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Abstract. The statistical behaviour and distribution of high-
resolution (6 min) rainfall intensity within the wet part of
rainy days (total rainfall depth>10 mm) is investigated for
42 stations across Australia. This paper compares nine the-
oretical distribution functions (TDFs) in representing these
data. Two goodness-of-fit statistics are reported: the Root
Mean Square Error (RMSE) between the fitted and observed
within-day distribution; and the coefficient of efficiency for
the fit to the highest rainfall intensities (average intensity of
the 5 highest intensity intervals) across all days at a site. The
three-parameter Generalised Paretodistribution was clearly
the best performer. Good results were also obtained fromEx-
ponential, Gamma,and two-parameter Generalized Pareto
distributions, each of which are two parameter functions,
which may be advantageous when predicting parameter val-
ues. Results of different fitting methods are compared for
different estimation techniques. The behaviour of the statis-
tical properties of the within-day intensity distributions was
also investigated and trends with latitude, Köppen climate
zone (strongly related to latitude) and daily rainfall amount
were identified. The latitudinal trends are likely related to a
changing mix of rainfall generation mechanisms across the
Australian continent.

1 Introduction

Rainfall data at high temporal resolution are required to accu-
rately model the dynamics of surface runoff processes and, in
particular, sediment entrainment (e.g. Dodov and Foufoula-
Georgiou, 2005; Kandel et al., 2005; Mertens et al., 2002).
These processes respond to rainfall intensity variations over
short intervals. However, measurement of rainfall intensity at
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sufficient resolution is available only at a limited number of
locations across Australia. On the other hand there is good
coverage of rainfall data at a daily time step, consequently
many models used to inform water managers use a daily time
step. The overall goal of this research is to establish a means
of estimating the within-day statistical distribution of rain-
fall intensity given the daily rainfall depth and other readily
available hydrometeorological data (e.g. temperature, pres-
sure). This paper makes a first step in that by examining the
within-day statistical behaviour of rainfall intensity and its
representation by different statistical distributions.

There are several ways of capturing the effects of short
timescale rainfall intensity variability in catchment mod-
elling. The rainfall time series can be explicitly represented
in a short time step model; however, running short time step
distributed models on large catchments is impractical. Alter-
natively model parameters can be modified (e.g. calibrated)
in an attempt to capture the effect of the short time scale pro-
cesses but with a long (say daily) model time step; however,
this effective parameter approach is not well suited to non-
linear processes. Another approach is to use the distribution
function (DF) approach in which the cumulative probability
density function (cdf) of short time step (say 6 min) rain-
fall intensity is input (Van Dijk and Bruijnzeel, 2004; Kandel
et al., 2005). This function is then modified to produce a
cdf of runoff rate by a typically non-linear runoff-intensity
relationship that can be updated on a daily basis depend-
ing on the catchment wetness or other states such as surface
cover. Point-scale work has shown that, from a water qual-
ity/erosion perspective, the probability distribution of rainfall
intensity within the day and the total daily volume are of pri-
mary importance, while the time sequence of intensity is of
secondary value (Kandel et al., 2005). Van Dijk and Brui-
jnzeel (2004) reached similar conclusions for events. The
key meteorological input requirement of such models is the
cdf of rainfall intensity within the day.
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Fig. 1. Map showing the location of the selected 42 pluviograph stations together with the Köppen climate zones (Peel et al., 2007) for Aus-
tralia. The climate class symbols have the following meanings Aw = tropical, savannah; BWh = arid, dessert, hot; BWk = arid, dessert, cold;
BSh = arid, steppe, hot; BSk = arid steppe, cold; Csa = temperate, dry hot summer; Csb = temperate, dry warm summer; Cwa = temperate, dry
winter, hot summer; Cfa = temperate, no dry season, hot summer; CFb = temperate, no dry season, warm summer.

The intention of this paper is to examine how to best rep-
resent the cdf of 6 min rainfall using wet and dry fractions,
coupled with an appropriate continuous distribution function
of rainfall intensities during the wet fraction. In the absence
of a comprehensive treatment of the TDF selection problem,
this paper aims to fill the gap for within-day rainfall intensity
distributions in Australia. Specifically, the aim of this inves-
tigation was to quantify how well a range of available TDFs
fit the measured within-day rainfall intensity data and, in par-
ticular, fit the characteristics of rainfall that are most relevant
to runoff generation and erosion, that is the high intensities.
The principal aspects of the problem that are addressed by
this work include:

– How well does each of the TDFs perform and how do
they rank with respect to each other?

– Which approach to parameter estimation shows the
greatest skill: the method of moments, L-moments, LH-
moments, or Least Squares (LS)?

– Does the “best” TDF vary with location around Aus-
tralia (i.e. with climate zone) and how do characteristics
of the distribution relate to climatic characteristics?

It also aims to examine variation in the statistical behaviour
of the within-day intensity distributions between locations.
To address these aims we analysed high resolution (6 min)
rainfall data recorded at 42 Bureau of Meteorology plu-
viometer installations around Australia. It is important to

note that the paper is not aiming to develop a new rainfall
disaggregation method as DF models do not require an ex-
plicit time sequence.

2 Data and methods

High resolution rainfall data from pluviograph stations
across Australia was obtained and a detailed analysis con-
ducted to explore the distribution of within-day intensities.
There were three stages to the analysis. First, the raw rain-
fall intensity records were filtered to ensure data quality and
to exclude days of small rainfall depth (not of interest for
runoff or erosion). Second, nine different theoretical distri-
butions were fitted to the measured cumulative density func-
tion (CDF) of rainfall intensity. Multiple methods for es-
timating the distribution parameter values were employed.
Third, two objective functions were employed to assess the
goodness-of-fit of the different distributions. Data process-
ing and analysis was principally achieved via custom rou-
tines written in Fortran-90. Each stage is described in more
detail in the following sections.

2.1 Data

Pluviograph records were obtained from the Australian
Bureau of Meteorology (BOM) from the 42 sites shown
in Fig. 1. The K̈oppen climate zones for Australia
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(Peel et al., 2007) are also shown. Where stations are very
close to a zone boundary the classification was checked with
site data. Table 1 shows pertinent properties of the 42 me-
teorological stations used. This set of sites (identified by Lu
and Yu (2002) for a separate study) provides a broad spatial
coverage across Australia, record lengths span at least 20 yr
and the mean annual rainfall ranges from 196 mm at Ood-
nadatta to 2439 at Koombooloomba. Site elevations range
from sea level to 760 m, nine of the ten Köppen climate zones
present in continental Australia are represented and there is
a selection of sites from each of winter dominated, summer
dominated and non-seasonal rainfall regimes.

2.2 Quality control and censoring

Rainfall intensity data for each station was supplied at the
BOM standard 6-min time increment with each 24 h period
divided into 240 intervals (hereinafter referred to aspluvio-
graph data). Prior to the early 1990s the BOM pluviometer
network used Dines Pluviographs which recorded via a pa-
per chart and pen connected to a float and siphon mechanism.
Since that time, tipping bucket rain gauges with a 0.2 mm tip
size have been used and the time of individual tips recorded
(Srikanthan et al., 2002). Both these types of records are
provided by the BOM as 6 min data. Srikanthan et al. (2002)
showed that the short time interval data from these two gauge
types are statistically similar. This is consistent with the con-
clusions of Fankhouser (1998), who found little dependence
on measurement characteristics (e.g. bucket size) for tipping
bucket gauges. For this analysis, a day was designated as the
period starting and finishing at 09:00 h (as per the Bureau
standard). This investigation was concerned only with intra-
day characteristics; therefore inter-day relationships could be
neglected and periods of record where data was missing were
not used rather than being in-filled. Thus for this analysis
only days with a complete pluviograph record were used (i.e.
240 values, including zeroes, starting at 09:00 h).

