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We extend the method developed by Woods and Sivapalan (1999) to provide a more general analytical
framework for assessing the dependence of the catchment flood response on the space-time interactions
between rainfall, runoff generation and routing mechanisms. The analytical framework focuses on three
characteristics of the flood hydrograph: the catchment rainfall excess rate, and the first and second tem-
poral moments of the flood response. These characteristics are described by analytical relations, which
are derived with a limited number of assumptions concerning the catchment response that comply well
with many modelling approaches. The paper illustrates the development of the analytical framework and
explains the conceptual meaning of the mathematical relations by taking a simple and idealised “open-
book” catchment as a case study. It is shown how the components of the derived equations explicitly
quantify the relative importance of processes and the space-time interactions among them during flood
events. In particular, the components added to the original framework of Woods and Sivapalan (1999),
which account for storm movement and hillslope routing variability in space, are demonstrated to be
important and in some cases decisive in combining to bring about the flood response. The proposed ana-
lytical framework is not a predictive model but a tool to understand the magnitude of the components
that contribute to runoff response, similar to the components of the St. Venant equations in fluid

dynamics.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Catchment flood response is the result of numerous hydrologi-
cal processes, characterised by significant levels of spatial and tem-
poral variability. Many hydrological studies have focused on the
role of hydrological space-time variability in catchment response,
with the aim of developing a rationale for more effective catch-
ment monitoring, modelling and forecasting (e.g., Skeien et al.,
2003; Skeien and Bldschl, 2006). From a practical perspective, it
is important to know at what space-time scales catchment pro-
cesses have to be observed, which sources of variability are crucial
to understanding catchment response, and what are the effects of
space-time aggregations in model simulations. Many of the
space-time interactions between processes in catchment response
have been studied but rarely in a single comprehensive framework.
The need for generalisation is one of the aspects that distinguish
catchment hydrology from other disciplines (Bléschl, 2005) and
to which the hydrological community is directing its efforts
(Sivapalan, 2005). With what has been termed comparative hydrol-
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ogy, common methods are sought for assessing and quantifying
hydrological similarity, e.g., through comparisons between events
in a catchment or between catchments in different hydrologic re-
gimes (McDonnell and Woods, 2004; Bloschl, 2006). In this respect,
the formulation of a simple coherent framework, which describes
parsimoniously the functioning of catchment response and which
focuses on the order of magnitudes of the processes, may assist.
Such a framework may give the order of magnitude of process
components in much the same way as the terms of the St. Venant
equations can be used to provide insight into whether, e.g.,
diffusive processes are important for flood routing or not. This
assessment is conveniently summarised through the use of dimen-
sionless numbers (Wagener et al., 2007).

Woods and Sivapalan (1999) outlined such an analytical frame-
work, which quantifies the effects of flood event space-time
variability on catchment storm response using several assump-
tions concerning the space-time structure of the hydrological pat-
terns and runoff routing. This framework is generally applicable to
any simulated or observed data-set and defines the effects of
hydrological variability by a few indices of clear physical meaning.
A practical method of this type can be employed to identify the
measurement or modelling variables to be given priority over less
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important features. The paper of Woods and Sivapalan (1999)
develops and illustrates analytical results in the case where com-
plex space and time variability of both rainfall and runoff genera-
tion are included as well as hillslope and channel network
routing. It characterizes storm response with three quantities: (i)
the storm-averaged value (i.e., storm rainfall excess), (ii) the mean
runoff time (i.e., the time of the centre of mass of the runoff hyd-
rograph at a catchment outlet), and (iii) the variance of the timing
of runoff (i.e., the temporal dispersion of the runoff hydrograph).
The mean time of catchment runoff is a surrogate for the time to
peak. The storm-averaged rainfall excess rate and the variance of
runoff time, taken together, are indicative of the magnitude of
the peak runoff. For a given event duration and volume of runoff,
a sharply peaked hydrograph will have a relatively low variance
compared to a more gradually varying hydrograph (see Woods
(1997) for details).

In this paper we significantly extend the theory proposed by
Woods and Sivapalan (1999) by relaxing two of their most restric-
tive assumptions. The first is the assumption of multiplicative
space-time separability for both rainfall and runoff generation pro-
cesses. Precipitation and runoff coefficient, according to this
assumption, are neither constant in time nor uniform in space
but their spatial pattern (i.e., the relative spatial distribution of
them) does not change in time, and their temporal pattern does
not change in space. Crudely speaking, this implies that the storm
event is stationary, i.e., it does not move over the catchment. This is
quite a strong assumption indeed and, as will be shown, can be re-
laxed at the cost of introducing some new terms in the analytical
expressions. The second assumption of Woods and Sivapalan
(1999) is that the distribution of hillslope travel times is spatially
uniform, which is also relaxed in the present paper. We account
for spatial variability of the hillslope routing time throughout the
catchment, but we still assume that it is constant in time. Regard-
ing the channel routing, we retain the constant velocity assump-
tion made by Woods and Sivapalan (1999), which has been
shown to be reasonable for flood routing purposes (Pilgrim,
1976; Beven, 1979). This velocity corresponds to the celerity of a
flood wave in a stream network. Following Rinaldo et al. (1991),
we also assume that geomorphological dispersion (caused by the
distribution of travel distances in a channel network) dominates
the effects of hydrodynamic dispersion, which we neglect. The
remaining assumptions we make here (i.e., hillslope response con-
stant in time and stream velocity constant in time and space) are
common to the majority of the models applied for simulating dis-
tributed catchment response to storm events and are believed to
meet our immediate objective of providing insight into the com-
plex interactions among the key variables affecting flood response.

The catchment flood response is conceptualised into three fun-
damental stages: (i) rain falls on the catchment and either becomes
rainfall excess through the action of a runoff generation process or
is stored, (ii) rainfall excess is routed to the base of hillslopes
(where it enters the channel) and (iii) hillslope outflow is then rou-
ted along channels to the catchment outlet (where it becomes
catchment runoff). It is important to note that the framework is
not intended to be a predictive model but a tool that can quantify
the relative importance of the processes involved in flood response
and the space-time interactions between rainfall and catchment
state during flood events.

In this paper we derive the equations for the catchment rainfall
excess and the catchment runoff time in a similar way as in Woods
and Sivapalan (1999). Purely to illustrate the meaning of the terms
of the equations, we provide examples of their values for artificially
prescribed storm events affecting the stylised stream-catchment
system represented in Fig. 1. The stylised catchment is divided into
five “open-book” parts, each characterised by a different artificially
prescribed temporal evolution of the runoff coefficient and a

Fig. 1. Stylised open book catchment with a single stream.

different hillslope response time. Also, the network response time
of each part is 1 time step (e.g., 1 h). Thus the water entering the
network in part 5 needs 5 time steps (e.g., 5 h) to reach the outlet
while the water entering the network in part 1 needs 1 time step.
We consider different spatially-variable storm events of duration 6
time steps, occurring on this stylised catchment. In all cases the
catchment average rainfall volume is 100 units (e.g., 100 mm)
and the catchment average (in space and time) runoff coefficient
is equal to 0.3. Since the overall rainfall volume and runoff coeffi-
cient are the same for all events, the differences between catch-
ment responses are caused by the spatio-temporal variability of
rainfall and runoff coefficient, the spatial variability of the hillslope
routing, the distance to the outlet (channel routing) and the inter-
action between them. With this simple and idealised case study, in
which space is one-dimensional and symmetric to time, we can
easily investigate and illustrate the meaning of the analytical terms
in the equations derived below. It is important to note that the
equations are not derived to describe this simplified system but
are general and apply to any catchment configuration.

2. Catchment rainfall excess

Following Woods and Sivapalan (1999), we define the rainfall
excess R(x,y,t) [LT~'] at location (x,y) and at time t as follows:

R(X,y,t):P(X7y, t)'W(X7yvt) (1)

where P(x,y,t) [LT~!] is the local rainfall and W(x,y,t) [-] is the local
runoff coefficient, bounded between 0 and 1.

Fig. 2 represents four different events, one for each row, occur-
ring in the stylised catchment of Fig. 1. These are spatio-temporal
graphs where D(x,y) [L] denotes the distance to the outlet, » [LT™']
the flow velocity in the streams, and t [T] the time, which ranges
from O to 6. In the first event, referred hereafter as E1, the precip-
itation is uniform in space but varies in time. It increases rapidly
after the beginning of the event and has its maximum at the second
time step. The runoff coefficient, instead, varies both in space and
in time. It increases in time and has its maximum close to the
catchment outlet (D(x,y)/v between 0 and 1). The effective rainfall
given by this event is concentrated in the first two time steps,
when the rainfall is high, and close to the outlet. In the second
event (E2) the rainfall also varies both in time and space. The effec-
tive rainfall in this case is more intense and localised than in the
first example. The third rainfall event (E3) represents a moving
storm which is intense close to the outlet at the beginning of the
event and then moves upstream. In this case the runoff coefficient
does not vary so much within the catchment (in space), nor in
time. The local effective rainfall is much less intense than in the
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Fig. 2. Four events represented in spatio-temporal diagrams of precipitation (P(x,y,t) [LT~"]), runoff coefficient (W(x,y,t) [ ]) and effective rainfall (R(x,y,t) [LT']). Proceeding
per row: (E1) stationary precipitation uniform in space + stationary runoff coefficient; (E2) stationary precipitation + stationary runoff coefficient; (E3) moving
precipitation + stationary runoff coefficient; (E4) double-storm moving precipitation + moving runoff coefficient. Note that both time ¢t and distance to outlet D(x,y)/v are

expressed in temporal unit [T].

previous two cases and is more homogeneously distributed in
space and time. Also the fourth case (E4) represents a moving
storm, which begins upstream and moves downstream. It can be
considered as a double event because it is particularly intense at
the beginning, then decreases in intensity in the middle part and
increases again at the end, when reaching the lower part of the
catchment. The runoff coefficient shows a similar behavior, though
less pronounced. As a consequence the effective rainfall has also
the bimodal shape of the total rainfall, in both time and space.

