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[1] An evaluation is undertaken of the accuracy with which the Joint UK Land
Environment Simulator (JULES) can simulate snow cover and depth when driven using
data from the Hadley Centre regional climate model. The JULES model provides the
facility to diagnose the thermal and hydrological state of the land surface and soil given
time‐varying inputs of air temperature, wind speed, humidity, shortwave and longwave
radiation, and precipitation. The observed data set used in this study consists of daily snow
depths measurements at 601 climate stations with more than 15 years of observations
in the period from January 1976 to December 2000. In this study, the JULES model
was driven using two data sets at 25 km horizontal resolution: one produced using the
U. K. Met Office Hadley Centre regional climate model HadRM3‐P (RCM), the other in
which regional climate model precipitation and air temperature data were replaced with
observed values (RCM+PT). The results indicate good agreement between the land surface
model simulations and observations of snow cover at climate stations. The median snow
cover accuracy indices for all 601 stations were 89% and 91% for the RCM and the
combined RCM+PT driving data sets, respectively, with only a small interannual
variation. In contrast, the differences between modeled and measured snow depth were
much larger. The median values of mean snow depth bias were similar, −0.4 cm for
RCM and −1.2 cm for RCM+PT; however, the RCM simulation was found to
overestimate the observed snow depth at more than 25% of climate stations.
The extent to which the results from RCM‐driven simulations match observed data is
strongly related to the accuracy of the RCM precipitation. The large overestimation has
significant impact on the snow mass simulation and the assessment of extreme values in
the mountains. We note that even if snow cover can be simulated with a high degree
of accuracy, this should not imply a similarly high degree of accuracy in the simulation of
snow depth. Model performance was poorest in regions of significant topographic
heterogeneity and our findings suggest that the most promising additional model
developments should be directed toward computationally efficient representations
of subgrid topography.
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1. Introduction

[2] Accurate specification of snow cover and depth in land
surface models is essential not only for accurate simulation of
global climate [e.g., Barnett et al., 1989; Randall et al., 2007],
but also because snow cover and depth are increasingly used

to initialize land surface models in hydrological and weather
forecasting models [Walsh and Ross, 1988], and to provide
better information for water and land management, especially
under scenarios of climate, land use, and other environmental
change [Hall, 2004]. The extent of snow cover can alter
energy and moisture fluxes between the land surface and the
atmosphere because the albedo of snow covered surfaces is
typically 0.6–0.9, while the albedo for snow‐free soils and
vegetation is generally less than 0.3 [Dingman, 1994]. In
addition, the reduced thermal conductivity of snow compared
with soil means that snow, when present in significant quan-
tities, acts to insulate the soil surface from air temperature
changes [Stieglitz et al., 2003].
[3] Despite the importance of snow in the Earth system, the

representation of snow processes in land surface models has
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been identified as a key area in which future improvements
are required [Dirmeyer et al., 2006; Roesch, 2006]. Indeed, in
a comparison of models used in the Inter‐governmental Panel
on Climate Change’s Fourth Assessment Report, Roesch
[2006] showed that while most of the land surface models
accurately predicted the onset of snow accumulation, they
tended to overestimate snow mass in spring, and predicted a
delayed onset of spring melting. Part of the difficulty in
modeling snow processes in the global climate lies in the
discrepancy between spatial and temporal scales at which the
physics of snow accumulation and ablation operate; these
scales are much finer than those resolved in most models of
global climate. This heterogeneity is most significant in
regions of significant orography, where topographic gra-
dients influence local precipitation [Blöschl and Kirnbauer,
1992; Barros and Lettenmaier, 1994; Daly et al., 1994]. An
additional influence on snowpack heterogeneity is land
cover, especially forest cover. Results from the Snow Model
Intercomparison Project (SNOWMIP2) comparison of 33
snowpack models of varying complexity have shown that
“many current land surface models represent a sufficient
range of processes that can be calibrated to reproduce the
mass balance of forest snow packs well while simultaneously
providing reasonable estimates of canopy albedos and tem-
perature”, [Essery et al., 2009, p. 1132]. Consequently, while
no single best model could be identified in the SNOWMIP2
study [Rutter et al., 2009], the major difficulty in accurately
simulating snow processes lay in the estimation of reliable
model parameters.
[4] At larger spatial and temporal scales, regional climate

models (RCMs) provide a promising set of tools for
dynamical downscaling of precipitation, as well as providing
theoretical insight into regional climate processes [e.g., Schär
et al., 1999; Frei et al., 2003]. However, to date, few high‐
resolution data sets of observed snow cover and depth have
been available to test the snow components of land surface
models over broad geographical regions with complex and
heterogeneous topography and land cover. Existing assess-
ments of land surface model simulations of snow cover have
generally made only limited comparisons with observations
of snow cover, or have presented snow model efficiency
statistics calculated over large regions or elevation zones. For
example, Sheffield et al. [2003] compared four different land
surface models with observed snow cover from the Interac-
tive Multisensor Snow and Ice Mapping System measured
during a 3 year period over the conterminous United States.
They found that the snow cover accuracy varied with geo-
graphic location and elevation, where larger discrepancies in
higher elevation regions were related to the inherent diffi-
culties in modeling snow processes over variable topography.
Pan et al. [2003] evaluated the same models over the same
domain using snow water equivalent (SWE) measured at
110 Snow Telemetry (SNOTEL) sites. They reported a con-
sistent model underestimation of maximum annual SWE
and stressed the importance of precipitation and air temper-
ature bias corrections. In a recent study Habets et al. [2008]
presented a multiobjective validation of a land surface
scheme over France, which includes the evaluation of snow
depth bias. Instead of comparing station data with grid box
information, they compared the measurements and simula-
tions averaged in five different elevation zones. The results

indicate low average bias, which tends to increase with
increasing elevation.
[5] The aim of this paper is to test the Joint UK Land

Environment Simulator (JULES) together with input from
the Hadley Centre Regional Climate Model and a compre-
hensive archive of historical observations of precipitation,
temperature, and snow cover available at over 600 locations
in Austria, over 25 years. Our principal objective is to assess
the performance of the JULES land surface model in sim-
ulating spatial and temporal dynamics of snow cover and
snow depth. We are particularly interested in investigating
the effects of topography and intraannual and interannual
variability in snow model efficiency and evaluating the
benefits of using regional climate model output to drive
hydrological models.
[6] The paper is organized as follows. First, the land surface

model is introduced and the methodology used for the snow
validation is presented. Next, the study region, in situ snow
depth measurements and model driving data are described.
We then evaluate the accuracy with which the JULES model
simulates spatial and temporal patterns of snow cover and
depth over Austria. Finally, the results are discussed in the
context of snow subgrid variability and the accuracy of existing
snowcover products. In conclusion, we offer some suggestions
for further improvements to land surface models of snow
processes.