Records of rainfall intensity measured using tipping
bucket technology incur errors at very low rain rates due to
resolution problems (see review by Nystuen, 1999). This
error is related to the inherent quantisation involved in tip-
ping bucket technology (the finite volume bucket must fill
and empty for rain to be recorded). In addition low inten-
sity periods have been handled differently over time by the
Bureau of Meteorology, with earlier data having single tips
spread across multiple 6 min periods and later data having the
tip assigned to a single 6n min period. As this work was con-
cerned with the upper end of the rainfall intensity spectrum,
pluviograph records were censored in two ways to eliminate
low intensity data from consideration. First, only days where
the total rainfall depth (P) equalled or exceeded 10 mm were
considered. Second, only those 6-min intervals where inten-
sity (R) exceeded a threshold minimum (Rmin) of 1 mm h−1

(0.1 mm/6 min) were considered in fitting the CDF. Finally,
in order to numerically resolve the higher order moments, the

number (n) of 6-min intervals where the intensity exceeded
Rmin on any day need to be at least four.

The results of this censorship regime in terms of the num-
ber of rainy days on the record and the percentage of the
rainfall depth that fell within the various categories is sum-
marised in Table 2. The bottom line describes the data anal-
ysed by this investigation, showing for example that in Dar-
win 12.3 % of analysed days (i.e. days with a complete plu-
viograph record) had sufficient rain (P ≥10 mm) and that on
these days 88.2 % of the total rainfall depth was received. In
contrast, almost half of Melbourne’s rainfall depth is deliv-
ered on days where the total accumulation is less than 10 mm.
Over all stations, the average rainfall depth retained in the
data after censorship was 74.7 % of the total rainfall depth,
which was considered reasonable given our interest in pro-
cesses sensitive to large events.

Rainfall was also censored if 6-min intensity was less
than 1 mm h−1. On average, this accounted for 5.5 % of the
rainfall depth at each station, with this proportion varying
from 1.8 % to 9.2 %. We undertook sensitivity testing using
thresholds of 1 mm h−1 and 2 mm h−1 and found the fitted
parameter values and quality of fits were insensitive to the
exact level of the threshold. The 1 mm h−1 threshold is a rea-
sonable compromise given the discretisation inherent in tip-
ping bucket rain gauges (which is typically a 2 mm h−1 dis-
cretisation i.e. 0.2 mm tip and 6 min intervals), the practical
need to remove the artefact of single tips being spread over
many time increments in the data and our primary interest in
higher intensities that are significant to surface processes.

2.3 General approach

With any analysis of information from multiple stations a de-
cision must be made as to whether a local (analysis by indi-
vidual site) or a regional (all sites together) approach should
be taken. There are advantages of both. A local approach
has the advantage of enabling a better understanding of local
behaviour and contrasts between those sites while a regional
analysis will provide a more robust relationship over a region
due to the inclusion of more data. Here we chose a local ap-
proach because we are more interested in understanding the
site level behaviour and in exploring the variation between
sites.

2.4 Theoretical Distribution Functions

Nine different theoretical distribution functions (TDFs) (Ta-
ble 3) were fitted to the data for the wet fraction of the
day. The wet fraction is calculated as the proportion of 6-
min intervals in the day with rainfall intensity exceeding
1 mm h−1. The selection of TDFs was populated with distri-
butions well known in the meteorological and hydrological
literature. The mathematical formulation of each TDF, and
the parameter estimation techniques employed, followed the
methods presented in Stedinger et al. (1993) as identified in
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Table 1. Properties of the 42 study sites.

Station Station Lati- Long Period Elev Köppen Annual Max Max Min Min Annual
Code Name tude itude (m) Climate Rainfall Monthly Month Monthly Month Rain

Class Rainfall Rainfall Days

2012 Halls Creek −18.2 127.7 1955– 422 BSh 546 152.6 Jan 2.2 Aug 47
Airport 2005

3003 Broome −17.9 122.2 1948– 7 BSh 593 177 Jan 1.5 Sep 35
Airport 2005

4032 Port Hedland −20.4 118.6 1953– 6 BWh 313 98.5 Feb 0.9 Sep 20
Airport 2005

6011 Carnarvon −24.9 113.7 1956– 4 BWh 234 49.1 Jun 2.1 Dec 25
Airport 2005

7045 Meekatharra −26.6 118.5 1953– 517 BWh 235 34.6 Jun 4.9 Sep 29
Airport 2005

8051 Geraldton −28.8 114.7 1953– 33 Csa 467 107 Jun 5.7 Dec 60
Airport 2005

9021 Perth −31.9 116.0 1961– 15 Csa 795 172.6 Jun 9.2 Jan 87
Airport 2005

9741 Albany −34.9 117.8 1965– 68 Csb 804 123.2 Jul 23.4 Feb 82
Airport 2005

9789 Esperance −33.8 121.9 1969– 25 Csb 625 98.5 Jul 17.4 Dec 91
2005

12038 Kalgoorlie-Boulder −30.8 121.5 1939– 365 BSh 271 31.4 Jun 14.4 Sep 40
Airport 2005

13017 Giles Meteorological −25.0 128.3 1956– 598 BWh 273 48.8 Feb 10.1 Aug 32
Office 2005

14015 Darwin −12.4 130.9 1953– 30 Aw 1715 428.5 Jan 1 Jul 94
Airport 2005

14508 Gove −12.3 136.8 1966– 52 Aw 1430 284.8 Feb 4.2 Sep 56
Airport 2005

15135 Tennant Creek −19.6 134.2 1969– 376 BSh 435 119.6 Feb 1.6 Aug 37
Airport 2005

15590 Alice Springs −23.8 133.9 1951– 546 BWh 282 44.4 Feb 9 Sep 30
Airport 2005

16001 Woomera −31.2 136.8 1955– 167 BWh 192 20.8 May 11.9 Apr 28
Aerodrome 2005

17043 Oodnadatta −27.6 135.4 1961– 117 BWh 176 28.9 Feb 9 Aug 22
Airport 2004

18012 Ceduna −32.1 133.7 1954– 15 BSk 304 41.1 Jul 11.9 Jan 57
AMO 2005

23034 Adelaide −35.0 138.5 1967– 6 Csb 455 63 Jul 18.2 Jan 79
Airport 2005

26021 Mount Gambier −37.7 140.8 1942– 63 Csb 707 99.3 Jul 25.6 Feb 119
Airport 2005
AERO

27006 Coen −13.8 143.1 1967– 161 Aw 1192 308.5 Jan 0.9 Sep 75
Airport 2002

27022 Thursday −10.6 142.2 1961– 58 Aw 1746 418.6 Jan 3.5 Sep 84
Island MO 1993

29041 Normanton −17.7 141.1 1964– 8 Aw 919 259.5 Jan 1.7 Aug 44
Post Office 1999

29127 Mount Isa −20.7 139.5 1967– 340 BSh 443 102.9 Jan 3.8 Jun 37
AERO 2005

31083 Koombooloomba −17.8 145.6 1960– 760 Cfa 2739 481.7 Mar 85.6 Oct 138
Dam 2005
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Table 1. Continued.