In the following sections we derive the analytical equations for
the instantaneous catchment rainfall excess (the temporal evolu-
tion of the spatial average of R(x,y,t)), the storm-averaged rainfall
excess (the spatial distribution of the temporal average of R(x,y,t))
and the storm-averaged catchment rainfall excess (which is essen-
tially the runoff volume). At the same time we provide the results
for the sample case study illustrated in Fig. 2.

2.1. Instantaneous catchment rainfall excess

For a catchment with area A, the instantaneous catchment-
averaged rainfall excess rate R, ,(t) [LT~'] at time ¢ is

Ro(®) =5 [ [ Rixy.odxdy

and can be expressed in terms of the moments of rainfall P and run-
off coefficient W by averaging Eq. (1) over the catchment:

Rey(t) = Pxy(t) - Wiy (t) + covyy (P, W) (2)
where

Pyy(t) :%//AP(x,y,t)dxdy

is the time series of catchment-averaged rainfall rates [LT '],

Wiy (t) = 1 // W(x,y, t)dxdy
AJ Ja
is the time series of catchment-averaged runoff coefficient, and

covsy (W) = 1 [ [1Px..0) ~ Py OW(.3,0) — Wiy (0] ey
G)

is the time series of the spatial covariance [LT~!] of P and W. Note
that, for reasons of space, here and in the remainder of the paper
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we use the short notation P, W and R to indicate the local quantities
P(x,y,t), W(x,y,t) and R(x,y,t).

From Eq. (2) we see that the catchment-averaged rainfall excess
rate at time ¢t (Ry,(t)) depends on the catchment-averaged rainfall
rate at that time (Py,(t)) and the catchment-averaged runoff gener-
ation at the same time (W,,(t)). The catchment-averaged rainfall
excess rate also depends on the interactions of space patterns in
rainfall and runoff generation: the effect of any correlation be-
tween rainfall and runoff generation is explicit in Eq. (2) by the
term cov,,,(P,W). If there is no correlation between the space pat-
tern of the rainfall and the space pattern of the runoff generation
process at time t, then the catchment rainfall excess rate at that
time is simply the product of the catchment-averaged rainfall rate
and catchment-averaged runoff generation. Eq. (2) is a generalisa-
tion that does not rely on the separability assumption of Eq. (11) in
Woods and Sivapalan (1999).

In Fig. 3 the temporal evolution of the terms in Eq. (2) is shown
for the four events of Fig. 2. As already mentioned, the rainfall rate
is higher in the first part of the event for the first example (E1) and
in the second part for the second example (E2), while the runoff
coefficient always increases in time. For the third and fourth exam-
ples (E3 and E4) the temporal variability of Py(t) is not so pro-
nounced. For the double storm of E4 both P,(t) and W, (t) have
two maximums, at the beginning and at the end of the event.

The graph of the spatial covariances shows that there is no spa-
tial correlation between P and W in E1, which is obvious as the
rainfall is uniform in space. In E2, instead, the spatial covariance in-
creases in time and is positive meaning that, especially in the sec-
ond part of the event, it rains more ‘where’ the runoff coefficient is
high. In E3, cov,,(P,W) is instead negative for almost all the event
meaning that it rains more where the runoff coefficient is low. The
covariance is positive only at the very beginning of the event E3.
Actually the storm starts close to the outlet and moves upstream,
where the values of W are small. In E4 the covariance is positive
and very high at the beginning and at the end of the event, when
both precipitation and runoff coefficient are intense.

2.2. Storm-averaged rainfall excess

The time averaged rainfall excess R¢(x,y) [LT!] at location (x,y)
for the period [0, T,;] (where T,, is the storm duration) is given by
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and can be expressed in terms of the moments of rainfall P and run-
off coefficient W by averaging Eq. (1) over time as

Re(x,y) = Pe(x,y) - We(x,y) + cove(P, W) (4)
where

1 ™
Pt(xvy):T_ P(xvyvt)dt

m Jo

is the map of the temporally averaged rainfall rates [LT™],

1 [T
mmwzfé W(x,y, Hdt

is the map of the temporally averaged runoff coefficients, and

1

T
CMWMZEA[W%UJMMWWN%W%MM

)

is the map of the temporal covariances [LT~!] of P and W.

While in Eq. (2) runoff generation is integrated in space along
the y-axis of the graphs in Fig. 2, in Eq. (4) runoff generation is inte-
grated in time, along the x-axis of the graphs in Fig. 2. The storm-
averaged rainfall excess rate at one location (R{(x,y)) depends on
the storm-averaged rainfall rate at that location (Py(x,y)) and the
storm-averaged runoff generation at the same location (W(x,y)).
The storm-averaged rainfall excess rate also depends on the inter-
actions of temporal shapes in rainfall and runoff generation: the ef-
fect of any temporal correlation between rainfall and runoff
generation is summarised in the term cov,/P, W). If there is no cor-
relation between the temporal evolution of the rainfall and the
temporal evolution of the runoff generation process at location
(x,y), then the rainfall excess rate in that location is simply the
product of the storm-averaged rainfall rate and storm-averaged
runoff generation.

Fig. 4 represents the spatial distribution of the terms in Eq. (4)
for the four events of Fig. 2. The storm-averaged rainfall P(x,y) is
uniform in E1, higher close to the outlet in E2, higher upstream
in E3 (due to the movement of the storm) and bimodal in E4. In

Wiy (1)

Ryy(t)

Fig. 3. Temporal evolution of the terms in Eq. (2): (a) catchment-averaged rainfall rate Py(t) [LT-1]; (b) catchment-averaged runoff coefficient Wiy(t) [-]; (c) spatial
covariance of precipitation and runoff coefficient covy,(P,W) [LT"']; (d) instantaneous catchment rainfall excess Ry, (t) [LT"']. The four events of Fig. 2 are considered: (E1)
stationary precipitation uniform in space + stationary runoff coefficient; (E2) stationary precipitation + stationary runoff coefficient; (E3) moving precipitation + stationary

runoff coefficient; (E4) double-storm moving precipitation + moving runoff coefficient.
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all cases the averaged (in time) runoff coefficient is higher close to
the catchment outlet. The graph of the temporal covariances shows
that cov/{P,W) is negative in E1, in particular close to the catch-
ment outlet. This means that it rains ‘when’ the runoff coefficient
is low (in fact it rains more in the first part of the event). In E2, in-
stead, the temporal covariance is positive meaning that, especially
close to the catchment outlet, it rains when the runoff coefficient is
high (in the second part of the event). The fact that in E3 cov,(P,W)
is slightly negative is consistent with Fig. 3a, where one sees that
the rainfall event is more intense in the first part, when the runoff
coefficient is still low. In E4 the covariance is positive and very high
close to the outlet and upstream in the catchment, where both pre-
cipitation and runoff coefficient are intense.

2.3. Storm-averaged catchment rainfall excess

Eq. (2) provides estimates of rainfall excess at instants in time
while Eq. (4) provides estimates of rainfall excess locally in space:
estimates of flood volume or effective rainfall require the storm-
averaged catchment rainfall excess. The storm-averaged catch-
ment rainfall excess Ry, [LT"'] is given by

1 1
Reye =1 /0 Ry (t)dt = / /A Re(x, y)dxdy

It can be expressed in terms of the moments of rainfall P and runoff
coefficient W as

ny,t = Px‘y‘t : Wx.y,t + COVt(Px.w Wx.y) + [COVX_y(P, W)]t =

= DFxyt - Wx.y,t + Covx.y(Ph Wt) + [COVt(P7 W)]x,y (6)
where
1 Tm 1
Pai=7- [ Poltidt=y [ [ Payydxdy
Tw Jo AJ Ja
and
1 (Tm 1
W=7 [ Wadi= [ [ Wilxydxay
Tw Jo AJ Ja

are the time-averaged catchment-averaged rainfall [LT~!] and run-
off coefficient [-] values,
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COVi(Pyy, Wyy) = Tlm /0 ' [Puy(t) = Pry o] [Wiy(t) — Wiy, ]dt (7)

is the temporal covariance [LT~!] of the space-averaged P and W,

cousy (P Wo) = 5 [ [ Pay) = Procl[Wilxy) - Wasildedy - (8)

is the spatial covariance [LT~'] of the time-averaged P and W, and
the operators [-]; and [-]x, indicate temporal and spatial averages
respectively.