2. Methods

2.1. Land Surface Model

[7] In this work, we have used the Joint UK Land
Exchange Scheme (JULES) [Blyth et al., 2006]. This model
is based on the Met Office Surface Exchange System
(MOSES) [Cox et al., 1999; Essery et al., 2003] and provides
the facility to diagnose the thermal and hydrological state of
the land surface and soil given time‐varying inputs of air
temperature and humidity, wind speed, shortwave and
longwave radiation, and precipitation. MOSES was origi-
nally developed for the Hadley Centre Global Climate Model
(GCM) to calculate surface‐to‐atmosphere fluxes of heat,
water, momentum, CO2, and CH4, and to model the surface
and subsurface variables that affect them. Within JULES
there are four soil layers in the vertical direction, with a
temperature and soil moisture content associated with each.
In common with most land surface schemes used in climate‐
modeling applications, JULES assumes that water and heat
move in the vertical direction only.
[8] The snowfall precipitation is directly given as a model

input or is estimated from the precipitation by using a
threshold air temperature Tt·. The snowpack is represented
by a single model layer which is combined with the surface
layer of the soil model [Essery et al., 2003]. When there is
snow on the ground, the surface layer has the combined
depth and thermal conductivity of the snow layer and the
surface soil layer. Snow is given a constant thermal con-
ductivity and a constant density. The heat capacity of snow
is neglected, but snow decreases the bulk thermal conduc-
tivity of the surface layer due to both the increased layer
thickness and the different conductivities of snow and soil.
The surface skin temperature is not allowed to exceed 0°C
while snow remains on the ground, and the heat flux used to
melt snow is diagnosed as a residual in the surface energy
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balance. Meltwater drains immediately from the snow and is
partitioned into soil infiltration and runoff; there is no
storage or freezing of liquid water in snow. A spectral
albedo scheme calculates separate diffuse and direct‐beam
albedos in visible and near‐infrared bands for vegetation
tiles. Snow aging is parameterized using a prognostic grain
size. Albedo is weighted by the snow cover fraction, fs =
d/(d + 10z0), where d is snow depth and z0 is snow‐free tile
roughness length. This fraction is used together with the
snow‐free albedo, a0, and deep snow albedo, as, to calcu-
late the adjusted albedo, a = fsas + (1 − fs)a0 [Essery et al.,
2003]. Surface heat fluxes are calculated using an implicit
scheme with four layers with thicknesses of 0.1, 0.25, 0.65,
and 2 m and the surface temperature is diagnosed using a
surface energy balance. Snow is melted if this temperature
exceeds the melting point (Tm) until either the surface tem-
perature reaches the melting point, or the snow is exhausted
[Essery et al., 2003].
[9] In the current experiment, the JULES model was run

offline on a 0.22° grid (approximately 25 km), with an
hourly time step. JULES is a tiled model in which each grid
box contains a variable fraction of a range of distinct surface
types, each of which can be set to have different properties
relating to heat and water transport and vegetation. In the
present experiment, JULES was configured with the stan-
dard nine surface types: broadleaf tree, needleleaf tree, C3
grass, C4 grass (C3 and C4 are alternate metabolic pathways
used to fix carbon in photosynthesis), shrub, urban, open

water, bare soil, and ice. Surface parameters, including
vegetation distributions and values of the leaf area index
(LAI), were taken from the standard data sets used by Essery
et al. [2003], which are mainly derived from the land cover
archive of Wilson and Henderson‐Sellers [1985], and
Advanced Very High Resolution Radiometer (AVHRR)
data. Canopy heights and roughness lengths were calculated
from values of LAI using the parameterization of Essery
et al. [2003].
[10] In order to establish the snow model parameters, a

sensitivity analysis was performed. We used the combina-
tion of Latin hypercube and one‐factor‐at‐a‐time sampling
methods [van Griensven et al., 2006] and evaluated the
snow model sensitivity separately at six climate stations
representing different elevation zones of the domain. We ran
the JULES model using 3400 parameter combinations
selected from parameters listed in Table 1. As a measure of
snow model performance, the root‐mean‐square error
(RMSE) between observed and simulated snow depth in the
period 1976–2000 was used. Ranking the sensitivity of
snow parameters showed that at each station the snow model
performance was mostly sensitive to two model parameters:
the threshold air temperature (Tt) and the snow density (Rh).
Figure 1 shows the RMSE variability for different ranges of
these two model parameters and the variability between
different locations (elevation). It is clear that for an indi-
vidual location (climate station) it is possible to find an
optimal parameter solution, however it is difficult, if not

Figure 1. Sensitivity of snow model performance as root mean square error (RMSE) against two model
parameters, (left) snow density and (right) the threshold temperature indicating snowfall. RMSE repre-
sents the accuracy between observed and simulated daily snow depth at six different elevations (m asl;
indicated by colors) in the period 1976–2000.