Station Station Lati- Long Period Elev Köppen Annual Max Max Min Min Annual
Code Name tude itude (m) Climate Rainfall Monthly Month Monthly Month Rain

Class Rainfall Rainfall Days

32040 Townsville −19.2 146.8 1953– 8 Aw 1144 292.7 Feb 10.7 Sep 65
AERO 2005

33119 Mackay −21.1 149.2 1959– 30 Cwa 1606 316.9 Feb 16.4 Sep 97
MO 2005

36031 Longreach −23.4 144.3 1964– 192 BSh 455 81.1 Feb 9.6 Sep 33
AERO 2005

39083 Rockhampton −23.4 150.5 1939– 10 Cfa 819 141.2 Feb 23.5 Sep 62
AERO 2005

40223 Brisbane −27.4 153.1 1949– 4 Cfa 1185 171.7 Feb 34.9 Sep 91
AERO 2000

44021 Charleville −26.4 146.3 1953– 303 BSh 493 72.2 Jan 20.3 Aug 44
AERO 2005

48027 Cobar −31.5 145.8 1962– 260 BSh 415 49.9 Jan 24 Jun 46
MO 2005

55024 Gunnedah −31.0 150.3 1946– 307 Cfa 643 90.9 Jan 36.4 Aug 60
SCS 2005

59040 Coffs Harbour −30.3 153.1 1960– 5 Cfa 1704 242.4 Mar 63.6 Sep 87
MO 2005

66037 Sydney Airport −33.9 151.2 1962– 6 Cfa 1106 124.3 Jun 62.7 Sep 96
AMO 2005

70014 Canberra −35.3 149.2 1937– 578 Cfb 630 65.8 Oct 39.9 Jun 72
Airport 2005

72150 Wagga Wagga −35.2 147.5 1945– 212 Cfa 583 60.5 Oct 37.1 Feb 73
AMO 2005

76031 Mildura −34.2 142.1 1953– 50 BSk 294 31.5 Oct 18.8 Mar 45
Airport 2005

85072 East Sale −38.1 147.1 1953– 5 Cfb 617 62.6 Nov 40.5 Feb 91
Airport 2005

86071 Melbourne Regional −37.8 145.0 1873– 35 Cfb 657 67.3 Oct 47.5 Feb 100
Office 2005

91104 Launceston −41.5 147.2 1938– 170 Cfb 684 77.8 Aug 38.5 Mar 93
Airport 2005

94008 Hobart −42.8 147.5 1960– 4 Cfb 510 56.7 Dec 29.3 Jun 85
Airport 2005

Table 2. Summary of data divided into categories based on daily total rainfall depth (P ) and the number of 6 min periods (n) where rainfall
intensity exceeded the threshold (1 mm h−1). The number of days and daily rainfall depth (mm) are listed for the stations in Melbourne and
Darwin individually, and for all stations combined.

Station Melbourne Darwin All Stations

Criteria Days (%) Depth (%) Days (%) Depth (%) Days (%) Depth (%)

P < 0.2 mm 10269 (68.3) 11664 (75.5) 473196 (80.9)
0.2≤ P < 10 4056 (27) 12118 (47) 1886 (12.2) 8069 (11.6) 81416 (13.9) 274371 (25.2)
P ≥ 10,n < 4 2 (0.01) 42 (0.16) 7 (0.05) 85 (0.1) 59 (0.01) 841 (0.08)
P ≥ 10,n ≥ 4 700 (4.7) 13626 (52.8) 1894 (12.3) 61156 (88.2) 30418 (5.2) 813781 (74.7)
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Table 3. Theoretical Distribution Functions tested for skill in fitting the CDF of within-day rainfall intensity. This table also indicates the
short name assigned to each TDF, lists the parameters of the distribution and their function (scale, shape, or location), and indicates the
source for relationships used in the fitting process (pages from Stedinger et al., 1993).

TDF Name Short Name Parameters Page Reference(s)
Stedinger et al. (1993)∗

Lognormal LOGN µ location parameter (mean) p. 18.14–15
σ scale parameter (std. dev.)

LGN3 µ location parameter (mean) p. 18.15-16
σ scale parameter (std. dev.)
ξ location parameter

Exponential EXP β inverse scale parameter p. 18.19–21
ξ location parameter

Gamma GAMA α shape parameter p. 18.19–21
β inverse scale parameter

Generalized Pareto GPT2 α scale parameter p. 18.22
κ shape parameter

GPT3 α scale parameter p. 18.22
κ shape parameter
ξ location parameter

Extreme Value Distributions

Generalized Extreme GEV α scale parameter p. 18.17–19
Value κ shape parameter

ξ location parameter

Weibull WEBL α scale parameter p. 18.19
κ shape parameter

Gumbel GMBL α scale parameter p. 18.16–17
ξ location parameter

Note∗. Details for all TDFs can also be found in: Tables 18.1.2 and 18.2.1 Stedinger et al. (1993)

the right-most column of Table 3. Of these distributions it is
worth noting that the generalised pareto distribution and its
special case, the exponential distribution, can be interpreted
as peak-over-threshold distributions (Madsen and Rosberg,
1997; Claps and Liao, 2003), which provides some theo-
retical justification for their suitability here. Other distri-
bution functions with greater flexibility (more parameters)
have been used to describe rainfall (e.g. the two-component
extreme value distribution (Rossi et al., 1984)); however,
given that we aim subsequently to predict the parameter
values for distributions from daily meteorological observa-
tions, we limited distributions to those that have three or less
parameters.

The final three TDFs in Table 3a are Extreme Value Dis-
tributions (EVDs). These have been derived specifically to
represent the distribution of the largest observation drawn
from a large sample. The validity of including these EVDs is
open to question as the full range of observed intensity (ig-
noring the minor censoring at very low intensities) has been
included, whereas EVDs describe distributions of extreme

values (i.e. maximum or minimum) taken from of each of a
set of realisations. The validity of including these EVDs is
open to question as the rainfall intensity data to which they
are being fitted is not an extreme value data set, at least using
traditional ways of thinking about rainfall. However, a recent
analysis of heavy rainfall by Wilson and Toumi (2005) shows
that the distribution is in fact “heavy tailed” in some cases –
a characteristic feature of EVDs.

Parameter values for each of the distributions were com-
puted from the pluviograph data in three ways: first via the
method-of-moments (product moments, denoted PM); sec-
ond by the computation of L-moments (Hosking et al., 1985;
Hosking and Wallis, 1997; Stedinger et al., 1993) (denoted
LM); and third using a least squares estimation (denoted
LS) technique. The LS algorithm implemented an auto-
matic pattern search optimisation method (Hooke and Jeeves,
1961; Monro, 1971) with the objective to minimise the Root
Mean Square Error (RMSE – see next section) between the
measured rainfall intensity CDF and the fitted TDF. Note that
for the first iteration of the LS algorithm the parameter values
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of the fitted TDF were initialised using values calculated via
the product moment method.

The utility of Wang’s (1997) LH-moment method (LH4
moments in this case) was also examined using the GEV dis-
tribution as a test case. This fitting method was not pursued
even though it yielded a better fit to the upper tail of the dis-
tribution than the L-moment estimates because the LH4 es-
timations were (for a large majority of pluviograph stations)
inferior to those produced by product moment and LS meth-
ods. Consequently, the results presented in this paper exam-
ine only the relative merit of the other three parameter esti-
mation techniques.

It should be noted that there is temporal structure to
within-day rainfall that involves both intermittency and serial
correlation during rainfall periods. This structure impacts on
fitting techniques and in particular uncertainty estimation for
fitted parameters (Willems et al., 2007). In this study we have
not attempted to estimate the uncertainty in the fit of param-
eters for each type of distribution because of this issue.