One should note that, in general, [covy(P,W)]; # covy (P, W;)
because the covariance is a non-linear operator, which implies that
the mean of covariances is not equal to the covariance of the
means. It can be demonstrated (via Appendix A.1) that
[covyy(P,W)]; — covy (P, W) = [cov(P — Py,,W — Wy,)]xy (or, equiv-
alently, that [cov{P,W)]xy — cov{Pyy,Wyy) = [covy (P — P,W — W))],),
so that Eq. (6) can be rewritten as

]x.y

Ryt =Pyyc- Wiy +€OVe(Pyy,Wyy) +COVyy (P, Wy) + [cOV, (P — Py W — Wy
R1 R2 R3 R4

9)

Four statistics of the rainfall and runoff generation fields influence
the storm runoff of a catchment: (R1) the product of time- and
catchment-averaged P and W; (R2) the temporal covariance of the
space-averaged P and W; (R3) the spatial covariance of the time-
averaged P and W; and (R4) a term that accounts for the spatial var-
iation in temporal covariance (or, equivalently, the temporal varia-
tion in spatial covariance). For the special case where P and W are
uncorrelated in both space and time, the time-averaged catchment
rainfall excess Ry, is just the product of the time-averaged catch-
ment rainfall P, and the time-averaged runoff generation function
Wiy, (i.e., the average fraction of the catchment that is generating
runoff). Eq. (9) is a generalisation that does not require the separa-
bility assumption of Eq. (12) in Woods and Sivapalan (1999). If this
latter is written using the notation of our paper, also Eq. (12) in
Woods and Sivapalan (1999) would have four terms, where the
fourth of them would be equal to (cov{(Pxy, Wy,) - covy (P, W)/
(Pxy,r - Wxy,) (see Appendix A.1). Thus the effect of the movement
of P .and W on the storm-averaged catchment rainfall excess can
be isolated as R4 — R2 - R3/R1.

Wt(xa y)
0.20 0.30 0.40
|

60

Rt(x’ y)
40

D(x, y)/v

Fig. 4. Spatial distribution of the terms in Eq. (4): (a) storm-averaged local rainfall P{x,y) [LT"!]; (b) storm-averaged local runoff coefficient W(x,y) [-]; (c) temporal
covariance of precipitation and runoff coefficient cov(P,W) [LT~']; (d) storm-averaged rainfall excess R/(x,y). Note that distance to outlet D(x,y)/v is expressed in temporal
unit [T]. The four events of Fig. 2 are considered: (E1) stationary precipitation uniform in space + stationary runoff coefficient; (E2) stationary precipitation + stationary runoff
coefficient; (E3) moving precipitation + stationary runoff coefficient; (E4) double-storm moving precipitation + moving runoff coefficient.
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Table 1

Terms of Eq. (9) for the storm averaged catchment rainfall excess [LT~']. The four events of Fig. 2 are considered: (E1) stationary precipitation uniform in space + stationary runoff
coefficient; (E2) stationary precipitation + stationary runoff coefficient; (E3) moving precipitation + stationary runoff coefficient; (E4) double-storm moving precipitation + mov-

ing runoff coefficient.

Components of the storm-averaged catchment rainfall excess [LT '] E1l E2 E3 E4

R1 Pyyi Wiyt 30.00 30.00 30.00 30.00

R2 COV(Pyy, Wiy) -3.50 3.39 —0.96 0.15

R3 COVyy(P, W) 0 232 -0.30 0.39

R4 [COVH(P — Py, W — Wy, )]sy 0 0.26 —0.07 3.92

R4 — R2 - R3/R1 movement 0 0 —0.08 3.92
RI+...+Ra4 Ry 26.50 35.97 28.67 34.47
Table 1 shows the terms of Eq. (9) for the four events of Fig. 2. Fiolt) = Q(t) (10)

All the examples have the same Py, and Wy, so that the differ- fa Jo Q(r)dt

ences in the storm-averaged catchment rainfall excess are due to
the spatio-temporal correlations. The temporal covariance
cov¢(Pyy, Wy, ) is negative in E1 because it rains in the first part of
the event, when the runoff coefficient is low, reducing the catch-
ment rainfall excess. In E2 instead, cov{(Px,, Wy,) is positive,
increasing the overall produced runoff. In this case also the spatial
covariance covyy (P, W;) is positive, because it rains close to the
outlet, determining a value of Ry, which is 20% higher than the
product Py, - Wy,,. In this case the spatio-temporal interaction be-
tween precipitation and runoff coefficient plays an important role
in determining the volume of the flood. In E3 the values of the
covariances are both slightly negative meaning that P and W are
slightly out-of-phase both in time and in space. For E4 the
covariances covy{(Pyy, Wy,) and covy,(P,W;) are very low but
[cov{(P — Pyy, W — Wy,)lxy is relatively high (13% of Pyy;- Wxy.r).
This is because the spatial and temporal means of P and W are
not correlated but, as can be seen in Fig. 3c and Fig. 4c, the tempo-
ral and spatial evolutions of the spatial and temporal covariances
are significant. In this case, looking at the event E4 from two per-
spectives, aggregated in time and in space, does not suffice. From
Fig. 3a and b one can say that more runoff is generated at the
beginning and at the end of the event, when both P,, and W,
are high, and from Fig. 4a and b that more runoff is generated close
to and far from the outlet, by looking at P, and W,. One cannot see,
by looking at Py, W,, P, and W; alone, what is the real joint
variability of P and W, evident in Fig. 2, because the spatial and
temporal averages mask it. This joint variability can be seen
instead looking at covy,(P,W) in Fig. 3¢ and cov{(P,W) in Fig. 4c
and is accounted for by the term R4 in Eq. (9). The row
R4 — R2 - R3/R1in Table 1 shows that the increase of runoff produc-
tion in E4 is indeed due to the movement of P and W. The term
accounts for 11% of the flood volume, which is not negligible. In
E3, where only P moves, the effect is much less evident.

3. Catchment runoff time

Having estimated in Egs. (2), (4) and (9) the roles of space and
time variability of rainfall and runoff generation in controlling
rainfall excess, we now examine the influence of hillslope and
channel network routing on the time at which the rainfall excess
exits a basin. Water that passes a catchment outlet goes through
three successive stages in our framework: (i) the generation of run-
off at a point (including waiting for the rain to fall), (ii) hillslope
routing, and (iii) channel routing. Each of these stages has an asso-
ciated “holding time”, which is conveniently treated as a random
variable (e.g., Rodriguez-Iturbe and Valdes, 1979). Catchment run-
off time itself is treated as a random variable (denoted as Tg), which
measures the time from the storm beginning until a drop of water
exits the catchment. Its distribution [T~!] is given by

where Q(t) [LT~!] is the runoff hydrograph. Since the water exiting
the catchment has passed in sequence through the three stages
mentioned above we can write

Te=T,+Ty+Ta

where T;, T, and T, are the holding times for rainfall excess, hillslope
travel and network travel [T].

In the following we derive analytically the mean and variance of
T,, which represent respectively the mean runoff time of the catch-
ment and the dispersion (the inverse of the peakedness) of the
hydrograph Q(t). The first moment of the temporal distribution of
the flow at the catchment outlet [T] is given by

_Jo T-Q(r)dt

B ATCTE an
while the variance [T?] is:

o0 2
Var(T,) = Jo [t —E(Ty))” - Q(r)dt .

Jo Q(tydt

Using the mass conservation property (see Appendix A.2) we
can write that

E(Tq) = E(Ty) + E(Tn) + E(Tn) (13)
and that
Var(T,) = Var(T,) + Var(Ty) + Var(T,) + 2Cov(T,, Ty)+

+2Cov(T;, Ty) + 2Cov(Ty, Tn) (14)

In Woods and Sivapalan (1999), given their assumptions, the
variance of T, could be written as Var(Ty) = Var(T,) + Var(Ty) +
Var(T,,), where Var(T,) contains the temporal variability and Var(T,)
contains the spatial variability. Here, without the separability
assumption and with spatially variable hillslope routing, the vari-
ance of T, also depends on the covariances between times of runoff
generation, hillslope routing and channel routing.

3.1. Mean catchment runoff time

The mean catchment runoff time E(T;) is evaluated from the
beginning of the rainfall event. Note that the commonly used
“mean catchment response time”, i.e., the delay between the cen-
troids of rainfall and runoff, can be calculated subtracting the mean
rainfall time from E(Ty). In the following we derive analytically
each term of Eq. (13). As in Section 2, we consider the stylised sin-
gle-stream catchment represented in Fig. 1 to illustrate the meth-
od. We assume that the hillslope response times t;, [T], for the five
parts of the catchment and for the four events of Fig. 2, are con-
stant in time but vary in space as shown in Fig. 5. In the first exam-
ple E1 the hillslope response time is uniform in space. In the
second and third examples E2 and E3 the upper part of the
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Fig. 5. Spatial distribution of the hillslope travel time t;, [T] for the four events of
Fig. 2: (E1) stationary precipitation uniform in space + stationary runoff coefficient;
(E2) stationary precipitation + stationary runoff coefficient; (E3) moving precipita-
tion + stationary runoff coefficient; (E4) double-storm moving precipitation + mov-
ing runoff coefficient.

catchment responds faster and the lower part slower. In the fourth
example E4, on the contrary, the upper part of the catchment re-
sponds slower and the lower part faster.