Table 1. Parameter Values Used in the Snow Component of the Land Surface Model (JULES) and Parameter Ranges (Minimum and
Maximum) Used in Sensitivity Analysis

Value (Unit) Minimum Maximum

Constant density of lying snow 250 kg m−3 80 450
Threshold air temperature 274 K 273 280
Thermal capacity of lying snow 0.3 × 106 J K−1 m−3 0.2 × 106 0.9 × 106

Thermal conductivity of lying snow 0.265 W m−1 K−1 0.260 0.270
Grain size for fresh snow 50 mm 40 150
Maximum snow grain size 2000 mm 1000 3000
Snow grain area growth rates (melting/cold fresh/cold aged snow) 0.6/0.06/0.23 × 106 mm2.s−1 0.3/0.02/0.20 × 106 0.8/0.08/0.30 × 106

Maximum albedo for fresh snow (visible wavelengths) 0.98 0.85 0.99
Maximum albedo for fresh snow (near infrared wavelengths) 0.70 0.60 0.80
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impossible, to find a unique combination of model param-
eter values for the entire spatial domain. Interestingly, the
variability in snow model performance between different
elevations is significantly larger than that obtained for par-
ticular location by using different model parameters.
Assuming a large variability in RMSE within a selected
parameter ranges and between the stations we decided to fix
the snow model parameters to literature values [Essery et al.,
2003], setting the constant Tt = 274 K and Rh = 250 kg m−3.
The values of other snow model parameters are given in
Table 1. We note that in these experiments, we neglect the
heat capacity of snow and use the model output from the C3
grass tile to provide appropriate comparison with observed
data. A 1 year spin‐up period was used to allow the model to
equilibrate with the driving data.

2.2. Snow Simulation Accuracy Assessment

[11] Quantitative assessment of the accuracy with which
the JULES model simulates snow depth is performed in two
stages, each using observed data from Austria. In the first
stage, JULES’ ability to simulate snow cover dynamics is
evaluated. In the second stage, we evaluate the model’s
performance using snow depth observations.
[12] To assess the accuracy with which the JULES model

simulates the presence of snow cover, we define the snow
cover accuracy index ka. Snow depth observations at the
climate stations are considered as ground truth for the model
grid box in which they are located. For the purposes of
model evaluation, we remove the effect of very small values
of snow depth in the simulated data set by assuming that
snow is present in the grid box only when the simulated
snow depth exceeds 0.05 cm. The results presented here
were found to be insensitive to this threshold. The ka index
is then defined as the sum of correctly classified days (i.e.,
days when snow was both modeled and observed, and days
when snow was neither modeled nor observed), expressed
as a percentage of the total number of days [cf.Wilks, 2005]:

ka ¼ Aþ D

Aþ Bþ C þ D
100; ð1Þ

where A, B, C, and D are as defined in Table 2. In order to
assess the spatial and temporal variability of snow cover
dynamics, the ka index is estimated for each individual climate
station using data from different time intervals: the entire long‐
term period, individual years and seasons (months).
[13] The misclassification of snow cover is evaluated by

the model overestimation (MO) and underestimation (MU)
errors. The MO error represents the case when the JULES
model simulates snow, but there is in fact no snow observed at
the ground and conversely, the MU error represents the case
when themodel simulates no snow, but snow is in fact reported
at the climate station. Both types of error are represented by the

relative frequency of station days that were misclassified in all
climate stations, estimated as follows:

MU ¼ B

Aþ Bþ C þ D
100; ð2Þ

MO ¼ C

Aþ Bþ C þ D
100: ð3Þ

The MO and MU errors are evaluated in different seasons
(months), by summing the classification categories for all
ground measurements.
[14] The accuracy of the snow depth simulations is eval-

uated by the mean snow depth error (ME):

ME ¼
Pn

i¼1
SDsim;i � SDobs;i

� �

n
; ð4Þ

where n is the number of days and SDsim and SDobs repre-
sent the simulated and observed snow depth in cm,
respectively. The ME error is estimated for each climate
station in the entire period, individual years and seasons and
is summed up for all stations in particular seasons (months).
In addition to the evaluation of snow depth accuracy, we
also compare predicted annual maximum snow depth with
observed annual maxima.

3. Data

3.1. Study Region and Snow Depth Observations

[15] The spatial domain which the present study is
concerned covers the region of Austria. Austria has an area
of about 84,000 km2 and is characterized by flat or undu-
lating topography in the east and north and by steep
mountainous terrain in the west and south (Figure 2). Ele-
vations range between 115 m above sea level (asl) in the
eastern lowland part of the country and 3797 m asl in the
Alps. Climatologically, Austria is situated in the temperate
zone at the border between the Atlantic and the continental
part of Europe. Mean annual temperature varies from about
10°C in the lowlands to less than −8°C in the Alps. The
mean annual precipitation varies from less than 400 mm
yr−1 in the east and almost 3000 mm yr−1 in the west. Land
use is mainly agricultural in the lowlands. At medium range
elevations forest dominates and Alpine vegetation and rocks
prevail in the highest mountain regions. Austria therefore
provides a diverse range of climatic, physiographic, and
land cover types in which to perform model validation.
These conditions maximize the applicability of our findings
to other areas with similar properties.
[16] The snow data set used in this study consists of daily

snow depth measurements at 601 climate stations with more
than 15 years of observations in the period from January 1976
to December 2000. The locations of these climate stations are
shown in Figure 2. The snow depth readings are taken from
permanently installed staff gauges and hence are point mea-
surements at artificially cleared grassy sites. Observations are
made daily at 0700 LT, and snow depths are reported in cen-
timeters as integer values [Hydrographischen Zentralbüro,
1992].
[17] For the quantitative validation of the land surface

scheme, the spatial locations of point measurements are

Table 2. Confusion Matrix Relating the Ground Based Snow
Depth Observations (Ground) and the Snow Simulation by the
Land Surface Model (JULES)

JULES: Snow JULES: No Snow

Ground: Snow A B
Ground: No snow C D
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important. The spatial arrangement of climate stations for
snow validation in Austria has been previously evaluated by
Parajka and Blöschl [2006]. They demonstrated that the
snow depth measurements cover a wide range of elevation
zones of the region, but in mountain regions the stations
tend to be located at lower elevations, typically in valleys.
The highest climate station used in this study is at 2290 m
asl which means that the area above that elevation (com-
prising 6% of Austria) is not represented by any climate
station. The comparison of elevations of climate stations and
the mean elevations of model grid boxes indicates that the
stations tend to be lower than the mean model grid box
elevations. Only 10% of stations are located higher than
100 m above their corresponding model grid box, 35% of
stations are located within 100 m of the elevation of the
equivalent model grid box, 35% of stations are 100–500 m
lower than their corresponding grid box elevation, and 20%
of stations are more than 500 m lower than the equivalent
model grid box.