2.5 Assessment of fit

There are two possible approaches to assessment of the per-
formance of different distributions; either examining how
closely the distribution functions fit the data by some sort
of analysis of residuals from the distribution function, or ex-
amining the uncertainty in the quantile estimates resulting
from the fitted distribution. To estimate the uncertainties in
the quantile estimates requires either independent samples or
a rigorous treatment of any temporal structure in the data.
Rainfall over a day is both intermittent and exhibits (poten-
tially intensity dependent) serial correlation. This structure
would need to be incorporated into the uncertainty estima-
tion for the parameters of each of the distributions and for
each of the fitting methods. Because of this complexity we
opted to examine the fits based on a residual analysis rather
than uncertainty in the quantile estimates.

Two measures of goodness-of-fit were selected to quantify
the fit of the distributions. First, the Root Mean Square Error
(RMSE – defined by (1)) of the fitted TDF compared with the
observed rainfall intensity data was computed. RMSE quan-
tifies how well the shape of each TDF matches the recorded
within-day data considering the entire range of intensity val-
ues above the 1 mm h−1 threshold. Note that this yields one
RMSE value per rain day analysed. A low RMSE value in-
dicates that the fitted TDF provides a good approximation to
the shape of the rainfall intensity CDF; showing that a good
fit to both thevolumeand theduration of different rainfall
rates has been achieved.

RMSE=

√√√√√ n∑
j=1

(
Îj − Ij

)2

n
(1)

where: Î andI are the fitted and measured rainfall intensity
at the j’th probability of exceedance respectively; andn is the

number of 6-min intervals during the wet fraction (wf) of the
day (that is:n =240 wf). Note that for the LS fitting method,
the objective function is to minimise the RMSE.

Given the ultimate aim of providing input to erosion mod-
els, a second goodness-of-fit statistic was used to quantify the
fit to the upper tail of the rainfall distribution. A number of
alternatives were considered, including the maximum 6-min
intensity; the average of the 2, 3, 5 and 10 highest intensity 6
min periods; and the 80th and 90th percentile intensities. Of
course, many of these measures were highly cross-correlated
(i.e. r2 > 0.8). Inspection of fitting results for Melbourne
and Darwin showed that some degree of averaging was use-
ful (to avoid over-emphasizing errors in the fit of the highest
one or two intensity values) but that averaging over long pe-
riods tended to reduce differences between the fit of different
TDFs. The average of the five highest intensity periods, des-
ignatedIHI [mm h−1], was selected as providing a reasonable
balance between these competing factors. It should be noted
thatIHI captures 30 min of rainfall in total but not necessarily
from consecutive intervals.

Formal statistical testing of distribution fits was also con-
sidered. Several alternatives exist for testing whether a sam-
ple comes from a hypothesised distribution. These include
the Anderson-Darling test (Stephens, 1974), the probability
plot correlation coefficient (PPCC) test (Filliben, 1975), the
Kolmogorov-Smirnov test and Chi-squared goodness-of-fit
test. Of these, critical values only exist for a subset of the
candidate distributions for the Anderson-Darling (Lognor-
mal, Exponential and Weibull) and PPCC (Gamma, GEV,
Weibull and Gumbel) tests (Engineering Statistics Hand-
book, Chapter 1.3.5.14, Heo et al., 2008) The Kolmogorov-
Smirnov requires the distribution to be fully specified for the
critical values to be valid (Engineering Statistics Handbook,
Chapter 1.3.5.16). Because we wanted to test all the distribu-
tions consistently and needed to estimate the parameter val-
ues from the data, these three tests were not suitable. Thus
we used the Chi-squared test and followed the Engineering
Statistics Handbook (2011) recommendations. It should be
noted that any intermittency and serial correlation should be
accounted for in implementing these tests. We did not do
this and this means the power of the Chi-squared test is over-
estimated (i.e. more days are found to be statistically dif-
ferent to the hypothesised distribution that is really the case
given that there will be some temporal structure to the data).
This is a limitation of the testing that was attempted.

The Chi-square test requires continuous data to be discre-
tised into bins and it is recommended that there be at least 5
data points in each bin and at least 5 bins. The upper limit of
the first bin was set arbitrarily to 1.5 mm h−1 (larger where
necessary to ensure that it contained at least 5 data points).
The number of subsequent bins was set to 2n0.4

r , wherenr is
the number of remaining data points. For these bins, ranges
were allocated on an equal probability basis using the fitted
distribution. If bins existed with less than five data points, the
number of bins was reduced and ranges recalculated until all
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bins had at least five observation points. Only days that met
the above criteria were selected for testing, which were gen-
erally days with more than 3 h of rainfall (i.e. 30 observation
points). This testing indicated that each candidate distribu-
tion was rejected on about half of the days tested. Subsequent
analysis showed the lower half of the distribution contributed
more than 50 % of the chi-square statistic on 70–75 percent
of days (except lognormal – 50 % of days) and that the statis-
tic was insensitive to the upper tail. Given our greater interest
in the upper tail, this testing was not useful for distinguishing
candidate distributions.

2.5.1 Summary statistics for each station

The results of fitting at a given pluviograph station are sum-
marised herein by one RMSE value and oneIHI value for
each rain day in the record (>30 000 following quality con-
trol). In order to quantify the goodness-of-fit over all the rain-
days at a given station, two summary statistics were com-
puted: mCOE and RMSE90.

– The goodness-of-fit between the fittedIHI (from the fit-
ted TDF) and the observed data was quantified using the
Modified Coefficient of Efficiency (mCOE) (one value
of mCOE per station) as defined by Legates and Mc-
Cabe (1999). The mCOE is essentially similar to the
well known Coefficient of Efficiency (Nash and Sut-
cliffe, 1970), but instead of squaring the error between
measured and observed data (which gives extra weight
to outliers), the absolute magnitude of the error is com-
puted instead (refer to Legates and McCabe (1999) for
a thorough derivation and discussion).

– The range of RMSE values at a station was summarised
by the 90th percentile RMSE (i.e. 90 % of RMSE val-
ues are less than or equal to this RMSE value). Herein
this statistic is denoted as RMSE90. The 90th percentile
was chosen on the basis that it provides an indication of
the minimum level of performance that can be expected
from the majority of fits.

The meaning of these two statistics will become clearer as
some illustrative results are introduced in the next section.
The equation used to compute mCOE was (as per Legates
and McCabe (1999)):

mCOE= 1.0−

S∑
k=1

∣∣∣IHIk − ÎHIk

∣∣∣
S∑

k=1

∣∣IHIk −IHI
∣∣ (2)

where:ÎHI andIHI are the fitted and measured mean intensi-
ties of the 5 highest intensity intervals of the day;IHI is the
mean value of the set; andS is the number of rain days in the
pluviometer record for that station.

3 Illustrative results: Melbourne and Darwin

Fits of Exponential, Gamma, and Generalised Pareto 2 and
3 parameter TDFs for Melbourne and Darwin are shown in
Figs. 2 and 3 for nine randomly selected days at each station.
These distributions were fitted using the LS method (except
for the Gamma distribution which used PM). It is clear that
for some days (for example 2 January 1970 at Melbourne)
there is little difference between the quality of fit for the var-
ious TDFs, while for others there is a significant difference.
This is largely controlled by the skewness of the rainfall in-
tensity distribution on the particular day, with the GPT2 and
GPT3 distributions being more flexible in terms of matching
the variations in skewness. There also appears to be a wider
range in observed distribution shapes at Melbourne than at
Darwin. These figures give a qualitative idea of the range in
fit quality.