3.1.1. Mean runoff generation time

Rainfall variability can affect the catchment runoff time by both
varying the temporal distribution of the rainfall excess (T;) and the
delay due to the flow routing (T}, + T,). To show how the temporal
variability of rainfall affects the temporal distribution of rainfall
excess, we follow a similar procedure as in Woods and Sivapalan
(1999), obtaining (see Appendix A.3):

Tm . cove(T, Ryy)
Rx.y.t

Er2

ET) = 5 (15)
~—~
Erl
where T, is the duration of the rainfall event, T is time measured
since the start of the rainfall event, Ry, is given by Eq. (2) and Ry,
is given by Eq. (9). The two terms in Eq. (9) are: (Erl) the midpoint
of the rainfall event and (Er2) effects of the temporal variability in
rainfall and runoff generation processes, which is an estimate of
the time from the middle of the rain event (T,,/2) to the centroid
of the rainfall excess time series. The second term accounts for the
additional runoff time that is caused by the temporal variability in
rainfall and runoff generation processes, relative to a rain event that
generates rainfall excess at a constant rate throughout the event.
The first three rows in Table 2 show the terms of Eq. (15) for the
four events of Fig. 2. All four examples have the same storm dura-
tion which gives the same value for T;,/2. The temporal variability
term (Er2) varies from event to event. For E1 and E3 the term is

Table 2
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negative meaning that the centroid of the rainfall excess time ser-
ies occurs before the middle of the rain event, as can be seen in
Fig. 3d. Since the rainfall excess is temporally left skewed, the aver-
age rainfall excess time is smaller than that of a rain event that
generates rainfall excess at a constant rate throughout the event.
On the contrary, for E2 and E4 the temporal variability term is po-
sitive because the rainfall excess is (temporally) concentrated in
the second part of the event (see Fig. 3d).

3.1.2. Mean hillslope travel time
Following a similar reasoning (Appendix A.3) we can express
the delay of the hillslope routing as

[Covt(()lh R)}x,y + Covx‘y([eh]p Rt)
Xyt Rx‘y‘t Rx,y,t

E(Th) = [6n] (16)
where 0,(x,y,t) [T] is the delay with which the rainfall excess gen-
erated at location (x,y) and at the time-step t is routed to the chan-
nel network. The three terms in Eq. (16) are: (i) average hillslope
travel time, i.e., the average time taken for rainfall excess to travel
from a location where rainfall excess was generated to the base of
the hillslope; (ii) temporal variability term related to the hillslope
routing, which accounts for the correlation between the temporal
pattern of runoff generation and the temporal evolution of the hill-
slope response at different locations; (iii) space variability term re-
lated to the hillslope routing, which accounts for the correlation
between the spatial pattern of runoff generation and of the time-
averaged hillslope response.

Here we assume that the hillslope routing time ty(x,y) is con-
stant in time but varies in space, then:

COVyy (tn, Ry)
Rx.y.t

Eh2

E(Th) = [ta],y + (17)
——

Ehl

where the first term (Eh1) is the spatially-averaged hillslope travel
time and the second space variability term (Eh2) accounts for the
additional hillslope-routing time that is caused by the spatial vari-
ability in rainfall excess, relative to a rain event that generates rainfall
excess uniformly over the catchment. If, as in Woods and Sivapalan
(1999), we assume that the hillslope response can be modeled as a
linear reservoir with response time ty(x,y) constant in time, then
[0n(x,y,8)] = tn(x,y) and Eq. (17) is still valid. If ¢, is invariant also in
space, as in Woods and Sivapalan (1999), then E(Ty) = tp,.

Rows 4-6 in Table 2 show the terms of Eq. (17) for the four
events of Fig. 2. All four examples have the same mean hillslope
routing time [ty]x,. The spatial variability term is instead different.

Mean rainfall excess time E(T,), mean hillslope response time E(T;), mean network response time E(T,) and mean catchment runoff time E(T;) (Eq. (13)). The terms in Eqgs. (15),
(17) and (19) are also shown. All terms are expressed in temporal unit [T]. The four events of Fig. 2 are considered: (E1) stationary precipitation uniform in space + stationary
runoff coefficient; (E2) stationary precipitation + stationary runoff coefficient; (E3) moving precipitation + stationary runoff coefficient; (E4) double-storm moving precipita-

tion + moving runoff coefficient.

Components of the mean catchment runoff time [T] E1l E2 E3 E4
Runoff generation

Erl Tm/2 3.00 3.00 3.00 3.00
Er2 Temporal variability of Ry, -0.25 0.85 -0.11 0.20
Erl + Er2 E(T,) 2.75 3.85 2.89 3.20
Hillslope routing

Ehl [thlxy 4.00 4.00 4.00 4.00
Eh2 Spatial variability of t; vs. R; 0 0.76 -0.35 -0.24
Ehl + Eh2 E(Tp) 4.00 476 3.65 3.76
Channel routing

Enl Dyylv 2.50 2.50 2.50 2.50
En2 Spatial variability of D vs. R, -0.45 -0.73 0.21 -0.24
Enl + En2 E(T;,) 2.05 1.77 2.71 2.26
Erl + ...+ En2 E(T) 8.80 10.39 9.25 9.23
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In E1 it is 0 because t;, does not vary in space, as shown in Fig. 5. For
E2 and E3 the spatial variability term assumes positive and nega-
tive values respectively, even though in both cases t; is inversely
proportional to the distance to the outlet (see Fig. 5). This is be-
cause in the second example Ry(x,y) is higher close to the outlet
(as ty) while it is lower in the third example (see Fig. 4d). For E4
the hillslope travel time t, is higher far from the outlet where
the effective rainfall is lower, so that the covariance is slightly neg-
ative. In E2 the catchment runoff time is retarded because the run-
off is produced mainly where the hillslope travel time is high,
while the opposite holds for E3 and E4. In event E2, the spatial var-
iability term Eh2 causes the 16% of the mean hillslope response
time, which demonstrates the importance of accounting for the
spatial variability of hillslope routing.

3.1.3. Mean network travel time
Analogously to Eq. (16), the delay of the channel routing can be
derived as

[COVI (HH ’ R)]x.y + COVyy ( [On]p Rt)

E(Tn) = [oﬂ]x.y,t + Rx_y.t Rx_y,t

(18)
where 0,(x,y,t) [T] is the delay with which the rainfall excess gen-
erated at location (x,y) and at the time-step t, once entered the
channel network, is routed to the outlet of the catchment (see
Appendix A.3). It has been shown that for a given pattern of flow
paths across the catchment, it is always possible to find a single va-
lue of flow celerity v such as the mean travel time across the entire
catchment and therefore the catchment response time is unchanged
(Robinson et al., 1995; Saco and Kumar, 2002; D’Odorico and Rigon,
2003). Therefore, given D(x,y) as the spatial pattern of flow dis-
tances to the catchment outlet, we have that 0,(x,y) = D(x,y)/v and
Eq. (18) simplifies to

Dyy covyy(D,Ry)
+ - 7
v V-Ryys
—~—

E(T,) = (19)

Enl En2

The two terms in Eq. (19) are: (Enl) average travel time in the
channel network; (En2) space variability term related to the channel
routing, which is the distance from the centroid of the catchment to
the centroid of the rainfall excess pattern. The second term in Eq.

Table 3

(19) accounts for the additional channel-routing time that is caused
by the spatial variability in rainfall excess, relative to a rain event
that generates rainfall excess uniformly over the catchment.

Rows 7-9 in Table 2 show the terms of Eq. (19) for the four
events of Fig. 2. All four examples have the same mean channel
routing time D,/v. The spatial variability term is instead different.
In E1, E2 and E4 it is negative because the runoff is generated
mainly close to the catchment outlet, as can be seen in Fig. 4d. This
reduces the catchment runoff time in comparison to a rain event
that generates rainfall excess uniformly over the catchment. In
E3 the catchment runoff time is retarded because the runoff is pro-
duced mainly far from the catchment outlet (see Fig. 4d).

3.2. Variance of catchment runoff time

In the following we derive analytically each term of Eq. (14) and
illustrate the equations using the storm events of Fig. 2 affecting
the stylised single-stream catchment represented in Fig. 1.

3.2.1. Variance of runoff generation time
The variance of the time of rainfall excess is (see Appendix A.4):

2 2
Var(T,) = T +COVf[T Riy(T)]  cove[T,Ryy(T)] T+ CoV¢[T,Rey(T)]
\12/ Rx,y.t Rx.y‘t Rx.y,t
vrl

Vr2

(20)

The two terms in Eq. (20) are: (Vrl) variance of the rainfall excess
time series as if it was steady throughout the event (i.e., longer rain
events cause greater variance in runoff time, and therefore more
dispersed hydrographs, than short rain events, other conditions
being equal); (Vr2) additional variance in the rainfall excess time
series that is caused by the temporal variability in rainfall and run-
off generation processes, relative to a rain event that generates rain-
fall excess at a constant rate throughout the event. This second term
can be negative, signifying that the patterns of rainfall excess have
concentrated the catchment response in time. To take an extreme
example, if 99% of the rain falls in just 1 h of a 10-h event, then
T2, /12 would be a gross overestimate of the variance of time of rain-
fall excess and the term Vr2 in Eq. (20) (which accounts for the tem-
poral peakedness of rainfall) will provide the required correction.