3.2. Model Driving Data

[18] In this study, the land surface model is driven by two
data sets at a 0.22° (25 km) horizontal resolution: one pro-
duced using a regional climate model (RCM), the other in
which RCM precipitation and air temperature data were
replaced with observed values. In the first data set, (hereafter
referred to as RCM), meteorological driving data were
obtained from a simulation in which an RCM was driven
with data from the ERA‐40 reanalysis experiment [Uppala
et al., 2005; Buonomo et al., 2007]. The regional climate
model used to produce these data was HadRM3, which is
described by Buonomo et al. [2007]. This model is based on
the atmospheric component of the Hadley Centre GCM,
HadCM3 [Pope et al., 2000; Gordon et al., 2000]. The
RCM was run with a 5 min time step with lateral boundary

conditions updated every 6 h from ERA‐40 data represented
on a 1.125° × 1.125° grid (the highest resolution regular
latitude‐longitude grid compatible with the spectral resolu-
tion of the ERA‐40 data set). The RCM was run from 1958
until 2002, with the results from the initial year discarded to
account for model spin‐up. A number of changes were made
by Buonomo et al. [2007] to improve the simulation of
precipitation in the regional model. When using output from
this RCM simulation, we retained the distinction between
large‐scale and convective rain and snow. The fact that this
RCM simulation is nested within lateral boundaries from a
reanalysis climatology rather than a GCM means that the
day‐to‐day variations in RCM meteorological outputs will
correspond more closely to observed weather than if the
lateral boundary forcing were derived from a free‐running
GCM; this constraint allows us to compare the RCM outputs
directly with observed data.
[19] In the second data set, RCM precipitation and air tem-

perature were replaced with local observations fromAustria. It
should be noted that the RCM precipitation diagnostics are
split into four components based on the precipitation type and
generating mechanism (large‐scale rain and snow result from
stably stratified clouds produced inmidlatitude frontal systems
with convergence into lows and upslope flow; whereas con-
vective rain and snow result from convective clouds which
form during buoyant ascent). All four of the precipitation
components produced by the RCMwere replacedwith a single
measure of observed total precipitation. We assigned this total
precipitation to be entirely rain or snow based on a temperature
threshold of 274 K. The observed data comprise daily mea-
surements of precipitation at 1091 stations and daily air tem-
perature at 212 climatological stations. The observed data were
spatially interpolated onto a 1 km grid mesh using elevation as
auxiliary information. External drift kriging [Pebesma, 2001]
was used to interpolate precipitation data and a least squares

Figure 2. Topography of Austria and location of land surface model (JULES) grid and climate stations
with daily snow depth observations longer than 15 years in the period 1976–2000.
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trend prediction [Pebesma, 2001] method was applied to air
temperature. The data were then aggregated to the same res-
olution as the land surface model grid. Temporal disaggrega-
tion of precipitation data to an hourly time step was achieved
using a simple uniform partition. The temporal disaggregation
of daily air temperature data was achieved by scaling the
diurnal cycle represented in the RCM to match the observed
mean daily air temperature. This combined data set is, in this
study, referred to as RCM+PT.
[20] A comparison of RCM and gridded observed precipi-

tation and air temperature is shown in Figure 3 for the mean

seasonal difference between RCM and observed precipitation
and air temperature. The evaluation indicates that the RCM
tends to overestimate precipitation when compared with
observed values. A differencewithin the range of ± 10mmwas
found in 30% of grid boxes (Austria) in autumn (September–
November) and winter (December–February) and 18% in
spring (March–May). A difference larger than ± 50mm was
observed in 17%, 33%, and 37% of grid boxes in autumn,
winter, and spring, respectively. Spatially, the largest RCM
overestimates were observed mainly in the western part of the
Alps in winter and spring. The difference between modeled

Figure 3. Mean seasonal difference between RCM and (top) observed precipitation and (bottom) air
temperature expressed as the mean total degree day difference in K. (DJF, Dec–Feb; MAM, Mar–May;
JJA, Jun–Aug; SON, Sep–Nov.)
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and observed air temperatures is expressed by the difference in
mean seasonal degree day totals above 273.15 K. The com-
parison shows a distinct regional pattern in autumn and winter.
In autumn, very good agreement was observed between RCM
and observed temperatures in lowland and hilly regions (47%
of Austria) where the RCM was similar to or slightly under-
estimated the mean seasonal degree day totals. The mean
absolute air temperature difference was less than 1°C in these
regions. In the mountains, the RCM air temperature was lower
than observed (mostly within the range 1°C–4°C), which
resulted in underestimation of degree day totals more than
120K. Inwinter, the RCMoverestimated air temperature in the
lowlands and hence overestimated the mean degree day totals
(more than 120 K). In alpine regions, the mean degree day
difference was very small. The RCM underestimated slightly
the observed air temperature, but air temperature was mostly
negative. In spring, the RCM remarkably underestimated air
temperature in 87% of Austria, which resulted in large
underestimation of degree day totals. Overall, the comparison
of mean degree day totals indicated overestimation of potential
snowmelt rates in lowlands in winter months and underesti-
mation of snowmelts in alpine regions in autumn and practi-
cally in whole Austria in spring season. In combination with
the overestimation of the RCMprecipitation, the RCM data set
has the tendency of longer and larger snow coverage in com-
parison with observed data.