More quantitative results of the fitting for Melbourne and
Darwin are shown in Figs. 4 and 5. The charts are paired
(referred to as “chart-pairs”), showing fitted versus observed
IHI (top) and RMSE (bottom). A number of additional statis-
tics are provided with these plots as described in detail by
each figure heading. The charts in Fig. 4 facilitate compari-
son of fitting skill using PM for three different TDFs (LGN3,
GAMA, and GEV) at two locations: Melbourne (left) and
Darwin (right). The charts in Fig. 5 show results for Darwin.
They compare the fitting skill achieved by the three different
parameter estimation methods (LM, PM and LS) and also
show the improvement in fit when an additional degree of
freedom is available: i.e. GPT3 (right) versus GPT2 (left). In
summary, these two figures show that fitting skill varies as a
function of: (i) TDF; (ii) location; (iii) fitting method; and
(iv) number of TDF parameters.

3.1 Fit results for various TDFs

In Fig. 4 the amount of scatter around the line-of-perfect
agreement is greater for the lognormal fit than either the
gamma or GEV distributions, and this is the case for both
Melbourne and Darwin. The mCOE statistics support this
observation, with the lognormal statistic more than 10 %
lower than either other TDF. The variation in RMSE is of a
similar magnitude for Melbourne; that is the 90th percentile
RMSE is 2.8± 15 %, with the lognormal TDF at the upper
end of this range. In contrast, the RMSE values associated
with the lognormal TDF in Darwin vary over a much wider
range, with the lognormal fit (RMSE90 = 15.4) clearly infe-
rior compared with the other two TDFs (RMSE90 = 7.6 and
8.3). This suggests that location-related differences in fit-
ting skill may be important. In fact the source of the differ-
ence is most likely due to the fact that Darwin receives much
heavier rainfall than Melbourne; approximately three times
heavier if the median or 90th percentileIHI values are used
as the basis of comparison (e.g. medianIHI is 30.2 mm h−1

in Darwin compared to 9.5 mm h−1 in Melbourne). Indeed,
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Fig. 2. Fitted cumulative density functions (CDFs) of EXP, GPT2, GPT3 and GAMA for nine events representative of varying daily rainfall
depths for Melbourne. TDFs were fitted using the LS technique.

the RMSE90 values for the GAMA and GEV distributions
are threefold larger in Darwin than in Melbourne, while the
LGN3 value is fivefold higher (suggesting that LGN3 fits get
poorer as rainfall intensity increases in general).

Given that the elevated RMSE values for Darwin are
driven by the higher rainfall intensity of monsoonal events,
should the data be normalised (e.g. byIHI) so as to facilitate
comparison between stations (i.e. RMSE calculated for non-
dimensional results)? It is the authors’ opinion that this was
not necessary as the objective of this work was to examine
TDF fits at each station not between stations. For this task
RMSE based on unscaled rainfall intensity data was suitable,
and has the added advantage of indicating the error magni-
tude in units [mm h−1] that are readily comprehended (for
example: RMSE of 1.0 mm h−1 has more physical meaning
than a normalised RMSE of 0.1). Thus, from the RMSE data
in Fig. 4 it can be concluded that: (i) GAMA and GEV in
Darwin and Melbourne have superior performance to LGN3;
(ii) RMSE90 values computed for Darwin are more than dou-
ble those in Melbourne; and (iii) Darwin experiences events
having far higher intensity than Melbourne (i.e. many events
where the observedIHI exceeds 20 mm h−1 – putting result
(ii) into context).

A final point to note from the fitted versus observed plots
in Fig. 4 is that both the GAMA and GEV TDFs tend to
slightly underestimateIHI for higher observed values of I30.

This is indicated by the negative bias and the position of the
dashed regression lines being consistently below the line-of-
perfect-agreement. Consequently, runoff and erosion predic-
tions using the fitted TDFs would tend to be underestimated
compared with the observed data.

3.2 Impact of fitting method and number of TDF
parameters

Figure 5 illustrates two trends in fitting skill: first, product
moments are more successful than L-moments while LS is
the best of the three; and second, the extra degree of free-
dom available to GPT3 noticeably improves the fitting in-
dices. The best fit is shown by the chart-pair at the bottom
right (GPT3LS). It is interesting to note that the middle-right
(GPT3PM) has a very similar fit to the bottom-left chart-pair
(GPT2LS). Given this result, two conflicting conclusions can
be drawn regarding the value of the additional degree of free-
dom available to GPT3 over GPT2. The advantage of the
third parameter is most evident in the product moment fits
(middle chart-pairs), with the fit statistics for GPT3 far better
than those of GPT2 (mCOE = 0.891 compared to 0.741, and
RMSE90 = 1.91 compared with 2.56). However, looking at
the bottom chart-pairs (LS fit), the improvement offered by
the third parameter is less significant (mCOE = 0.928 com-
pared with 0.884, and RMSE90 = 1.58 compared with 2.03).
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Fig. 3. Fitted cumulative density functions (CDFs) of EXP, GPT2, GPT3 and GAMA for nine events representative of varying daily rainfall
depths for Darwin. TDFs were fitted using the LS technique.

The optimisation provided by the LS process narrows the gap
between the GPT2 and GPT3 goodness-of-fit to such an ex-
tent that the value of the third parameter must be questioned.
To summarise: the GPT3LS combination clearly provides the
best fit of the combinations shown in Fig. 5 (and in fact later
figures show this to be the case across all the pluviograph
stations). However, the combination of GPT2LS should not
be ruled out at this point as the fit is only marginally poorer
but is achieved with one less model parameter. Using one
less parameter should lead to less parameter uncertainty and
thus a reduction in the uncertainties of the rainfall intensity.
In the present analysis it is not possible to decide whether
fewer model parameters are more desirable than maximising
the potential goodness-of-fit, this will indeed be a question
for work that follows this TDF selection study (i.e. attempt-
ing to predict TDF parameter values from daily climate mea-
surements). However, it is an important consideration in the
selection process in that it is important to choose not only
the best fitting TDF but also TDFs with two rather than three
parameters.

4 Results for all stations

Figures 4 and 5 looked at specific results for two pluviograph
stations and illustrate the meaning of the goodness-of-fit in-

dices (mCOE and RMSE90). Figure 6 summarises these
goodness-of-fit results for all 42 stations using two sets of
box plots (mCOE top, RMSE90 bottom). Three boxes are
shown for each of the nine TDFs, one for each fitting method
(see definitions in the figure legend). The results shown in
Fig. 6 were the primary tool for ranking the fitting methods
and TDFs

Note that LS fitting to GAMA and LGN3 caused technical
problems and hence results for these cases do not appear in
Fig. 6 . The impediments to LS calculation in these cases are
as follows. For GAMA an analytic CDF is unavailable and so
instead an iterative numerical solution was required. Compu-
tation times became excessive when LS was attempted using
the pattern search algorithm coupled with the numerical so-
lution to the GAMA CDF. In the case of LGN3, estimation
of the location parameter wasn’t robust, with the denomina-
tor of the algorithm tending toward zero under some condi-
tions. This problem could be avoided by imposing a number
of constraints on the location parameter. However, given the
poor fitting performance of LGN3 obtained with L-moment
and product moment estimation, it was felt that the TDF was
unlikely to be selected and hence the effort required to im-
plement an LS solution was not justifiable.
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Fig. 4. Six paired scatter plots are shown to illustrate the skill of three selected TDF’s: three parameter Lognormal (top); Gamma (middle);
and the Generalized Extreme Value (lower). The data is for two pluviograph stations: Melbourne on the left and Darwin on the right. The
plots are in pairs showing the fitted I30 and the RMSE for each event (both plotted versus the measured I30). Values for mCOE, bias and the
square of Pearson’s correlation coefficient (r2), as well as the line-of-perfect-agreement (solid) and the linear regression line (dashed) are
printed on theI30 charts. The RMSE plots indicate the 50th (solid line) and 90th (dashed line) percentile RMSE and measuredI30 values,
and also indicate the percentage of RMSE values greater than 16 mm h−1 and are hence outside the vertical scale of the plot.

