medium resolu-
tion was retrieved from the Global Mode (GM) of the Advanced Syn-
thetic Aperture Radar (ASAR) onboard ENVISAT (Pathe et al., 2009).
Existing coarse resolution soil moisture data from active and passive
sensors (Kerr et al., 2010; Naeimi et al., 2009; Njoku et al., 2003;
Wagner, 1998; Wagner et al., 1999b) were found beneficial for
weather prediction, climate monitoring or flood forecasting (Brocca
et al., 2010; Liu et al., 2010) at global to regional scale. It can be antic-
ipated that further applications would become feasible with medium
resolution datasets. These include crop yield and soil moisture moni-
toring over heterogeneous landscapes and river runoff prediction at
areas with local precipitation patterns (Komma et al., 2008; Meier
et al., 2011; Osborne et al., 2009; Parajka et al., 2009).

The SHARE project demonstrated the potential of C-band observa-
tions at high temporal and moderate spatial resolution to monitor
variations in soil moisture on a quasi-operational basis (Pathe et al.,
2009). Since the start of the project in 2005, the retrieved soil mois-
ture estimates have been requested by more than 80 organisations
worldwide, the main application domains being hydrology, agricul-
ture and comparison with other soil moisture datasets. A published
validation study demonstrated a good correspondence of ASAR GM
soil moisture with in-situ data and airborne SAR systems (Mladenova
et al., 2010). Possible applications of the ASAR GM data included
bias identification in the precipitation datasets (Milzow et al.,
2010) and support for runoff monitoring (Bartsch et al., 2007). It
was nevertheless concluded that the usability of the dataset is com-
promised by the intermittent coverage and poor radiometric resolu-
tion of the sensor in global mode (Wagner et al., 2010). Sentinel-1
will improve revisit period and radiometric resolution and so over-
come the major limitations of the ASAR GM sensor. Given the other-
wise similar sensor characteristics (Attema et al., 2007), the transfer
of the ASAR GM soil moisture service to Sentinel-1 seems an obvious
opportunity.

A common approach for demonstrating the benefit of satellite-
derived data relies on their assimilation into existing models. Assim-
ilation techniques require accurate estimates of observational errors
(Liu et al., 2010; Scipal et al., 2008). Pathe et al. (2009) developed
an ASAR GM error propagation model. This model predicts the ASAR
GM soil moisture error using the Gaussian error propagation scheme.

In this study the ASAR GM soil moisture error estimates produced
following Pathe et al. (2009) are evaluated using independent surface
soil moisture estimates from the grid-based landscape hydrological
model (AWRA-L) developed within the Australian Water Resource
Assessment modelling system (AWRA; Van Dijk, 2010). In particular,
the RMSE and R computed between the satellite and modelled data
are predicted using the ASAR GM error estimates and compared to
the observed RMSE and R between the two soil moisture datasets.

This paper is organised as follows. The theory, methodology and
data sections introduce the models used for the RMSE and R compu-
tation, processing steps and the data. The discussion and result sec-
tions present: a) an evaluation of the correlation between the
satellite (ASAR GM) and modelled (AWRA-L) soil moisture datasets
to determine if these capture the same processes; and b) an assess-
ment of the ASAR GM error estimate using the models for the RMSE
and R prediction. The implications for a possible future Sentinel-1
soil moisture product are also discussed. Conclusions and future rec-
ommendations are summarized in the final section.
2. Theory

The RMSE and R between two datasets can be calculated directly
from the variance and covariance statistics; these will be refereed to
as the observed values. In addition, if the error (ε) and variance
(σ2) of the respective datasets are known, the RMSE and R values
can be predicted; these will be refereed as the predicted values.
Although the AWRA-L and ASAR GM soil moisture estimates are
assumed to represent the same phenomenon, they are expressed in
different units. This may induce a bias in the mean and dynamic
range that opposes the model assumption (Dee & Todling, 2000). To
correct for possible biases the AWRA-L dataset was adjusted to the
ASAR GM dataset using Cumulative Distribution Function (CDF)
matching techniques.