4. Results

4.1. Snow Cover Validation

[21] The evaluation of the snow cover accuracy, ka, over
the entire period 1976–2000 is presented in Table 3. The

results show good agreement between the land surface
model simulations and snow observations at climatological
stations. The median values of the accuracy index, ka, for all
601 stations were 89 and 91% for the RCM and the com-
bined RCM+PT driving data sets, respectively. A larger
difference between the two runs was observed for 10% of
stations with low ka accuracy. The 10th ka percentile for the
simulation driven by the RCM data set was approximately
seven percentage points lower (77%) than that obtained
using the RCM+PT data set (85%).
[22] The comparison of the accuracy index in individual

years revealed only small interannual variability (Figure 4).
The median of the ka index varied between 87% (year 1996)
and 90% (2000) for the RCM and between 87% (1996) and
93% (1989) for the RCM+PT. The low accuracies in 1996
were caused mainly by considerable model underestimation
of snow cover, which occurred on more than 21 days at 50%
of climate stations. The comparison of the two model runs
indicates a larger degree of scatter in the ka accuracy index
calculated for the RCM‐driven data set. The percentile (p)
difference (p75% − p25%) varies between 7.1% and 16.2%,
in comparison to a range 4.4–11.2% obtained by the
RCM+PT. The largest scatter was observed in 1989. This
year is characterized by low snow coverage, where only
3.5% of stations have mean annual snow depths greater
than 10 cm, and 64% of stations have mean annual snow
depths less than 1 cm. Interestingly, 1989 is the year with
the highest ka agreement for the RCM+PT run.
[23] The monthly distribution of snow cover accuracy

shows a typical seasonal pattern (Figure 5). The period
between May and September is characterized by very little
snow occurrence and hence the ka accuracy is close to 100%.
In contrast, the main changes in snow cover are observed in
winter and spring, resulting in larger discrepancies between
simulated and observed snow cover. During the period
December–March, the median accuracy, ka, was lower than
80% for both simulations. The agreement between snow
simulations based on the RCM data alone is somewhat lower
and has larger variability than that obtained by using the
combined RCM+PT data set. The largest variability in kawas
seen in April, when the RCM snow cover accuracies vary
between 66% and 96% at 50% of the climate stations. In

Table 3. Snow Cover Accuracy, ka (in %), by Percentile for Simu-
lations Driven by the RCM and RCM+PT Data Sets for 601 Climate
Stations in the Period 1976–2000

Percentile RCM RCM+PT

10% 77.4 84.8
25% 84.3 87.8
50% 89.0 90.7
75% 91.6 92.4
90% 92.7 93.8

Figure 4. Interannual variability in the snow cover accuracy index, ka. Median and 25–75% percentiles
estimated over 601 climate stations in the period 1976–2000. The assessment of simulations driven by
(left) the RCM data set and (right) the RCM combined with local precipitation and air temperature
(RCM+PT) data set is shown.
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April, snow typically covers only the high mountain regions
and the flatlands, and the valleys are already snow free.
[24] A detailed examination of the types of snow simu-

lation errors is presented in Table 4. These results indicate
that, in general, the land surface model tends to overestimate
snow cover in November and December, and underestimate
snow cover in February and March. The largest overesti-
mation (MO) errors, 11–16% for the RCM and 11% for the
RCM+PT, were observed in November and December,
respectively. In this season, the model overestimated the
snow cover in the lowlands and alpine valleys. It is inter-
esting to note that stations located south of the main ridge of
the Alps showed larger MO errors than stations located
north of the ridge. The underestimation errors (MU) in
February and March are similar in magnitude to the over-
estimation errors (MO), but, interestingly, are about 4–5%
larger for the RCM+PT simulations. Spatially, the MU
errors dominate in flat and hilly regions of Austria where
elevations are typically below 800 m, rather than in the
high mountains (elevations above 1500 m asl).
[25] Spatial patterns of the ka accuracy index are displayed

for each season in Figure 6. Figure 6 (top) shows ka accu-
racy for the RCM data set; and Figure 6 (bottom) shows the
ka for the combined RCM+PT simulations. Comparison
reveals that the spatial pattern of seasonal snow cover
accuracy is similar for each simulation, and shows that the
detailed spatial pattern of accuracy is related to the topog-
raphy of the region. Obviously, the best agreement between
the model and station measurements is in summer (JJA),
when snow is very rare. The exceptions are the highest
stations in the Alps, at which the model systematically un-
derestimates the snow cover. In autumn (SON), there is a
distinct contrast between the accuracy in lowland areas and
that in hilly and alpine regions. The model tends to over-
estimate snow cover duration, especially at stations located
in hilly and mountain regions (600–1500 m asl) resulting in
a lower ka accuracy. Underestimates of snow cover duration
in autumn are observed only at some of the highest stations,
located at about 2000 m asl. In winter (DJF), the highest ka
agreement is observed for stations in mountainous areas,
where snow cover is typically well developed and contin-
uous. In general, lower agreement was observed for stations
in lowlands. The lowest values of the ka accuracy index (less

than 70%) were found at stations in the northern and
southern parts of Austria, where the model melts snow much
more quickly than observed. This difference is responsible
for a considerable underestimate of snow cover. In spring
(MAM), the lowlands are usually without continuous snow
cover and this situation is correctly simulated by the model.
The lower accuracies observed in the Alps are caused
mainly by the overestimation of snow cover duration in
April and May. Such errors are larger in the RCM‐driven
run, especially in the central and southern part of the Alps.
These are most likely caused by overestimation of total
precipitation in the RCM data set.
[26] In winter and spring, a strong relation between

observed snow depth and elevation was found, especially in
alpine regions. The strong variability in snow cover results
in a considerable model subgrid variability in the ka agree-
ment, which is seen mainly in western part of the Alps. A
more detailed insight into the model snow cover accuracy in
different elevation zones can be obtained from Figure 7. The
distinct seasonal pattern in the accuracy index, ka, is
strongly related to snow cover duration. The season in
which the model accuracy is lowest varies according to the
exact timing of onset of snow cover and subsequent melting

Figure 5. Seasonal distribution of the snow cover accuracy index, ka. Median and 25–75% percentiles
estimated over 601 climate stations in the period 1976–2000. The assessment of simulations driven by
(left) the RCM data set and (right) the RCM+PT data set is shown.