4.1 Ranking the fitting methods

The trends previously observed for individual pluviographs
are reinforced by the results in Fig. 6. These show that the
LS method produces consistently higher mCOE values (top)

and smaller RMSE90 values (bottom) than either of the other
fitting methods. Furthermore, in all cases both the magnitude
of the statistic is better and the range of values is smaller.
The reduction in range implies that LS improves the poor-
est fits by a greater extent than the better fits, with the fit at
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Fig. 5. Six paired scatter plots based on data from Darwin Airport are shown to illustrate first the relative skill of TDF’s having two (GPT2
– left side) or three parameters (GPT3 – right side) and second the success of three different fitting schemes: L-moments (top); Product
Moments (middle); and Least Squares Estimation (lower). The plots are in pairs showing the fittedI30 and the RMSE for each event (both
plotted versus the measuredI30). Values for mCOE, bias and the square of Pearson’s correlation coefficient (r2), as well as the line-of-
perfect-agreement (solid) and the linear regression line (dashed) are printed on theI30 charts. The RMSE plots indicate the 50th (solid line)
and 90th (dashed line) percentile RMSE and measuredI30 values, and also show the percentage of RMSE values greater than 16 mm h−1

and are hence outside the vertical scale of the plot.

all stations an improvement over those achieved using other
fitting methods.

The superiority of the LS fitting is founded on the success
of the PM fit in that the PM parameter values were used to

initialise the LS optimisation. The PM fits in Fig. 6 show
substantially higher mCOE values than the LM fits, and also
show lower RMSE90 values. Lower RMSE90 values are
to be expected as the objective of the LS algorithm was to
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Fig. 6. Box plots showing the spread of mCOE (upper chart) and
RMSE90 (lower chart) values across the 42 pluviograph stations.
The results indicate the spread of values associated with each of the
nine TDFs and the three fitting methods (note that the least squares
estimation technique was not able to be employed for the GAMA
and LGN3 distributions). High fitting skill is indicated by mCOE
values close to 1.0 and by RMSE90 values close to zero. Note that
while outliers are identified above, this does not imply data was
removed from any subsequent analysis.

minimise RMSE values. It is noteworthy that mCOE values
are also substantially improved by the LS process by compar-
ison with the mCOE values achieved using the PM approach
(see especially GEV and GPT2 results – top of Fig. 6).

On the basis of these observations it is clear that the LS
method represents the best fitting method, followed by PM
and then the LM method. Thus, the first conclusion that this
study draws is with regard to fitting method:

Candidate TDFs should be first fit by PM and then opti-
mised by LS to obtain the highest fitting skill as measured by
mCOE and RMSE90.

4.2 Ranking the TDFs

In this section the focus is on ranking the fit provided by
the nine TDFs. The objective was to reduce the number of
candidates from nine down to the best three or four TDFs,
with the ultimate aim to then use these in a subsequent study
to predict the parameters of these TDFs from daily climate
variables.

The desire to identify multiple candidate TDFs, as well as
the TDF with the best fit, is that the parameter values of some
TDFs may be more amenable to prediction than others. One

reason (highlighted earlier) is that a two-parameter TDF may
be more identifiable (i.e. able to be predicted) than a three-
parameter TDF. A second possibility is that the parameters
of one TDF may be more identifiable than the parameters of
another TDF. For example, it may be that the two parameters
of EXP are more readily predicted than the two parameters
of GPT2, due perhaps to different structural relationships be-
tween the TDF parameters and the statistics of the distribu-
tion (i.e. mean, variance, skewness, and kurtosis).

4.2.1 Elimination: lognormal TDFs

The first two eliminations are straight forward. The skill
shown by the LOGN and LGN3 distributions are clearly
poorer than the other TDFs. Hence, LOGN and LGN3 were
eliminated as candidate distributions.

4.2.2 Elimination: Extreme Value Distributions

The performance of the three EVDs (GEV, GMBL and
WEBL) is mixed (consider results for fitting by LS). The box
plots for GEV and WEBL are second only to GPT3, while
the skill of the GMBL is not as good as the other TDFs (me-
dian mCOE is less than 0.9 and median RMSE90 is greater
than 1.0). The good results for the GEV and WEBL supports
the notion that EVDs are suitable for representing within-day
rainfall intensity distributions. However, the skill shown can-
not be considered exceptional in that the EVDs’ fit is inferior
to GPT3 (at all but one station). Thus, on balance it is not
considered that there is a strong enough case to consider se-
lecting an EVD, given the concern that within-day rainfall is
not a classic extreme value distribution. Hence, the decision
was taken to exclude GEV, GMBL and WEBL distributions
from further consideration.

4.2.3 Variability with location

One factor that cannot be discerned from Fig. 6 is whether
fitting skill varies with location. To understand how much of
an influence location has two questions were asked:

– Which TDF fits best at each pluviograph station?

– Can spatial trends in the goodness-of-fit statistics be dis-
cerned?

The results shown in Fig. 6 suggest that GPT3 provides the
best fit to the data. However because the range of mCOE and
RMSE90 values overlaps with the box plots of other TDFs,
it is possible that at particular stations one of the other TDFs
yields a better fit. Thus, on a station-by-station basis the
TDF and fitting method showing the highest mCOE and, in-
dependently, the lowest RMSE90 were identified. The aggre-
gated results are summarised in Table 4 and demonstrate that
GPT3LS is unequivocally the best fitting TDF, with GPT2
and WEBL distributions providing a lower RMSE90 result
at only 3 and 1 pluviometer stations, respectively.
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Fig. 7. Maps indicating the spatial variation of mCOE (left) and
90th percentile RMSE (right) for GPT3 fitted using least squares
estimation. Note that smaller circle sizes indicate a better fit (i.e.
maximum mCOE and minimum RMSE).
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Fig. 8. Box plots showing the marginal error associated with choos-
ing an alternate TDF and fitting method than the best available com-
bination at each pluviograph. Error is very low for the GPT3/MLE
combination as at most locations this combination exhibits the high-
est fitting skill (therefore zero error). The upper box plot indicates
the spread of error for mCOE and the lower plots error in RMSE90.
The most attractive TDF and fitting method combinations are those
displaying low values in both the upper and lower plots. Note that
while outliers are identified above, this does not imply data was re-
moved from any subsequent analysis.

The fact that GPT3 consistently provides the best fit, rather
than different TDFs being better at different locations, sug-
gests that GPT3 has sufficient flexibility to accommodate a
range of within-day rainfall intensity distributions, and per-
haps that the shape of rainfall CDFs does not vary strongly
with location. The answer is probably a combination of both
factors, with GPT3LS clearly the first choice distribution for
fitting within-day rainfall intensity.

While GPT3 provides the best fit across almost all the sta-
tions, the next question is whether the level of fitting skill

Table 4. Combination of TDF and fitting method with the highest
fitting skill for mCOE and RMSE90 statistics, indicating the per-
centage of stations for which each combination is the best.