Because the goal of this study was to evaluate the quality of the
existing satellite error estimate, the modelled data were scaled with
respect to the satellite data (for data assimilation studies, an inverse
approach is more logical; Reichle & Koster, 2004). The transformation
of the AWRA-L soil moisture estimates used in this study is a CDF
matching technique simplified to a linear transformation that effec-
tively removes the differences in the first two moments (i.e. mean
and variance):

θM ¼
θM;or−�θM;or

� �
stdevM;or

�stdevS þ �θS; ð1Þ

where θ represents the soil moisture observations, and stdev and �θ the
temporal standard deviation and the temporal mean of these obser-
vations, respectively. The subscript S and M symbolize the satellite
and modelled dataset, respectively. Finally, the subscript or indicates
the original dataset before normalisation. In all subsequent computa-
tions the normalized AWRA-L soil moisture estimates (θM) were used.

2.1. Observed RMSE and R

The RMSE is a straightforward measure of estimation accuracy be-
tween two datasets. The RMSEa between modelled and satellite-
derived soil moisture can be defined through the variance of residual
errors. If θS is the satellite-derived soil moisture and θM the normalised
modelled soil moisture then the RMSEa is defined as

RMSEa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〈 θM−θSð Þ2〉

q
; ð2Þ

where the angle brackets represent the mean over time.
The RMSEa in combination with the variances of the satellite and

modelled data can be used to calculate the correlation coefficient Ra
(Barnston, 1992; Murphy, 1995):

Ra ¼
stdev2M þ stdev2S−RMSE2a

2stdevMstdevS
; ð3Þ

where stdevM and stdevS stand for the temporal standard deviation
of the normalized modelled and satellite derived soil moisture,
respectively.

2.2. Predicted RMSE and R

The RMSE can be predicted from the error characteristics of the
satellite (εS) and the modelled (εM) data using error propagation
model of (Taylor, 1997):

RMSEb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〈εM〉

2 þ 〈εS〉
2

q
: ð4Þ

The assumptions of the error propagation model are that the re-
spective error characteristics are independent and follow a Gaussian
normal distribution. The assumption on error characteristics is realis-
tic as the main input data to the AWRA-L, daily precipitation, incom-
ing shortwave radiation and temperature, are independent of the
ASAR GM backscatter. Moreover, the Gaussian normal distribution
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of the error estimates can be anticipated given the normal distribu-
tion of the AWRA-L inputs and the ASAR GM backscatter.

By substituting Eq. (4) into Eq. (3) the correlation coefficient can
be predicted:

Rb≈
stdev2M þ stdev2S−〈ε

2
M〉−〈ε

2
S〉

2stdevMstdevS
: ð5Þ

It should be noted that due to the prior normalisation of the data,
the RMSEb and Rb metrics capture the correspondence of two datasets
in their dynamics regardless of biases in mean or variance.

2.3. ASAR GM soil moisture error (εS)

The maximum ASAR GM soil moisture error (εS) was estimated
following Pathe et al. (2009). The method uses a Guassian error prop-
agation scheme to propagate the backscatter noise and retrieval
model parameter uncertainty according to:

εS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:2
S

� �2
þ β

S

� �2
þ 0:01

s
: ð6Þ

The ASAR GM product was derived using the change detection
model (Pathe et al., 2009) defined as:

θS ¼
σ0 Θ; tð Þ−σ0

dry 30ð Þ−β Θ−30ð Þ
S

; ð7Þ

where σo
dry (30), β and S are considered constant in time and repre-

sent respectively the dry reference at medium local incidence angle
30°, the slope, and the sensitivity of the ASAR GM backscatter to soil
moisture. The slope quantifies the dependence of sigma nought on
the local incidence angle. The σo(Θ,t) stands for the backscatter
values at an local incidence angle Θ in time t.

The dry reference has been derived according to Pathe et al.
(2009) using historical ERS scatterometer soil moisture archive. The
application of the external soil moisture dataset is possible given
the identical frequency and penetration depth of the ASAR GM
1-km and ERS sensors. While systematic bias may be introduced
due to the difference in the noise and the time coverage of the ERS
and ASAR GM data (Pathe et al., 2009) this is removed during the
data normalisation.