Variance of the rainfall excess time Var(T,), variance of the hillslope response time Var(T}), variance of the network response time Var(T,,), covariances between T, T, and T, and
variance of the catchment runoff time Var(T,) (Eq. (14)). The terms in Eqs. (20), (21), (23), (24), (25) and (26) are also shown. All terms are expressed in squared temporal unit [T2].
The four events of Fig. 2 are considered: (E1) stationary precipitation uniform in space + stationary runoff coefficient; (E2) stationary precipitation + stationary runoff coefficient;
(E3) moving precipitation + stationary runoff coefficient; (E4) double-storm moving precipitation + moving runoff coefficient.

Components of variance of the catchment runoff time [T?] E1l E2 E3 E4
Runoff generation

Vrl T2,/12 3.00 3.00 3.00 3.00
Vr2 Temporal variability of Ry, -1.07 -1.42 -0.45 0.56
Vrl + Vr2 Var(T,) 1.93 1.58 2.55 3.56
Hillslope routing

Vh1 vary(ty) 0 2.39 4.48 1.79
Vh2 Spatial variability of t; vs. R, 0 —0.86 —0.82 0.31
Vh1 + Vh2 Var(Ty) 0 1.53 3.66 2.10
Channel routing

Vnl vary,(D)/v* 2.08 2.08 2.08 2.08
Vn2 Spatial variability of D vs. R -0.14 —0.46 -0.18 0.39
Vnl + Vn2 Var(T,) 1.95 1.62 1.91 2.48
Covariances

2 Crh 2Cov(T,, Tp) 0 0 -1.53 -3.34
2 Crn 2Cov(T,, Tp) 0 0 1.17 -3.52
2 Chnl 2C0Vy,(tn, D) 0 -4.26 -5.56 3.77
2 Chn2 Spatial variability of t, vs. D vs. R 0 1.31 0.80 0.70
2 (Chnl + Chn2) 2Cov(Ty, Tp) 0 -2.95 -4.76 4.47
Vrl+...+2 Chn2 Var(T,) 3.88 1.78 3.00 5.75
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The first three rows in Table 3 show the terms of Eq. (20) for the
four events of Fig. 2. All four examples have the same storm dura-
tion which gives the same value for T2 /12. The temporal variabil-
ity term Vr2 is instead different. In the first three examples (E1, E2
and E3) it is negative meaning that the shape of Ry (t) is responsi-
ble for the peakedness of the hydrograph. Not surprisingly E2, with
the most peaky instantaneous catchment rainfall excess (see
Fig. 3d), has the lowest value of Var(T,) while E3, with the smooth-
est Ry,(t), has a higher value of Var(T;). Event E4 has a positive tem-
poral variability term Vr2, due to the fact that it is a double event.
Effective rainfall is high at the beginning and at the end of the
event and low in the central part. This causes the variance in the
rainfall excess time series to be higher than the variance that a rain
event, which generates rainfall excess at a constant rate through-
out the event, would have produced.

3.2.2. Variance of hillslope travel time

If we assume that the hillslope routing time t;(x,y) is constant in
time but varies in space, then the variance of the delay of the hill-
slope routing is derived (Appendix A.4) as

COVyy[t2, Ry _ coVyy[tn,Re] COVyy[th, Re]

Rx.y.t

Var(Ty) = varyy (ty) + 2[tn]yy +
N——

Xyt Rx,y‘t

Vh1
Vh2

(21)

The two terms in Eq. (21) are: (Vh1) spatial variance of the hill-
slope routing time; (Vh2) additional variance in hillslope routing
time that is caused by the spatial variability in rainfall excess, rel-
ative to a rain event that generates rainfall excess uniformly
throughout the basin. This second term can be negative, signifying
that the patterns of rainfall excess have concentrated the catch-
ment response in space. If most of the rainfall excess was gener-
ated where the hillslope response time is much faster (or much
slower) than in the rest of the catchment, then the spatial variance
of t;, would be a poor estimate of the variance of effective hillslope
routing time and the term Vh2 of Eq. (21) (spatial covariance term)
would provide the necessary correction.

If, as in Woods and Sivapalan (1999), we were to assume that
the hillslope routing can be modeled as a linear reservoir with re-
sponse time t(x,y), the variance of the delay of the hillslope rout-
ing would be different and would read (see Appendix A.4)

2
Var(Ty) = 61, +vany(6) + 2- <2 R covoltn ),

Rx,y,t Rx,y,t
COVyy[th, Re]
Rx.y,t

In the space-invariant linear reservoir case of Woods and Siva-
palan (1999), Var(Ty,) = t2. In our examples here, we refer to Eq.
(21) meaning that the hillslope routing is instantaneous after the
delay tp, so that in the space-invariant case Var(T,) = 0.

Rows 4-6 in Table 3 show the terms of Eq. (21) for the four
events of Fig. 2. In E1 both terms are equal to 0 because ¢, is uni-
form in the catchment. E3 has the highest value of vary(t;), which
can be derived from Fig. 5 and implies a more dispersed hydro-
graph. In both E2 and E3 the spatial variability term Vh2 is nega-
tive, meaning the spatial variability in rainfall excess causes a
smaller variance of the hydrograph if compared to a rain event that
generates rainfall excess uniformly throughout the basin. In E2 the
runoff is mainly produced on slow responding hillslopes, while in
E3 it is mainly produced on fast responding hillslopes. In both
cases this has the effect of concentrating runoff even if, as shown
in Table 2, runoff is delayed for E2 and advanced for E3, compared
to a rain event that generates rainfall excess uniformly throughout
the basin. Once more, E4 is distinctive, having a positive spatial
variability term Vh2. In this case, R(x,y) is bimodal while t,(x,y)

< | 2tnlyy + (22)

is monotonic (as T in Eq. (20)). Runoff is produced more on fast
and slow responding hillslopes and less on hillslopes with average
tp, thus determining a variance in hillslope routing time bigger
than the variance that would result from a rain event that gener-
ates rainfall excess uniformly throughout the basin.

3.2.3. Variance of network travel time
The variance of the delay of the channel routing is

_ varyy (D) | covyy[D?,R] covey[D,R]

2 Dy, covyy[D,R]
v? V2Ryy

URXJ,I v URxAy‘t

Var(T,)

Vnl Vn2

(23)

The two terms in Eq. (23) are: (Vn1) variance of travel time in the
channel network, thus a catchment with a wide range of flow dis-
tances to the outlet is predicted to have a large variance in runoff
time (see Rinaldo et al., 1991); (Vn2) additional variance in chan-
nel-routing time that is caused by the spatial variability in rainfall
excess, relative to a rain event that generates rainfall excess uni-
formly throughout the basin. This second term can be negative, sig-
nifying that the patterns of rainfall excess have concentrated the
catchment response in space. Again, to take an extreme example,
if 99% of the rainfall excess was generated within a single 1-h iso-
chrone, then the variance of flow distance would be a poor estimate
of the variance of effective flow distance and the term Vn2 of Eq. (23)
(flow distance covariance) would provide the necessary correction.

Rows 7-9in Table 3 show the terms of Eq. (23) for the four events
of Fig. 2. All four examples have the same variance for the channel
routing time var,,(D)/¢?. The spatial variability term Vn2 varies be-
tween events. In E1, E2 and E3 it is negative meaning that the spatial
pattern of Ry ,(t) is responsible for the hydrograph being more peaky
relative to a rain event that generates rainfall excess uniformly
throughout the basin. Not surprisingly E2, where the rainfall excess
is more concentrated in space (see Fig. 4d), has the lowest value of
Var(T,) while E1 and E3, with similarly smoother R,(x,y), have higher
Var(T,,). Once again, E4 is distinctive, having a positive spatial vari-
ability term. The fourth example is a double-peaked storm both in
time and space. The fact that R(x,y) is bimodal, with high values
close and far from the outlet, causes a variance in channel routing
time bigger than the variance that would result from a rain event
that generates rainfall excess uniformly throughout the basin.

3.2.4. Covariances of runoff generation time with hillslope and
network travel times

The additional terms Cov(T;, Ty) and Cov(T;, T,) in Eq. (14) are the
covariance terms that arise from the relaxation of the hypothesis of
stationarity of the produced runoff over the catchment (the separa-
bility assumption in Woods and Sivapalan, 1999). The covariance
between rainfall excess time and hillslope-routing time Cov(T;, Ty,)
accounts for the additional variance of the runoff time because of
the correlation between time of runoff production and the spatial
variability of hillslope response time. As derived in Appendix A.5,
this covariance can be written as:

covi[T, covyy(ty,R)] covi(T,Ryy) COVyy(tn,Rr)
Rx.y.t Rx‘y.t Rxly‘t

Crh

Cov(T,,Ty) =

(24)

The first term represents how much the covariance between run-
off generation and hillslope routing time varies in time. This could be
non-zero also without movement of the storm, just because of inde-
pendent spatial and temporal variabilities. The second term in Eq.
(24) removes the amount of correlation between runoff generation
and hillslope routing time that is due to spatial and temporal
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variabilities considered independently. As a result, the difference of
the two terms is the covariance of time, runoff generation and hill-
slope response time due to the movement of runoff generation only.