Fit Statistic TDF Fit % Stations
Method

mCOE GPT3 LS 100 %

RMSE90 GPT3 LS 90.5 %
GPT2 LS 7.0 %
WEBL LS 2.5 %

varies systematically with location. To examine this pos-
sibility, maps showing the spatial variation of mCOE and
RMSE-90 such as Fig. 7 were constructed. Symbol size
on these maps indicates the goodness-of-fit, with larger cir-
cle diameters indicating a poorer fit (i.e. low mCOE or high
RMSE-90). Maps were constructed for the four TDFs not
yet eliminated (GPT3LS, GPT2LS, EXPLS and GAMAPM)

and from a qualitative, visual inspection the pattern of circle
sizes looked similar for each TDF. One pattern observed by
the authors was that larger RMSE-90 values were concen-
trated in the North-East and lower values in the South and
South-West. This is a similar spatial pattern, albeit with a
larger proportional difference between the high and low val-
ues, to the pattern of mean wet period rainfall intensities and
it reflects the higher magnitude of rainfall intensity in the
North of Australia (as discussed with respect to Melbourne
and Darwin earlier). To investigate whether this clustering
could be quantified, spatial statistics were employed.

4.2.4 Final ranking

To rank the remaining four TDFs (EXP, GAMA, GPT2 and
GPT3) some additional statistics were calculated which fo-
cus on the marginal error associated with selecting one TDF
over another, rather than simply looking at the magnitude of
mCOE and RMSE90. Marginal error is defined as the dif-
ference between the best performed TDF and the TDF of in-
terest on a station-by-station basis. That is, for the ith TDF
(TDFi) at a given pluviograph station:

– marginal error in mCOE for
TDFi = mCOE[best fit] – mCOE[TDFi ]

– marginal error in RMSE90 for
TDFi = RMSE90[TDFi ] – RMSE90[best fit]

The box plots shown in Fig. 8 depict the range of each
marginal error statistic across all the pluviometer stations
with the TDFs fitted by both product moments and LS. Note
that the error for GPT3LS is zero or close to zero in both
the upper and lower charts because at most stations it gives
the best fit. Consider the mCOE results first (top of Fig. 8).
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Fig. 9. Box plots showing variation in daily mean wet period intensity, daily wet period intensity coefficient of variation, extreme intensity
IHI , and wet fraction. Boxes are arranged from highest (most southerly) to lowest latitude and are labelled with station number and latitude.
Colours show K̈oppen climate classification of the stations (see Fig. 1). All intensity statistics use 6-min data. Boxes show the inter-quartile
range, whiskers extend 1.5 times the inter-quartile range and notches show confidence limits on the median.

These results reinforce the fact that GPT3LS is the best-fit
benchmark, followed by GPT2LS and EXPLS, which exhibit
the next lowest (and very similar) marginal error magnitudes.
Turning to the lower box plot, the GPT3LS result is followed
by GPT2LS, then GAMAPM and then EXPLS.

Based on their performance as measured by the goodness-
of-fit statistics mCOE and RMSE90, we suggest that the two
best performing TDFs were GPT3 and GPT2, where GPT3
has a slightly better fit but GPT2 has the advantage of only
two parameters. In selecting between two and three param-
eter distributions there is likely a trade-off between higher
bias in the two parameter distribution (due to less flexibility)
and higher uncertainty in parameter estimation in the three
parameter distribution. The main advantage of GPT2 over
GAMA and EXP is that it outperforms GAMA and EXP at
the higher intensities. Although the GPT3 distribution pro-
vided clearly the best fit, the performance penalty for choos-
ing GPT2, exponential or gamma distributions is only small.
Therefore, it would be incorrect to interpret their ranking be-
low GPT3 as a recommendation against their utility; in point
of fact because they rely on only two parameters they are
viewed as quite attractive options.

It is worth briefly discussing the results from a more the-
oretical perspective. First the GPT3 (and by inference its
special cases) are peak-over-threshold distributions, which
matches with the analysis undertaken here, albeit with a low
threshold. Also the GPT2 and EXP are both special cases of
GPT3, with GPT2 being equivalent to GPT3 with the loca-
tion parameter set to zero and EXP being equivalent to GPT3
with κ = zero (Claps and Liao, 2003). Some inferences can

be made from the fitted parameters for GPT3. Firstκ < 0,
κ = 0 andκ > 0 implies light, normal and heavy tailed distri-
butions respectively. Light tails are not expected as they im-
ply an upper bound, which is unlikely for rainfall intensity.
We examined the results from both Melbourne and Darwin
and foundκ varied from slightly negative (−0.23 and−0.24,
respectively) to strongly positive (a few values>1 and>2
respectively) with the average being 0.11 and 0.15, respec-
tively. This indicates a slight tendency towards heavy tailed
distributions. Second the location parameter,ξ , for GPT3
can be interpreted as a threshold above which the distribu-
tion holds. We thresholded the data a 1mm/h before fitting
the distributions. For Melbourne and Darwin respectively,
we found 35 % and 7 % of fittedξ values exceeded 1mm/h
but only 1 % and 2 % exceeded 2mm/h respectively, which
indicates that our thresholding was at a reasonable value from
the perspective of our fitting of GPT3.

5 Overview of within day intensity behaviour

The TDFs are essentially representing three aspects of the
statistical distribution of within day 6-min rainfall intensity
distributions: the mean; standard deviation; and skewness.
In addition, the wet fraction parameter represents the dura-
tion of rainfall within the day exceeding the 1mm/h inten-
sity threshold. The data are discussed in terms of these stan-
dard statistical parameters rather than the GPT3 distribution
parameters for clarity of interpretation. In addition the be-
haviour of the highest intensities in the day, as characterised
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Fig. 10. Box plots showing variation in daily mean wet period intensity, daily wet period intensity, coefficient of variation, extreme intensity
IHI , and wet fraction with daily rainfall accumulation for various Köppen climate zones. Daily rainfall has been categorised into 10 mm
bins with a lower limit of 10 mm i.e. bin 1 includes daily rainfalls of 10–20 mm. Only some bins are labelled to maintain clarity and labels
represent the middle of the bin range. Note, boxes are only drawn where at least 10 days fall in the observation bins, bins are missing for the
second highest accumulation amount in some cases and some observations exist above the maximum plotted box due to this.

by IHI , are considered. To understand how these parameters
vary between rainfall stations an exploratory analysis was un-
dertaken and the existence of relationships with Köppen cli-
mate zone, annual rainfall depth, annual rain days, mean rain
day rainfall depth, elevation, and latitude considered. The re-
lationship between the within-day statistics and daily rainfall
amount was also examined.

Figure 9a shows box plots of daily mean wet period in-
tensity. Latitude and station numbers are shown on the x-
axis. Boxes are organised by latitude from south to north and
are coloured by K̈oppen climate zone. Similar figures were
drawn for each of the explanatory variables and each of the
statistics. Box order was varied both according to Köppen
class first and then the explanatory variable and also accord-
ing to the explanatory variable (as in Fig. 9). This enabled
assessment both of differences between Köppen classes and
also with each of the explanatory variables. All the examples
shown use latitude as the explanatory variable as it consis-
tently showed the strongest relationship with the rainfall be-
haviour. There are, however, significant correlations between
the explanatory variables, most notably latitude and Köppen
class, so attributing the behaviour to a particular explanatory
variable is difficult.

Figure 9a shows a trend of increasing rainfall intensity to-
wards the equator, particularly for latitudes less than 30◦ S. A
similar but noisier pattern was observed with wet day mean
rainfall depth (annual rainfall/annual rain days). By consid-
ering the groups of colours in Fig. 9a differences between
Köppen classes become evident. It is also clear from the
rapid expansion in inter-quartile range compared with the
median that the between-day variability in within-day inten-
sity distributions becomes larger towards the equator, espe-

cially below a latitude of about 30◦ S. Very similar patterns
of behaviour were evident for the within-day wet period stan-
dard deviation (not shown) of 6-min intensities and also for
IHI (Fig. 9c).