2.4. ASAR GM soil moisture

Data from the multiple modes of the side-looking Synthetic Aper-
ture Radar (SAR) onboard ENVISAT are available since December
2004. The ASAR Global Monitoring Mode (GM) is activated by default
when no data from other modes are requested. The ASAR GM 1 km
resolution sensor thus offers higher temporal sampling over certain
regions when compared to other modes and is suitable for moni-
toring of dynamical processes such as soil moisture (Pathe et al.,
2009) or inundation (Bartsch et al., 2009).

The algorithm used to retrieve soil moisture from the ASAR GM
observations was derived from the soil moisture algorithm for the
Earth Resource Satellite (ERS) scatterometer (Wagner et al., 2007).
The approach is based on a change detection method and assumes
a) sufficiently long time series to cover a full range of soil moisture
values from wilting point to saturation (Pathe et al., 2009; Wagner
et al., 1999a, 1999b) and b) variations in soil moisture to be tracked
by temporal change in backscatter (Moran et al., 2006; Pathe et al.,
2009). Exceptions to the rule are regions covered with dense vegeta-
tion. For the soil moisture product generation a processing chain has
been setup at the Vienna University of Technology (TU WIEN) (Sabel
et al., 2010). The processing consists of several steps including
geocoding, radiometric correction, resampling, normalisation and
soil moisture retrieval (Fig. 1). The expected depth represented by
the ASAR GM soil moisture product is less than 5 cm. Importantly,
over 7000 ASAR GM scenes over Australia were used in this study.

The ASAR GM estimates were evaluated against in-situ measure-
ments and retrievals from other satellites (Mladenova et al., 2010;
Pathe et al., 2009). This demonstrated the potential of the dataset to
resolve spatial details that are not resolved in the ERS scatterometer
measurements, while still retaining the basic capability to capture
drying and wetting trends over large areas.

The maximum ASAR GM soil moisture error εS was computed
according to Eq. (6). The error map shown in Fig. 2 (left) for Australia
strongly coincides with spatial patterns of a combination of vegeta-
tion type (Fig. 2, right) and landscape geomorphology (Van Dijk &
Warren, 2010). In particular, the error is less (b18%) for herbaceous
and shrub vegetation classes and greater for forested areas and
areas covered with rock outcrops in western, northern, and eastern
coastal Australia. Correspondence of the ASAR GM error with
the bioregions of the Interim Biogeographic Regionalisation
(IBRA; Thackway and Creswell, 1995) is also evident (Fig. 2). The
IBRA mapping combines attributes of climate, geomorphology,
landform and lithology.

2.5. AWRA-L soil moisture

The AWRA (Van Dijk, 2010) consists of a selection of models that
estimate all water balance terms associated with the vegetation, soil,
groundwater and surface water balance. The models operate at mod-
erate to high resolution across the Australian continent. With a view
to assimilate satellite-derived soil moisture observations, a gridded
landscape hydrology model (AWRA-L) was built as a sub-model of
the AWRA system (Van Dijk, 2010) to explicitly model soil surface
moisture dynamics.

The AWRA-L landscape hydrological model estimates the soil
water balance at a daily step for four different layers: the surface
top soil, the shallow root zone, the deep root zone and the saturated
ground water store. These are defined by their extractable water stor-
age capacity that depends on the pore size distribution, soil porosity
and storage capacity. The conceptual differences are that the surface
soil layer loses water through direct evaporation; the shallow root
zone is accessed by all vegetation; and the deep root zone can be
accessed by deep-rooted (usually perennial) vegetation only. Top
soil moisture storage S0 (mm) at time step t is estimated by:

S0 t þ 1ð Þ ¼ S0 tð Þ þ I tð Þ−ES tð Þ−D0 tð Þ; ð8Þ

where I is infiltration, ES soil evaporation and D0 top soil drainage (all
in mm/d). The model is based on the energy and mass balance equa-
tions and uses empirical relationships to estimate the fluxes. The
evaporation part of the model is critically important for the soil mois-
ture estimates. It accounts for rainfall interception evaporation, soil
evaporation and transpiration; the latter two using the Penman–
Monteith equation model. AWRA-L parameters were derived from
the literature and analysis of streamflow data from several hundred
Australian catchments. Full details on the model and its implementa-
tion can be found in Van Dijk (2010).