Analogously, the covariance between rainfall excess time and
network routing time Cov(T;,T,,), which accounts for the additional
variance of the runoff time because of the correlation between
time runoff production and the time in the channel network, can
be written as:

_ cov¢[T, covyy (D, R)] B cov(T,Rxy) covyxy(D,R;)
COV(T” Tn) B va‘y‘t Rx,y‘t Z/Rx.y.t (25)

Crn

The first term represents how much the correlation between
runoff generation and distance to the outlet varies in time. It is a
measure of the spatio-temporal variability due to correlation of
runoff generation, distance to the outlet and time. The second term
removes the amount of correlation between runoff generation and
distance to the outlet that is due to spatial and temporal variabil-
ities considered independently. As a result the difference of the
two terms is the covariance of runoff generation, distance to the
outlet and time due to the movement of runoff generation only.

In Rows 10-11 in Table 3 the values of Cov(T,,T;) and Cov(T,,T},)
are shown for the four events of Fig. 2. The first two events are sta-
tionary and, therefore, have the two terms equal to 0. In the third
example Cov(T,,Ty) is negative while Cov(T,,T,) is positive. This is
the effect of the rainfall moving upstream. From the point of view
of the network routing, it is obvious that a storm moving from the
catchment outlet upstream would produce a smoother hydrograph
than in the opposite case (smoother also than a similar event, which
produces runoff in the same parts of the catchment, with a similar
overall temporal evolution, but which does not move). The peaked-
ness of the hydrographis instead increased because the rainfall starts
where the hillslope routing is slow and moves towards the fast
responding hillslopes, thus determining a negative Cov(T;,Ty). For
E4, instead, both the covariance terms are highly negative: Cov(T,,T;,)
is negative because the storm moves towards the catchment outlet,
thus concentrating the hydrograph in time; Cov(T,, Ty,) is negative be-
cause the storm moves towards fast responding hillslopes.

3.2.5. Covariance between hillslope and network travel times

The last term Cov(Tp, T,) of Eq. (14) arises from the relaxation of
constant hillslope routing in the catchment, as made by Woods and
Sivapalan (1999). The covariance between hillslope-routing time
and channel-routing time accounts for the additional variance of
the runoff time because of the spatial correlation between hillslope
response time and the time in the channel network. As derived in
Appendix A.5, this covariance can be written as:

_ COVyy(th,D) N COVyy(th - D, Ry) covyy(D,Ry) n

Cov(Th, Tn) ” Reye Il
Chnl Chn2 -
Dyy covyy(ty,R:) covyy(D,R;) covyy(tn,R)
v Ryye a URyy ' Ryye

Chn2

(26)

The first term Chnl is the spatial covariance between hillslope
routing time and distance to the outlet, which can be considered
as a characteristic of the catchment structure: it is positive if the
hillslopes respond fast close to the outlet and slow far from the
outlet, smoothing the catchment response if the rainfall excess is
uniform; if the hillslopes respond fast far from the outlet and slow
close to it, the catchment response to uniform rainfall excess is
concentrated in time and the term is negative. The spatial variabil-
ity of the rainfall excess is accounted for in the second term Chn2,

which measures the joint correlation of ty(x,y), D(x,y) and R¢(x.y).
These terms describe how the rainfall excess is spatially organised
with respect to the hillslope and network spatial structure.

In Rows 12-14 of Table 3 the values of Cov(Tp, T,,) are shown for
the four events of Fig. 2. Thus, the first term is event independent,
while the other terms are event dependent. For E1, obviously, the
term is equal to O because tj is constant in space. For E2, E3 and
E4, the event dependent terms explain as whole from 15% to 30%
of the total Cov(Ty,T,,), whose sign is essentially controlled by the
first term, event independent. In E2 and E3 the covariance Chnl
is negative because t; and D are negatively correlated. The term
Chn2 is significant in E2 and has a positive value because runoff
is produced mainly close to the outlet, so that the negative corre-
lation between t, and D is less effective than in the case of a rain
event that generates rainfall excess uniformly throughout the ba-
sin. Therefore |Cov(Ty,Ty)| < |cOVxy(tp,D/?)|. In E4, instead, both
terms are positive because t, and D are positively correlated and
runoff is generated both upstream (where t; is high) and down-
stream (where t;, is low).

4. Discussion

We propose a general analytical framework for exploring the
dependence of the catchment flood event response characteristics
on the spatial and temporal variability of the rainfall patterns, run-
off generation and runoff routing across the hillslope and channel
network. The catchment response characteristics analysed are:
the average rainfall excess rate (Eq. (9)), which multiplied by the
storm duration is the flood volume; the mean catchment runoff
time (Eq. (13)), which is a surrogate for the time to peak; the var-
iance of runoff time (Eq. (14)), which together with the storm-
averaged catchment rainfall excess is indicative of the magnitude
of the peak runoff. Of course one could run a model which has
the same assumptions of the framework and calculate the flood
hydrograph in a straightforward way. For example, Fig. 6 shows
the hydrographs produced by the four events of Fig. 2. Egs. (9),
(13) and (14) give the second order moments that approximate
these hydrographs. If one were interested in fully representing
the hydrographs, one would also have to consider the higher order
moments. However the most important hydrological characteris-
tics are indeed captured by the framework. From Table 1 one can
see that E2 is the event with maximum volume while E1 is the
smallest. From Table 2 one sees that the peak in E2 is more delayed
than the others and from Table 3 that E2 has the highest peak
while E4 produces the most dispersed hydrograph. All this infor-
mation is explicitly shown in Fig. 6. What Fig. 6 does not tell but
Tables 1, 2 and 3 do, is the quantitative contribution of the differ-
ent processes in determining volume, position and spread of the
hydrographs. In the tables and in the equations, each of the three

Fig. 6. Hydrographs Q(t) [LT~'] produced by the four events of Fig. 2. The analytical
framework proposed here gives the moments of these hydrographs and the
magnitude of the process components.
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catchment response characteristics (runoff generation, hillslope
and channel routing) is disaggregated in two classes of compo-
nents: the first explained by the catchment average values, the
second explained by the spatial and temporal variability of the
key variables. This second class of components is expressed by a
set of spatial and temporal covariances. Thus, the effect of the spa-
tial and temporal variability is described by the dynamic interac-
tion in space and time among the key variables.

The average rainfall excess rate is expressed by the product of
the mean rainfall with the mean runoff coefficient plus a set of
three covariances describing how the rainfall varies in time and
space with respect to the dynamic evolution of the runoff coeffi-
cient. In the examples, E2 has the biggest volume because it rains
when and where the runoff coefficient is high (see the terms R2
and R3 in Table 1). In E1, instead, rainfall and runoff coefficient
are negatively correlated in time. In E4, finally, what is important
is the movement of the storm and of the runoff coefficient.

The magnitude of the covariance terms in Table 1 are signifi-
cantly dependent on the dominant runoff generation mechanisms.
If infiltration excess is dominant, the runoff coefficient is signifi-
cantly affected by local rainfall intensity and we should expect a
high positive temporal covariance between rainfall and runoff
coefficient (terms R2 and R4 in Eq. (9)). The spatial structure of
the time-average runoff coefficient should be strongly dependent
on the spatial pattern of rainfall intensity above higher threshold
values and on the local properties affecting infiltration excess (soil
properties, vegetation, antecedent conditions, etc.). For rainfall
events with high intensity for the entire rainfall event and across
the entire catchment, with uniform properties, all covariance terms
(R2 to R4) are expected to be positive.

If saturation excess is dominant, the space-time evolution of the
runoff coefficient is mainly controlled by catchment features at lar-
ger spatial scales. When considering many events, on average, R3
and R4 are expected to be null, unless rainfall is structured accord-
ing to the function controlling the spatial distribution of the runoff
coefficient. This corresponds to the case reported in Winchell et al.
(1998), who explored the sensitivity of the simulated runoff to the
spatial and temporal variability of the rainfall by running some
numerical experiments with TOPMODEL. These results can be ex-
plained by the fact that TOPMODEL defines the patterns of the run-
off coefficient by scaling its average value by a function of the
wetness index, thus R3 and R4 can be significant only if rainfall
shows some correlation with the wetness index. Previous studies
have shown that the effects of spatial variability of rainfall on the
storm flow volume can be large when infiltration excess is the dom-
inant runoff generation mechanism (Krajewski et al., 1991; Loague,
1988; Michaud and Sorooshian, 1994; Ogden and Julien, 1994;
Winchell et al., 1998), while they are negligible when saturation ex-
cess is dominant (Loague, 1988; Obled et al., 1994; Shah et al,,
1996a,b; Winchell et al., 1998). Within the proposed general frame-
work, these results can be interpreted by evaluating the space-time
covariance between the runoff coefficient and the rainfall patterns.