Table 4. Seasonal Variations of the Snow Cover Overestimation
(MO) and Underestimation (MU) Errors (%) for Land Surface
(JULES) Snow Simulations Driven by the RCM and RCM+PT
Data Setsa

MO (RCM) MU (RCM) MO (RCM+PT) MU (RCM+PT)

Jan 10.1/13.6 11.3/24.9 7.9/9.9 12.0/15.0
Feb 6.5/11.7 11.8/30.8 5.1/8.0 16.4/23.9
Mar 6.2/21.7 8.0/17.7 5.0/7.3 13.3/25.2
Apr 4.4/36.1 1.9/5.4 3.4/9.9 3.3/9.3
May 0.5/7.2 0.1/0.5 0.5/2.6 0.1/0.8
Jun 0.0/0.4 0.0/0.0 0.0/0.1 0.0/0.0
Jul 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0
Aug 0.0/0.1 0.0/0.0 0.0/0.0 0.0/0.0
Sep 0.0/0.9 0.0/0.0 0.0/0.2 0.0/0.0
Oct 1.6/8.5 0.2/0.8 0.8/3.1 0.3/1.0
Nov 11.3/24.8 4.2/7.8 7.6/9.8 4.4/5.8
Dec 16.5/17.6 8.4/20.2 11.4/11.3 8.6/12.5

aThe first value is the median, and the second value is the percentile (p)
difference (p75% − p25%) over 601 stations in the period 1976–2000.
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of snow in different elevation zones. It is in these periods
that the model is most susceptible to errors. We note that in
the elevation zones with more continuous snow cover
(above 800 m asl) the model accuracy tends to increase after
a drop in late autumn and then again decrease during the
snowmelt period. The ka accuracy drops to 75–80% in the
lowlands and hilly regions (elevations below 800 m asl) and
is even lower in the mountains (ka is only about 60%). The
RCM‐driven simulations have lower accuracies for the
stations in the elevation zone below 300 m asl and the zone
between 800 and 1500 m asl. In contrast, the RCM+PT

simulation tends to overestimate the snow cover in the
highest locations (above 1500 m asl).
[27] An indication of how the spatial and temporal pat-

terns of the ka accuracy index translate into the accuracy
with which mean annual snow cover duration is simulated is
shown in Figure 8. Figure 8 (top) shows the relative snow
cover duration in the period 1976–2000, as it is observed at
climate stations. Figures 8 (middle) and 8 (bottom) show the
snow cover duration estimated from model simulations
driven by the RCM and RCM+PT data sets, respectively.
The spatial patterns indicate that the JULES model provides

Figure 6. Spatial patterns of the seasonal variability in the snow cover accuracy index ka estimated over
601 climate stations in the period 1976–2000. The evaluations for (top) the RCM‐driven data set and
(bottom) the RCM+PT data set are shown.
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good estimates of snow cover duration over Austria. The
differences were small and observed mainly in alpine
regions. In order to statistically quantify the agreement, the
coefficient of determination R2 was estimated for 212 sta-
tions situated at approximately the same elevation (±100 m)
as the model grid. The R2 values were 0.84 (RCM+PT) and
0.71 (RCM), and clearly show that the model is able to
explain a large variation in snow cover duration at average
grid box elevations. The effects of elevation on the subgrid
variability in snow model performance are further examined
in section 5.

4.2. Snow Depth Validation

[28] A statistical evaluation of mean annual snow depth
error (ME) over the entire period 1976–2000 is presented in
Table 5. These results indicate much larger differences
between the RCM and RCM+PT simulations than were
obtained in the snow cover comparison. The medians of ME
are similar, −0.4 cm for the RCM and −1.2 cm for the
RCM+PT; however, the RCM simulation considerably
overestimates the observed snow depth at more than 25%
of climate stations. The mean annual ME at 10% of stations
is even larger than 40 cm. In contrast, the RCM+PT‐driven
simulation has a significantly smaller range in ME and,
while this data set gives an overall underestimate of snow
depth, the mean annual ME lies within the range −0.5 to
−3.8 cm at 300 climate stations.
[29] The same patterns of similar medians, but significantly

larger scatter and large overestimation of snow depth at
numerous stations for the RCM run are clearly demonstrated
in the ME interannual variability evaluation (Figure 9). The
median of ME is very close to zero for the RCM but up to 2–
3 cm below zero for the RCM+PT run. However, the 75%
percentile of the mean annual ME is several times higher
for the RCM simulation than for the RCM+PT simulation.
A comparison with the distribution and variability of
observed snow depth indicates that the lowest ME median
and percentile difference (scatter) was, in general, observed
in years which had lower snow depths (e.g., 1989). We
note that there is no obvious relation between the distribu-
tion and variability of observed snow depth and mean
annual ME.