A soil moisture estimate comparable to the relative satellite-
derived soil moisture product can be calculated as:

θM ¼ S0
S0:FC

ð9Þ

where S0,FC is the top soil water storage capacity between field capac-
ity and the point at which evaporation ceases (wilting point). S0FC was
estimated at 30 mm across the continent, corresponding to 0-z cm of
the top soil layer, where z ranges between 5 and 10 cm. While this
differs from the depth represented by the ASAR GM (b5 cm), high



Fig. 1. The processing chain of the ASAR GM data at the TU WIEN (Sabel et al., 2010).
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correlations are expected between the two layers due to their
hydraulic coupling. Potentially, portion of the bias removed during
the normalisation may also be induced by the difference in the
Fig. 2. The maximum surface soil moisture retrieval error SMmax for Australia calculated usi
groups (Australian Government Department of the Environment and Water Resources, 2005
for Australia — IBRA (Thackway and Creswell, 1995).
depth represented by the ASAR GM and AWRA-L soil moisture prod-
ucts. The AWRA-L soil moisture is estimated at 0.05° spatial resolu-
tion and daily time step. Errors in AWRA-L soil moisture estimates
ng error propagation model (Pathe et al., 2009) (left) and the present major vegetation
) (right). The SMmax is overlaid with the Interim Biogeographic Regionalization dataset

image of Fig.�1
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arise from a) the model structure, b) the model parameters, and
c) the data used to force the model (Van Dijk & Warren, 2010). The
errors in the model structure are caused by the inevitable simplifica-
tion of the processes regulating soil moisture dynamics. The errors of
the model parameters are dominated by the inability to obtain opti-
mal spatial parameter sets across large areas. The errors in input orig-
inate mainly in station measurement and interpolation. Precipitation
errors in particular have been shown to strongly affect the agreement
in satellite and model soil moisture (Crow et al., 2009; Draper et al.,
2009; McCabe et al., 2008).
3. Methodology

The spatial aggregationwas recommended to reduce the noise of the
ASARGMsoilmoisturewhen used in applied studies (Pathe et al., 2009).
Given the nature of this publication, assessing the error structure of the
ASARGM soil moisture product, all analyseswere performed at the orig-
inal 1 km resolution. This avoids lost of information and problems with
result interpretation that may arise due to the data aggregation. The
AWRA-L 0.05° resolution estimates were oversampled to the ASAR GM
1 km grid (Sabel et al., 2010) using the nearest neighbour technique.

First, the ASARGMandAWRA-L soilmoisture estimates are assessed
in order to determine if these capture the same processes. For this pur-
pose the Pearson's correlation coefficient R is studied.

Secondly, the quality of the ASAR GM error estimate is evaluated. In
particular, the ability of theASARGMerror to predict the RMSEb between
the satellite-derived and modelled soil moisture is studied. A model is
used that relates the RMSEb to the individual errors of each dataset
according to Eq. (4). The RMSEa is calculated from the observations
according to Eq. (2). Given the independence of the two methods, a
high correspondence between the RMSEa and RMSEb suggests a high
quality of the RMSEb model and the individual error estimates.

The RMSEb computation according to Eq. (4) is complicated by the
limited knowledge of the modelled dataset error εM (Van Dijk &
Warren, 2010). In a first approximation, εM was assumed to be con-
stant and equal to 15% of the soil moisture content at field capacity
(30 mm). Given the top soil water storage of 30 mm corresponding
to ca. 5 to 10 cm of the top soil layer, εM of 15% accounts for an
error of 4.5–9 mm what corresponds to 0.045–0.09 m3/m3. This
seems as a realistic error estimate for an uncalibrated model (Choi
et al., 2002; Crawford et al., 2000). The assumption on a constant be-
haviour of εM is unlikely to be accurate, either spatially or temporally,
but was necessary due to the lack of independent spatial estimates
Fig. 3. Mean Annual Precipitation (source: Bureau of Meteorology) (left) and the Interim
(right) (Thackway & Creswell, 1995).
other than ASAR GM. Where possible the difference between the
RMSEa and RMSEb is qualitatively assigned to the satellite or to the
modelled data.