In our framework, the first and the second temporal moments
of the hydrograph are expressed by event and catchment charac-
teristic time-scales, considered independently, plus a set of spatial
and temporal covariances representing how the generated rainfall
excess is spatially and temporally structured with respect to the
spatial organisation of the contributing hillslopes and network,
each characterised by a specific travel time. We explicitly describe
how the first and second temporal moments of the hydrograph can
be affected by the spatial distribution of the runoff generation. This
finding is consistent with Naden (1992), who suggested weighting
the flow distance with the effective rainfall in order to incorporate
the effect of the spatial variability into a unit hydrograph flood
type estimation procedure. The analytical expressions also explic-
itly describe the role of the correlation between the rainfall excess

patterns and the spatial structure of the hillslope and river net-
work. For example, despite the fact that it mainly rains close to
the catchment outlet (term En2 in Table 2), event E2 gives the most
delayed peak because the main rainfall burst occurs temporally in
the second part of the event and where the hillslope routing is slow
(terms Er2 and Eh2). The greater peakedness of the hydrograph in
E2 follows from the temporal peakedness of runoff generation
(term Vr2 in Table 3), from the concentration in space (which
determines terms Vh2 and Vn2) and because hillslope routing and
channel routing are negatively correlated in space (term 2 Chnl).
Similar aspects have been explored by Nicétina et al. (2008) by
using a random space sampling strategy, to shed lights into the
influence exerted by space-time rainfall patterns on hydrograph
shapes as simulated with a distributed model. Terms similar to
En2 and Vn2 were used by Sangati et al. (2009) in the analysis of
the effect of coarsening the spatial rainfall variability on flood
modelling. Also, in a regional analysis of storm hydrographs, Di
Lazzaro (2009) has adopted analytical expressions to determine
the first and second moment of the Width Function based Instan-
taneous Unit Hydrograph taking into account the statistical depen-
dence between hillslope and channel lengths.

The effect of storm motion on flood peaks has been studied in
a model-based investigation by Ogden et al. (1995), who showed
how the maximum enhancement of flood peak occurs when the
storm motion is downslope and at the same speed as the flood
wave. In our more general analytical framework, we express this
result as a direct consequence of the negative covariance between
the runoff generation time and the flow distance (Cov(T,,T,) < 0),
thus reducing the temporal variance of catchment runoff time
(Eqg. (25)), i.e., concentrating the hydrograph in time and increas-
ing the magnitude of the peak. This effect is evident in event E4
(term 2 Crn in Table 3). Our framework also accounts for the
interaction of storm motion with the spatial distribution of hill-
slopes through term 2 Crh. In event E4 this effect is as important
as the correlation with channel flow distance and the sum of 2
Crh and 2 Crn has the effect of doubling the peak (i.e., without
storm motion Var(T,;) would have been of the order of 12 instead
of 6). In E3, instead, the effect of storm motion does not influence
the spread of the hydrograph because 2 Crh and 2 Crn compensate
each other.

Although this paper removes some significant limitations of the
Woods and Sivapalan (1999) analytical framework, so that moving
storms and spatially variable hillslope response are now included,
there are still a number of assumptions constraining the underlying
theory and its application. Run-on infiltration processes are ne-
glected, i.e., rainfall excess is routed to the outlet without any infil-
tration loss along its paths to the outlet. This hypothesis is generally
applicable at the event scale during wetter periods, when the con-
nectivity of the soil moisture patterns is sufficiently developed
(Western et al., 2001). The hillslope is taken as elemental routing
unit of the catchment, through which rainfall excess is routed to
the catchment outlet according to an independent, but time-varying
delay. Channel velocity is assumed constant in space and time.
These assumptions are consistent with the majority of the hydro-
logical models currently applied for predicting catchment flood re-
sponse. Ultimately, we believe that it is not worth relaxing them,
given the aim of easily interpreting and comparing the process com-
ponents of flood response. The analytical framework proposed in
this paper is not intended to be a predictive model but a tool to
explicitly quantify the space-time interactions between rainfall
and catchment state during flood events. It should be noted that
we are interested in the event scale, therefore it is important to de-
fine what flood events are. If one extends the time period of the anal-
ysis so that it includes a large number of zero rainfall intervals, then
the framework is no longer relevant because it only addresses single
event flood response, but the hydrological phenomena of most
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interest when one has mostly zero rainfall are not floods, but other
processes, such as evaporation and gradual subsurface flow.

The theoretical value of the framework is in its coherence and
simplicity. The proposed equations parsimoniously give the order
of magnitude of process involved in catchment flood response in
a similar way as in fluid dynamics the St. Venant equations can
be used to provide insight into the open channel flow motion.
We believe that the framework developed here has also an impor-
tant practical value. Despite the apparently complex analytical
structure, it can be easily applied, once the space-time structure
of the key variables is provided. It is important to note that pat-
terns of runoff coefficient are required for applying this analytical
framework to real catchments. Since direct observations of the
runoff coefficient is not possible, a distributed hydrological model
is required for retrieving this quantity from other sources of obser-
vations. Alternatively, one could retrieve soil moisture from satel-
lite data as a surrogate for the runoff coefficient (Wagner et al.,
2007, 2008). Thus when interpreting results, it is important to keep
in mind that they are conditioned to the underlying model and/or
measurement uncertainty. On the other hand, with this analytical
framework, outcomes of different models or event characteristics
can be more effectively compared and understood.

The framework can be employed for exploring the effects of dif-
ferent types of rainfall events on the generated floods, thus providing
hints on the type of monitoring systems required according to the
dominant meteorological conditions in flood seasons. Some exam-
ples of flood types are presented in Viglione et al. (2010). On the
other hand, it can be used to explore the effects of modelling assump-
tions concerning the actual space-time variability of the simulated
variables, thus providing hints for a correct interpretation of the sim-
ulated results, for the identification of the actual source of model
uncertainty as well as for choosing an effective level of model com-
plexity. For example, from a modelling perspective, the last two
covariance terms R3and R4 in Eq. (9) describe the fraction of the rain-
fall excess that could be simulated only by employing a distributed
model, which explicitly describes the space variability of rainfall
and runoff coefficient. A lumped model could compensate for the er-
ror due to the spatial averaging by introducing a bias in the simulated
average runoff coefficient Wy (t). The covariance terms, as they
potentially assume different values for events with similar spatial
averages, are a source of apparent system non-stationarity when
the catchment response is simulated with a lumped model.

The framework can be effectively employed for exploring scale
effects in catchment flood response (Woods and Sivapalan, 1999).
With a change of catchment spatial scale (e.g., from 10 km? to
1000 km?), some relevant factors are reflected in our analytical
framework: for example, the importance of channel network travel
times generally increases relative to both hillslope travel times,
and storm durations; we also expect that the spatial variability
terms would become more important because of the proportion
of the catchment affected by rainfall (so it will be important where
in the catchment does it rain) and because of the variety of geo-
graphic settings (big catchments have heterogeneous landscapes
and, in many cases, can be divided in a mountainous part upstream
and a plain downstream).

The framework can be used to give insight in what are the ef-
fects of upscaling and downscaling in modelling (Bloschl and Siva-
palan, 1995). Hydrological models represent the catchment storm
response by disaggregating (downscaling, interpolating) or aggre-
gating (averaging) field observations, hydrological processes and
catchment properties at model (support) scales. Model scales are
generally chosen on the basis of the model structure, data avail-
ability and simulation objectives. Small model scales imply larger
model complexity, thus larger computational effort and larger
amounts of data required for model parameterisation and valida-
tion (Grayson and Bloschl, 2000). Several field and modelling stud-

ies have suggested that only parts of the complete space and time
variability appear in the catchment response and that dominant
sources of variability can be identified (Seyfried and Wilcox,
1995; Wood, 1995; Bldschl et al.,, 1995; Woods and Sivapalan,
1999). Other studies showed evidence that the level of model com-
plexity should depend on the dominant processes controlling the
catchment response, such as the type of runoff generation mecha-
nism, and the relative timescales of hillslope and network routing
(e.g., Nicétina et al., 2008; Atkinson et al., 2002; Jothityangkoon
et al., 2001). These studies evaluate the effect of space-time vari-
ability by model sensitivity analyses. The results of these studies
allow only some general qualitative considerations. More general
quantitative conclusions can be draw by employing the framework
developed here, since it is not affected by the specific characteris-
tics of the experimental context and the specific model structure.

5. Conclusions

In this paper, we extend the method developed by Woods and
Sivapalan (1999) to provide a more general analytical framework
for assessing the dependence of the catchment flood response on
the space-time interactions between rainfall, runoff generation
and routing mechanisms. The analytical framework allows us to
quantify explicitly the relative importance of processes and the
space-time interactions among them during flood events. Similarly
to the St. Venant equations in fluid dynamics, the components of
the equations derived here give the order of magnitude with which
processes interacts. The additional components added to the origi-
nal framework of Woods and Sivapalan (1999), i.e., moving storm
and hillslope routing variable in space, are demonstrated here to
be important and in some cases, in fact, the most important com-
ponents of flood response.