[30] The seasonal evaluation of the model bias is pre-
sented in Figure 10. The results show significant variability
in the mean monthly ME between stations and between the
simulations. The snow depth simulation is essentially
unbiased at a large sample of stations; however, at many
stations the model overestimates (RCM) or underestimates
(RCM+PT) observed snow depth. The largest mean monthly
ME variability occurred between January and March. The
largest percentile difference was in February, −5 to 38 cm
for the RCM and −15 cm to 0 cm for the RCM+PT. For
comparison, the observed mean monthly snow depths lie
between approximately 5 and 30 cm.
[31] Spatial patterns of the mean seasonal ME (Figure 11)

reveal that in the RCM simulation the model overestimated
the observed snow depth in western Austria. In this region,
the ME patterns tended to follow the boundaries of model
grid boxes (driving data), which indicates that the bias may
be caused by inaccuracies in the RCM precipitation data set,
although uncertainties introduced by the model structure and
parameterization cannot be ruled out. For the RCM+PT
simulation, the patterns of snow depth accuracy are more
closely linked with the topography; a slight overestimate
was found in valleys and a slight underestimate in higher
locations. In winter, the model underestimation is more
pronounced in central parts of the Alps. In the lowlands,
snow depth is simulated well by both driving data sets. The
assessment of mean monthly ME in different elevation
zones shows that the simulations in lowland areas (below
300 m asl), and for the RCM+PT data set also in hilly
regions (300–800 m asl), are unbiased (Figure 12). These
regions are, however, characterized by low snow coverage
with mean monthly snow depth less than 15 cm. The larger
overestimation errors are observed for RCM simulations.
In hilly regions the model overestimates the mean snow
observations by about 20 cm in February and March; the
overestimation is even larger in higher elevation zones.
Interestingly, the largest overestimates are observed in ele-
vation zone 800 to 1500 m asl in the RCM experiment. In
contrast, the simulation driven by the RCM+PT forcing data
tended to underestimate snow depth in higher elevation
zones. The largest underestimate was found at stations in
high mountains (the elevation zone above 1500 m asl), more

Figure 7. Seasonal variation in the median of snow cover accuracy index (ka) for stations in different
elevation zones. Elevation zones 0–300, 300–800, 800–1500 and 1500–2300 m asl include 79, 313,
182, and 27 climate stations, respectively. The assessment of simulations driven by (left) the RCM data
set and (right) the RCM+PT data set is shown.
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than 60 cm in March and April. This is somewhat lower
than the mean monthly snow depth observations, which are
more than 80 cm in the period February to April.
[32] The evaluation of model bias indicates the tendency of

the model to overestimate or underestimate snow depth at
different stations in different time intervals. A more detailed
insight into the model’s ability to simulate extreme snow
depth is given by Figure 13, which shows the mean of annual
snow depth maxima in the period 1976–2000. Figure 13 (top)
shows the mean of observed annual maxima at climate

Figure 8. Mean annual snow cover duration (%) estimated from (top) snow depth observations, from the
land surface model driven by (middle) the RCM data set and (bottom) the RCM+PT data set in the period
1976–2000.

Table 5. Mean Annual Snow Depth Error, ME (in cm), by Percen-
tile for Simulations Driven by the RCM and RCM+PT Data Sets for
601 Climate Stations in the Period 1976–2000

Percentile RCM RCM+PT

10% −5.5 −8.8
25% −1.8 −3.8
50% −0.4 −1.2
75% 9.1 −0.5
90% 42.5 3.3
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stations, whereas Figures 13 (middle) and 13 (bottom) show
the mean of the annual maxima simulated using the RCM and
RCM+PT forcing data, respectively. The mean of the
observed annual maxima in lowlands is below 50 cm, and this
observation is accurately reproduced in both model simula-
tions. The RCM‐driven simulation generally overestimates
snow depth extremes in the Alps, especially in the western
part. The mean of the annual maxima exceeds 500 cm in
21 model grid boxes. The RCM+PT simulation is much
closer to the extreme observations in mountains. Interest-
ingly, the model tends to overestimate the annual maximum,
although the bias evaluation indicated a tendency to under-
estimate the snow depth.

5. Discussion and Conclusions

[33] The main objective of the study was to evaluate the
performance of the JULES land surface model in simulating
snow cover and depth. The examination of land surface
model snow simulations over Austria enables us to analyze

the performance of the snow model at a large number of
climate stations, situated over a range of elevation zones,
ranging from lowlands to high mountains. The model eval-
uation shows that the land surface model simulates the snow
cover dynamics well compared with observed data. The
median snow cover accuracy was 89% and 91% for the RCM
and the combined RCM+PT driving data sets, respectively,
with only a small interannual variation. In the period of major
snowmelt, the model tends to underestimate snow cover in
the lowlands and, conversely, overestimate snow cover in the
mountains. These findings are most likely related to the
model structure, particularly to the parameterization of
snowfall threshold air temperature and snow density, which
were assumed to be constant for the entire period and region.
In contrast, the differences between modeled and measured
snow depth were much larger. The medians of snow depth
bias were similar, −0.4 cm for the RCM and −1.2 cm for the
RCM+PT; however, the RCM simulation considerably
overestimates the observed snow depth at more than 25% of
climate stations.

Figure 9. Interannual variability in the (right) observed mean annual snow depth and annual snow depth
error ME showing median and 25–75% percentiles estimated over 601 climate stations in the period
1976–2000. The assessment of simulations driven by (left) the RCM data set and (middle) RCM+PT data
set is shown.

Figure 10. Seasonal distribution of (right) the observed mean monthly snow depth and mean monthly
snow depth error ME showing median and 25–75% percentiles estimated over 601 climate stations in the
period 1976–2000. The assessment of simulations driven by (left) the RCM data set and (middle) the
combined RCM+PT data set is shown.
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[34] Overall, the JULES snow model performance is sim-
ilar to that obtained in other validation studies. Sheffield et al.
[2003] reported an average 75–80% snow cover agreement
over the United States during the winter months and about
85–90% snow cover accuracy in the spring. This fits well
with the 80% and 87% accuracy of JULES over Austria in
winter and spring, respectively. The snow depth assessment
over France [Habets et al., 2008] referred to a low average
bias varying between 3 cm in lower elevations and 10 cm in
the mountains. For higher elevations, they reported a sys-
tematic underestimation of the snow depth in the period from
January to February (elevation zone 1250–2000 m), and an
overestimation of the snow depth from September to January
(elevations above 2000 m). In this study, we found similar

underestimation of the land surface model in the elevations
above 1500 m asl. Biases larger than 5 cm were observed at
more than 15% climate stations only in winter (December–
February). A remarkable overestimation of the annual max-
imum snow depth was observed in the Alps (Figure 15),
although the bias evaluation indicated a tendency to under-
estimate the overall snow depth. This finding differs from the
results of Pan et al. [2003], who presented a consistent
underestimation of maximum annual SWE, as simulated by
four different land surface schemes. This bias, however, was
explained to a large extent by biases in forcing precipitation
data, which are clearly strongly related to the selected region
and forcing data set.