The quality of theRb is assessedusing the observed Ra computed from
the observations with Eq. (3). The aim of the estimation is twofold. First,
it provides a fast assessment of R with only limited knowledge of the
stdev and error of the modelled and satellite datasets. Secondly, it evalu-
ates the quality of the individual error estimates by evaluating their abil-
ity to predict the Rb. Being insensitive to any retrieval bias, the
knowledge of the R metric is often needed for the retrieval assimilation
into a model.

Two simplifications in the estimation of the Rb needed to be made
similar to those implemented within the estimated RMSEb: a) a con-
stant error of 15%was assumed in themodelled data; and b) a constant
variance of 15%was assumed in themodelled data. The realism of these
assumptions is evaluated by comparison of the Rb and Ra and the poten-
tial source of the R differences is addressed.
4. Results and discussion

4.1. Correlation between ASAR GM and AWRA-L soil moisture

The ASAR GM and AWRA-L soil moisture estimates are assessed
for similarity in soil moisture dynamics. The Pearson's correlation co-
efficient and the RMSEa are computed over the entire continent for
the period 2005–2009 (Figs. 4 and 5).

An overall high agreement between the ASAR GM and the AWRA-
L soil moisture observations is demonstrated in Fig. 4. Significant cor-
relations were found over 72% of the continent. High correlation
values (R > 0.6) dominate in southwest, southeast and northern
Australia. Areas with high correlations in southwest and southeast
of Australia correspond to dry land cropping regions. Regions with
high correlations can be characterised by high mean annual precipita-
tion (Fig. 3) and vegetation dominated by herbaceous plants (Fig. 2).
This agrees with a priori expectation based on the physics of radiation
transfer: the sparse vegetation allows for a good penetration of C-
band signal and increases so the ASAR GM sensitivity to soil moisture.
Australia's wetter regions generally also have a greater density of pre-
cipitation gauging stations, which may enhance the quality of the
AWRA-L rainfall forcing and reduce error in soil moisture estimates.

Insignificant correlations were found over portions of central arid,
north-western and eastern coastal Australia and correspond well to
areas with high ASAR GM error (Fig. 2). The potential reasons for lesser
Biogeographic Regionalisation dataset for Australia (IBRA) with four selected regions

image of Fig.�3


Fig. 4. The Pearson's correlation coefficient between the ASAR GM and the AWRA-L soil moisture data over Australia. The grey areas in the correlation map display the non-
significant correlation values (p=0.05%).
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agreement in dry areas are the low mean and variance of mean annual
precipitation causing lowvariance in soilmoisture and the lesser quality
of the rainfall data and hence the model estimates. The signal-to-noise
ratio over arid regions is expected to be minimal considering the low
mean and variance of soil moisture data and the poor radiometric reso-
lution of the ASAR GM (~1.2 dB) data. The low correlation in eastern
coastal areas may be explained by the limited ASAR GM sensitivity to
soil moisture due to dense vegetation, heterogeneous relief and wide-
spread urban development.

The correlation coefficient between ASAR GM and AWRA-L soil
moisture seems to be dependent also at medium scale representing
dependency on different vegetation forms. For instance, correlation
is low along major rivers due to the presence of floodplain forests
(Fig. 4, right). Similarly, remnant native mallee bush land areas (line-
ar shapes east of Adelaide) show lower R compared to the surround-
ing agricultural (Fig. 4, right).

The two datasets are fully independent as the main input data to
the AWRA-L are independent of the ASAR GM backscatter. Given
this independence, the high correlations support the notion that
they represent the same phenomenon.
Fig. 5. The maps represent the RMSEa computed from the obs
4.2. RMSE model performance

The RMSEa and RMSEb maps are displayed in Fig. 5. An overall very
high agreement of spatial patterns is evident. The areas with high
values (>30%) coincide in both maps and cover regions associated
with steep slopes and rock outcrops (e.g. rock outcrops in northern
and Western Australia). Errors above 30% are also encountered
along the eastern coast. The low values (b24%) coincide in both
maps and often correspond to areas with high R (>0.6) demonstrated
in Fig. 4. These are alluvial, topographically uniform areas, or areas
covered with herbaceous growth (e.g. alluvial region in the Gulf
Plains in northern Queensland or the Nullarbor bioregion in southern
Australia displayed in Fig. 3) that exhibit relatively high mean annual
precipitation. Low values also dominate in central arid regions with
only limited mean annual precipitation (Fig. 3).