Acknowledgments

Financial support from the EC (Project No. 037024, HYDRATE)
and from the FWF Project P18993-N10 are acknowledged.

Appendix A
A.1. Last term in Eq. (9)

In general, [covyy(P, W)]; # covy (P, W;) because the covariance
is a non-linear operator, which implies that the mean of covari-

ances is not equal to the covariance of the mean. The difference be-
tween the two terms is:

[COny(P W)]; — covyy (P, Wy) =
T Ta /T{ // (*.y,t) )HW(XJ’I)*Wx_y(t)]dxdy}dlur

—// [Pe(X,Y) — Pry ] [We(x,y) — WyyJdxdy =

A//{Tm /Tm [P(x,y,t) — Pey ()] W(x,y,t) —

Tgn [/OT’"[ (%,5,6) = Pyy(t )]dt] {/OT,” W(x,y,t) — Wx‘y(t)]dt] }dxdy =

— 4 [ [ AB(P = Po] - W = W) - E(P — Py)) - EQW - Wi, ) ey -

:% / /A Covi ([P = Py, W — Wy )dxdy = [cove (P — Pyy, W — Wi )],

Wy (t)dt+

Analogously,

[cove (P, W)],, — cOV(Pxy, Wyy) = [cOVyy (P — Pr, W — W],

and, consequently,

[cov(P — Pyy, W — Wy,) [covyy (P — P:, W — W))],

]xy
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This term is also present under the separability assumption in
Woods and Sivapalan (1999). If this assumption holds (stationary
rainfall and runoff coefficient), then

Pyy() Wiy ()

Covyy(P,W) = Poye -

- COVyy (Pr, W)

so that

CoV¢(Pyy, Wyy) - covyy (Pe, Wy)

COVyy (P, W
[ x.y( )]t Px,y,t . Wx.y.t

— COVyy (P, Wy) =

Note that in example E2 the separability assumption holds and
R4 = R2 - R3/R1 (see Table 1). The effect of movement of storm (and
runoff coefficient) on the storm-averaged catchment rainfall excess
can be written as

CoV;(Pyy, Wyy) - covyy (Pr, Wy)

[COVi(P — Pyy, W — Wiy )], — Py Wiye

analogously to Eqgs. (24) and (25).
A2. From Eq. (11) to Egs. (13) and (14)

Within a general runoff model, the rainfall excess generated at
location (x,y) and at the time-step t is routed to the channel net-
work with a delay 0n(x,y,t) [T] and to the outlet with a delay

0n(x,y,t) [T]. From Eq. (11) and using the mass conservation prop-
erty we can write that

Tq)- /Ox Q(t)dt =
q).//A [ OTmR(x.,y,t)dt}dxdy:

Tm
://[ ROGY,E) - (€ -+ Oh(X,9,€) + 0n(x,y. £)d] dxy
A 0

Given the following definitions of the first moment of the tem-
poral distribution of the rainfall excess

I I3 [Jo™ € Rix,y, tydt] dxdy

E(T) = (A1)
I/ [ R(x,y, )dt]dxdy
the first temporal moment of the hillslope routing distribution
va ) eh(x7y7t)dt dxdy
E(Ty) = Ihl | (A2)
J Iy [ o Rix. . tde | dxdy
and the first temporal moment of the channel routing distribution
J I [Jo RGx.y.0) - 0u(x.y, )t | dxdly
E(T,) = (A3)
I [ R(x,y, )dt]dxdy

Eq. (13) follows.
As for the variance

Var(T,) = E(T?) — [E(T,))?

where

BT [ Q-

- / /A [/OT R(X,Y,t) - (t+ 0h(x,¥,1) + On(x,y, 1))*dt | dxdy

simplifies to

E(T?) = E(T}) + E(T}) + E(T;) + 2E(T Ty) + 2E(T,Ty) + 2E(T, Ty)

while

[E(Tq))* = [E(T,)]* + [E(Th))> + [E(Tw)]* + 2E(T,)E(Tp) + 2E(T,)E(Tn)+

+2E(Tw)E(Tn)
Subtracting [E(Tq)]2 from E(Tz) one obtains Eq. (14).

A.3. Towards Egs. (15), (16) and (18)

For the average time of rainfall excess, given Eq. (A
write that

E(T,)-//A { OTM R(x,y, t)dr}dxdy:A./ont.RX,y(t)dt:

— AT, - [T-Ryy),

.1), we can

so that
E(T;) - ATm - Reye = AT - ([T]; - [Rey]; + €OVe(T, Ryy))

which corresponds to Eq. (15).
For the delay of the hillslope routing, given Eq. (A.2), we can
write that

em- [ [ | OTm Rxy. | dedy -
- //‘ { O’Tm R(x,y,t) - O4(x,y, t)dt} dxdy
so that
FTn) AT Ry =T //A ([0n], - Re + cove(0n, R)) dx dy

and
E(Ty) ATy - Reyr = AT - ([Oh]xy,t “Ryy: + [coVe(0n, R)]
+ €OVyy ([0n];, Re))

x.y+

which corresponds to Eq. (16). The same reasoning can be used to
derive Eq. (18) from Eq. (A.3).

A.4. Towards Egs. (20)-(23)

The variance of the time of rainfall excess is

Var(T,) = E(T}) — [E(T,)* =

covi[T* Ry (T)] ~ [covi[T, Ry (T)]])?
Ry ED] [ Reye ]

_2E(T) - coV¢[T, Rey(T)] _

Xyt
CoV([T?, Ryy(T)]
Rx,y.t
B cov¢[T, Ryy(T)] 2E(T) + covy [T,Rx.y(T)}]

Xyt Xyt

=E(T?) + +

= Var(T) + +

which corresponds to Eq. (20) if one considers that T, the time
during the rain event, is uniformly distributed between [0,T;]
with distribution f{(t)=1/T,, and therefore has variance equal to
T2 /12. The same reasoning can be used to derive Egs. (21) and
(23).

If, as in Woods and Sivapalan (1999), we assume that the hill-
slope routing can be modeled as a linear reservoir with response
time ty(x,y), since

00 TZ T 5
/0 o exp (— E)dr =2t;

then
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Var(Ty) = E(T}) — [E(Tw)]* =
s Ccovyy (2t2,R;)
hixy Rx.y.t

COVyy (th, Rr)

o2 L [covey(th,R)T?
[th]x.y+ |: ny,t +

= 2[tnl,y Reye

which corresponds to Eq. (22).

A.5. Towards Egs. (24)-(26)

The covariance between T, and T, is

Cov(T,, Tu) = E(Tr - Tu) ~ E(Ty) - E(Ty)
where
BT T, Ji [ @ 0n)-Rxy. e axay

j[A[ TnR(x,y, )dt]dxdy

1 T Dx_y
’Tm-Rx_y_t/o t'{ p RO+

-1 "Tm "Tm
:m{/o £ DyyReydt + /0 t-covx_y(D,R)dt}:

1
V-Reyi

1 Tm
:UTW{DX}/[Z ny[+COVt(T ny):|

covyy(D,R)] ..
v de=

{Dxy[T-Ryyl;+[T-covyy(D,R)], } =

+T7"' [covyy(D,R)], +cov;[T,covyy(D,R)] }

Subtracting the product of Egs. (15) and (19), one finds that

Cov(T,, T,) = <[C0Vx.y(D, R,

B covyy (D, Ry) n
2 URyy ¢

VRxy

cov[T, covyy(D,R)]  cove(T,Ryy)
URyy. Ruy.t
covyy(D,Ry) (A4)
URxyt '

Since D is constant in time, then [covy (D, R)]; = covy(D,R;) and,
since T is constant in space, [cov{(T,R)]x, = cov(T,Ry,), obtaining
Eq. (25). This simplification would not be possible if v were vari-
able in time. Another formulation for Cov(T,, T,;) can be analogously
derived in which the term cov,|T,covky(D,R)] is replaced by
covy,[D,cov¢{D,R)].

The covariance between T, and T, expressed by Eq. (24) is de-
rived analogously.

As for the last term in Eq. (14), Cov(T, T,
calculating

), one proceed as before

S 0[5 - 00)-R(x.y, )at]dxdy
I [jom (xy.t dt}dxdy

1
= ty-D-R
R y[[h tey

E(Ty-Ta) =

X,

:W{[th Dy -Reye +COVy (ty -D,Rt)} -
Ryyt

= R { [thlxy - Dry Ry + COViy (th, D) - Reye + COVxy (tn ~D,R,)}
Rxyt

subtracting the product of Egs. (17) and (19), and obtaining Eq. (26).
Alternative formulations for Cov(Ty,T,) are:

COVyy(tn, D -Re)  Dyy cOVxy(th,Re)

Cov(Ty,T,) =
(T, Tn) URyy ¢ v Ryye
_ CoVyy(D,Ry) covyy(tn,Re)
URyy Ryy.e
and
CoVyy (D, by - Ry) covyy(D,Ry)
Cov(Ty, Ty) = — [ta], +
( h ") Z/Rx,y,t [ h] Yy Z/ny,[
_ coVyy(D,Re)  covyy(tn, Re)
URyy¢ Ryy.e
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