Figure 11. Spatial patterns of the seasonal variability in the mean snow depth error estimated over
601 climate stations in the period 1976–2000. (top) The evaluations for RCM data set, and (bottom) eva-
luations for the RCM+PT data set.
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[35] The snowobservation data set used formodel validation
is very similar to that which was used by Parajka and Blöschl
[2006] to assess the accuracy with which the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) satellite snow
cover product can be used to estimate snow cover. The com-
parison of snow cover accuracy ka between the two studies
shows that the median accuracy of 90% is somewhat lower
than 95% obtained in the MODIS validation for cloud‐free
days; however, the median accuracy is much larger than the
accuracy index, ka, obtained taking into account all weather
conditions (38.5%) [Parajka et al., 2010]. This finding
indicates that, for regional studies, the RCM data and land
surface simulations may prove to be a valuable alternative
source of data for snow cover simulation in ungauged regions.
Of further note in the context of such studies is the relation
between snow cover and snow depth performance measures,
shown in Figure 14. We note that even if snow cover can be
simulated with a high degree of accuracy, this does not imply a
similarly high degree of accuracy in the simulation of snow
depth. For example, Figure 14 shows that in situations where
the annual snow cover accuracy, ka, is below approximately
90% the bias in snow depth may fall within the range −20 to
+80 cm. This finding clearly suggests that demonstrations
of accurate simulation of snow cover do not imply accurate
simulations of snow depth.
[36] One of the objectives of this study was to compare

two model simulations; one driven by the RCM, the second
by the combined RCM with local observations (RCM+PT).
The main benefit of the RCM is the availability of different
meteorological variables at a subdaily temporal scale and its
larger spatial extent. Examination of snow simulations
showed that the extent to which the results from RCM‐
driven simulations match observed data is strongly related to
the initial accuracy of the RCM precipitation. The present
assessment has demonstrated that the RCM simulation of
snow cover corresponds well with observed data in the
lowlands (elevations below 300 m asl) and hilly regions
(elevations between 300 and 800 m asl) in the eastern part of
Austria. However, larger discrepancies were found in the

western part of the Alps.We suggest that these differences are
caused by overestimates in the RCM precipitation, mainly in
the large‐scale (frontal) snowfall precipitation component.
The overestimation of precipitation by RCM has a remark-
able impact on the snow mass balance simulation especially
in the western Alps, which is even more significant for the
assessment of extreme values. The overestimation in the Alps
in winter and spring highlights the potential utility of a future
bias correction to the RCM precipitation simulated in the
mountains. We found that, in general, use of observed pre-
cipitation data led to a greater improvement in snow model
performance than use of observed temperature data. Based on
these findings, we suggest that correction of systematic biases
in driving data is likely to prove important especially for
hydrologic applications, which rely on quantitative measures
of snow‐mass dynamics [cf.Horton et al., 2006; Leander and
Buishand, 2007].
[37] One key advantage of a detailed data set of regional

snow observations is that it enables the investigation of spa-
tial and temporal patterns in snow cover and depth dynamics.
The present study reveals the importance of subgrid vari-
ability. The simulation drivenwith observed precipitation and
air temperature data (RCM+PT) was essentially unbiased in
lowlands and hilly regions. The snow depth bias was largest
in the mountains; this finding is strongly related to the subgrid
variability of snow depth within each grid box. In general, the
simulated mean grid box snow depth was larger than
observed in valleys and lower than observed at stations sit-
uated above the mean grid box elevation. Figure 15 shows the
relation between the snow model performance and the ele-
vation difference between the stations and model grid boxes.
Figures 15 (top) and 15 (bottom) give the mean annual snow
cover and snow depth efficiency, respectively. Figure 15
demonstrates that the best model performance occurs when
the grid box mean elevation is approximately equal to the
station elevation. This finding holds both for snow cover
accuracy and snow depth error. Moreover, the deterioration in
model performance when topographic heterogeneity is
poorly resolved in the model is greater in mountainous

Figure 12. Seasonal variation in (right) the mean monthly snow depth and (left and middle) mean
monthly snow depth error for stations in different elevation zones. Elevation zones 0–300, 300–800,
800–1500, and 1500–2300 m asl include 79, 313, 182, and 27 climate stations, respectively. Figures 12
(left) and 12 (middle) show the assessment of simulations driven by the RCM data set and the RCM+PT
data set.
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Figure 13. Mean annual maximum snow depth estimated from (top) the snow depth observations, (middle)
the land surface model driven by the RCMdata set and (bottom) the land surfacemodel driven by the RCM+PT
data set in the period 1976–2000.
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topography than in lowland regions. Our analysis indicates
that a fairly simple resolution of subgrid topographymay lead
to significant improvements in the model’s ability to predict
snow cover and depth. Our future research will be directed
toward investigation and development of computationally

efficient representation of subgrid topography (e.g., as pro-
posed by Blöschl [1999], Essery [2003], or Liston [2004]).
We also plan to include sensitivity analyses and validation of
the new snow multilayer scheme and to evaluate snow cover
dynamics by using remote sensing products.

Figure 14. The relationship between two different snow performance measures: The annual snow cover
accuracy (ka) and mean annual snow depth bias (ME).

Figure 15. Relationship between the accuracy assessment and the elevation difference between the land
surface model grid and climate station (grid station). Stations are stratified into four elevation categories.
(top) The snow cover accuracy (ka) assessment and (bottom) the evaluations for the mean snow depth
error (ME) in the period 1976–2000. The simulations driven by (left) the RCM data set and (right) the
RCM+PT data set are shown.
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