The high values over rock outcrops in central, northern and West-
ern Australia can be attributed to the ASAR GM observational errors.
These originate in diffuse scattering from very rough areas or in fore-
shortening effects in steep slopes. The latter is not always corrected
during geometric and radiometric correction due to the limitations
ervations (left) and the RMSEb predicted (Eq. 4) (right).

image of Fig.�4
image of Fig.�5


Fig. 6. The difference between theRMSEb and the RMSEa computed from theobservations.
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of the DEM. The high values in eastern Australia may be associated with
dense vegetation that lowers sensitivity of the C-band backscatter to soil
moisture. Similar findings demonstrating the sensitivity of the RMSEa to
the topographical and geomorphological medium scale features were
documented by Van Dijk and Warren (2010).

The match between the both RMSEa and RMSEb maps and growth
forms (Fig. 2) is pronounced in the southwestern and eastern Australia.
Especially the crossover between herbaceous growing forms and shrubs
is evident. As example may serve the so-called Menzies Line in south-
west Australia dividing herbaceous vegetation on cleared land from na-
tive shrubland; the sharp divisions between cropping and grazing land
east of Adelaide, and the Cobar bioregion in eastern Australia that is
dominated by small trees (Fig. 2). These regions are easily detectable
due to their specific land cover forms and also due to the specific soil
and explicit base rock type (Van Dijk & Warren, 2010).

The difference between the RMSEb and RMSEa is displayed in Fig. 6.
The RMSEb corresponded to the RMSEa wthin ±4% of saturated soil
moisture over 89% of the landmass. The remaining 11% coincides main-
ly with rock outcrops, salt pans and densely vegetated areas (Fig. 2).

The RMSEb underestimates the RMSEa over areas with steep
slopes and rock outrcrop areas in central, western and northwestern
Fig. 7. The Pearson's correlation coefficient between ASAR GM and AWRA-L soil moisture. Th
and the Rb (Eq. 5) (right). The grey areas display the non-significant correlation values.
Australia (red colours in Fig. 6). This underestimation may originate
from the ASAR GM (Fig. 2) as well as from the AWRA-L soil moisture
error. The AWRA-L soil moisture estimates are likely to be poor where
the surface is dominated by hard rock outcrops or salt lakes, as the
model parameterization does not explicitly consider these features.
Nevertheless, the AWRA-L errors are expected to be mainly related
to the errors in rainfall forcing (Van Dijk & Warren, 2010), and thus,
correspond to relatively large scale patterns. The RMSEb is also
lower than the RMSEa in eastern coastal Australia. The reverse perfor-
mance is found over large portions of central and Western Australia
(green colours in Fig. 6). Given the limited mean annual precipitation
(Fig. 3) over these regions it is suggested that the error estimate of
the AWRA-L model may be lower than the anticipated 15% (0.045–
0.09 m3/m3).

Overall, the results demonstrate a very high agreement between
the RMSEa and RMSEb estimated according to Eq. (2). Given the inde-
pendence of the two methods the high correspondence of the RMSEa
and RMSEb maps suggests a good accuracy of the error model and the
derived ASAR GM error estimate εS.
4.3. R model performance

The comparison of the correlation coefficient Ra computed from
the observations with the Rb computed according to Eq. (5) is pre-
sented in Fig. 7. Despite the simplifying assumptions on uniformity
of the AWRA-L error estimate and standard deviation an overall
high correspondence is demonstrated at large and medium scale.
The correspondence of the large scale patterns is most likely related
to atmospherical forcing, mainly to the patterns of mean annual pre-
cipitation. The super imposed medium scale patterns are introduced
mainly by geometrical properties of vegetation or soil surface (i.e.
the bioregion Cobar, wheat belt regions, floodplain vegetation in
southeast Australia or patterns of native bush land east of Adelaide).

While the relative patterns of the correlation coefficient corre-
spond well, the absolute values differ. In particular, the Rb is too low
over the majority of the continent. It is anticipated that the discrepan-
cies in the R are driven by the assumed uniformity of the AWRA-L soil
moisture error and variance according to Eq. (5).