The one site that is a consistent and significant exception
to the above trends is Koombooloomba (31083). This site is
located on the Great Dividing Range near Cairns, Queens-
land. This is an area with extremely high rainfall gradients
associated with Orographic effects acting on the prevailing
easterly winds blowing off the Pacific Ocean and up the es-
carpment of the Great Dividing Range. The site is at 760 m,
and the terrain rises from near sea level (∼20 m) over the
15km east (i.e. upwind) of the site. No other sites in the data
set are subject to orographic effects even approaching this
magnitude.

Figure 9b shows that the coefficient of variation of within
day wet period 6-min intensity grows smoothly with lati-
tude, although the proportional change across the continent
is smaller than for any of the mean, standard deviation or
IHI . It can be concluded from this trend that the standard de-
viation grows more quickly than the mean towards the equa-
tor. Again, weaker patterns were observed with mean wet-
day rainfall and with K̈oppen class. The inter-quartile range
in CV remains approximately constant across all stations.
Skewness (not shown) was observed to be very consistent be-
tween stations with an inter-quartile range from about 1.1 to
2.4 and a median of 1.7. The wet fraction tends to decrease
towards the equator but has a slightly higher inter-quartile
range in the intermediate latitudes considered (Köppen zones
BWh, Bsh, Cfa and Cwa). The opposing trends in intensity
and wet period partially offset each other in terms of daily
rainfall accumulation, although there is an increasing trend
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in daily rainfall accumulation towards the equator.
Taken together the changes in within-day statistical be-

haviour of rainfall intensity probably reflect a shift in domi-
nation from frontal rainfall systems to convective rainfall sys-
tems towards the equator. The changes in inter-day variabil-
ity (inter-quartile range) of the wet fraction possibly reflect
a mix of frontal and convective systems in the intermediate
latitudes, with increasing dominance of frontal systems in
southern Australia and convective systems in northern Aus-
tralia. In interpreting these data it should be remembered
that they only reflect days with rainfall accumulations greater
than 10mm, which accounts for most of the rainfall at these
sites.

Figure 10 shows how the within day statistics of rainfall
vary with daily rainfall amount for the various K̈oppen cli-
mate classes. Individual boxes represent all days within a
10mm range in daily rainfall, beginning with the 10–20 mm
range. As daily rainfall amount increases there is an increase
in mean intensity (Fig. 10a) and also standard deviation and
skewness (not shown) for all climate zones. These combine
together to result in a proportionally greater increase in the
highest intensities observed during the rain day Fig. 10c).
The most northerly K̈oppen zones (Aw and BSh – see Fig. 1)
show the highest mean intensities and also the greatest inter-
day variability in mean intensity for a given daily rainfall ac-
cumulation, while the most southerly zones (BSk, Csa, Csb,
Cfb) show the lowest intensity and inter-day variability. This
indicates that the trends in intensity with latitude are not just
due to differing daily rainfall accumulations. The coefficient
of variation shows interesting behaviour with daily accumu-
lation, first increasing, then reaching a plateau or beginning
to decrease. This behaviour results from the changes in stan-
dard deviation, which increases with daily rainfall accumu-
lation but tends to asymptote towards constant behaviour at
large daily rainfalls. Skewness shows similar patterns to stan-
dard deviation but the changes are less pronounced. The wet
fraction (Fig. 10d) shows an almost linear growth with daily
rainfall accumulation, as does the inter-day variability (inter-
quartile range) in wet fraction. Considering both the mean
intensity and wet fraction together, it is clear that most of
the increase in daily rainfall accumulation is due to growing
rainfall duration rather than increases in intensity.

It is clear from the relationships shown in Figs. 9 and 10
that the parameter values for the intensity distributions will
change with both latitude and the amount of rainfall on a
given day. Both these factors could be incorporated into a
predictive model for the parameters that is based on location
and daily rainfall depth. However the results in Fig. 9 also
indicate that there is considerable variability between days
with similar amounts of rain at a station, which suggests it
may also be valuable to explore other predictors.

6 Summary and conclusions

This study was conducted as a precursor to a detailed investi-
gation into the question of whether within-day rainfall char-
acteristics and intensity distributions can be inferred from
daily measurements of climatic variables. Given this con-
text the study focussed primarily on identifying the most ap-
propriate theoretical distribution function(s) with which to
represent within-day rainfall intensities. In respect of this
aim, the analysis demonstrated that the three-parameter Gen-
eralised Pareto Distribution provides the best fit, followed
by the two-parameter Generalised Pareto, Exponential and
Gamma distributions. The ranking was made on the basis of
performance with respect to two objective functions: the root
mean square error of the fitted theoretical distribution com-
pared to the measured within-day pluviograph data; and the
fitted versus the mean of the measured 5 highest 6-min rain-
fall intensities across the day,IHI , where the intervals did not
have to be consecutive

In addition to these specific conclusions, the study pro-
vides a range of other more general insights into the nature
of within-day rainfall intensity data and information on fit-
ting distribution functions to it.

– Parameter Estimation Methods: The utility of fit-
ting theoretical distribution functions using L-moment
methods was found to be consistently inferior to the
standard product moment method. The best fit was
achieved by first estimating parameter values by prod-
uct moments, then improving the fit performance us-
ing a optimisation to minimise root mean square error
(Eq. 1).

– Variability of Fit Performance with Location: The im-
portance of location in fitting a theoretical distribution
function was found to be small with the same distribu-
tion (GPT3) being consistently identified as best per-
forming between sites. However, the root mean square
error statistic was noted to increase as rainfall intensity
increased.

– Implications of Distribution Function Ranking: the rel-
atively poor fit of the lognormal (2 and 3 parameter)
distribution function suggest that it should not be used
as the basis for modelling within-day rainfall patterns.

– Extreme Value Distributions: The skill of the GEV and
Weibull distributions (and to a lesser degree the Gumbel
distribution) provided fits to the within-day rainfall data
of a quality that approaches but does not exceed that
of the GPT3 distribution. Given that the extreme value
distributions provide no clear performance advantage,
coupled with the doubt over the validity of using them
to describe within-day rainfall data, it is recommended
that extreme value distributions not be used for this
purpose.
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It is important to note that in absolute terms the quality of
the calibrated TDF fits to the measured rainfall intensity data
is very high. This suggests that the TDFs are an excellent
means to summarise the distribution of within-day data (240
points) by only 2 or 3 TDF parameter values plus the wet
fraction statistic (giving a 3 or 4 parameter model).

The analysis has also provided insight into the within-day
statistical behaviour of rainfall and the inter-day variation in
this behaviour. Clear trends with latitude (increasing across
the continent towards the equator) were identified for key
within-day statistical properties including the mean, standard
deviation and coefficient of variation of wet period 6-min in-
tensity variation and maximum intensities (IHI). Mean in-
tensity, standard deviation and maximum intensities also be-
came more variable between days for locations closer to the
equator. Skewness remained approximately constant. The
duration of rainfall during rain days tended to decrease to-
wards the equator. Trends with daily rainfall accumulation
demonstrated increases in mean, standard deviation and max-
imum intensities, more complex behaviour for the coefficient
of variation and skewness and strongly increasing rainfall du-
ration. Most of the difference in daily accumulation is due to
duration rather than intensity changes. The spatial trends in
within-day rainfall behaviour are believed to be linked to a
shift in dominance of frontal and convective rainfall mecha-
nisms across the continent.
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