The corresponding patterns in Fig. 7 demonstrate the ability of the
model to provide a rough estimate of the R. The high R depicts areas
where the ASAR GM and independent soil moisture estimates capture
the same processes.
e maps represent Ra calculated from the ASAR GM and the AWRA-L observations (left)

image of Fig.�6
image of Fig.�7
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4.4. Towards Sentinel-1

Given the similar characteristics of the ASAR GM and Sentinel-1 sen-
sors it is anticipated that the error propagation model can be applied to
a potential soil moisture product retrieved from Sentinel-1. Neverthe-
less, the influence of surface features such as vegetation and roughness
at the Sentinel-1 scale needs to be carefully considered. The impact of
these effects may require modifications to both the retrieval algorithm
and the error model. In addition, the demonstrated modelling difficul-
ties of soil moisture at fine scales (Thoma et al., 2008) suggest that aver-
aging and filtering of the raw Sentinel-1 data to a regional scale (i.e.
0.5 km or 1 km) may be beneficial. The question arises how the effects
of surface features will propagate to this scale and if they will be detect-
able at all. A detailed discussion on the Sentinel-1 algorithm and error
model is beyond the scope of this paper, but anticipated modifications
are likely to include:

• The improved revisit period may improve the estimation of the in-
dividual model parameters.

• The final error is expected to improve by an order of magnitude due
to a) the improved radiometric resolution of the Sentinel-1 back-
scatter measurements (0.128 dB) (Snoeij et al., 2010) comparable
to ASAR GM (1.2 dB) and b) the averaging and filtering of the raw
data to regional scale (i.e. 0.5 km or 1 km)

• Additional parameters may be necessary in the Sentinel-1 error
model that account for the effects of vegetation and surface rough-
ness. Their actual contribution to the final error estimate is linked to
the spatial and radiometric resolution of the final Sentinel-1 soil
moisture product.

A medium resolution operational soil moisture product with a
well-specified error behaviour is proposed. While data assimilation
of the ASAR GM soil moisture estimates may be currently restricted
by its poor radiometric resolution, the proposed soil moisture product
from Sentinel-1 has the potential to be of great benefit for flux ex-
change, crop growth, and water balance modelling.

5. Conclusion

The propagated error of the existing ENVISAT ASAR GM soil mois-
ture product was assessed using independent surface soil moisture
modelled by the grid-based landscape hydrological model (AWRA-L)
developed within the Australian Water Resource Assessment (AWRA)
system.

First, the correspondence of the ASAR GM and AWRA-L estimates
was analysed. Given the independence of the two retrieval ap-
proaches the high correlation values suggest that the soil moisture es-
timates capture identical processes. Further, the quality of the ASAR
GM error estimate was evaluated by studying its ability to estimate
the Ra and RMSEa observed between the satellite and modelled soil
moisture. The estimation model relates the RMSEb and Rb to the
error characteristics of both datasets. Estimated measures were eval-
uated against the measures computed from the modelled and satellite
observations. This is possible given the independence of the two esti-
mation methods. The high correspondence of the a) RMSEa and
RMSEb and b) Ra and Rb maps demonstrated a high quality of the de-
rived models and the ASAR GM error estimate εS.

The possible reasons for discrepancies in the estimated statistical
measures were assessed. These occurred at large (> 25 km) as well
as at medium (b1 km) scales. It cannot be clearly distinguished
whether the differences in the RMSE and R originate from the errors
of the AWRA-L model estimate or from the error of the satellite esti-
mate. The medium scale differences are expected to be introduced by
the underestimation of the satellite error over vegetated forms or
rock outcrops. The large scale differences may originate from an over-
estimation of the AWRA-L model error in arid regions.
The presented validation approach for the satellite error estimate
is transferable to other modelled and satellite-derived data provided
that the respective errors are independent. It is expected that an im-
provement to the validation approach can be achieved with a better
understanding of the modelled data error.

It is suggested that an error propagation model similar to that in-
troduced for ASAR GM can be applied for the Sentinel-1 soil moisture
error retrieval. It is expected that the retrieval error will be in an
order of magnitude lower when compared to the ASAR GM. The sug-
gested operationally available medium resolution soil moisture from
Sentinel-1 with a well-specified error is likely to carry strong benefits
for modelling and monitoring of land surface-atmosphere fluxes, crop
growth and the water balance.
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