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Institut für Wasserbau und Ingenieurhydrologie, Technische Universität Wien, Wien, Austria

Received: 22 December 2008 – Published in Hydrol. Earth Syst. Sci. Discuss.: 30 January 2009
Revised: 28 April 2009 – Accepted: 4 May 2009 – Published: 12 May 2009

Abstract. While the correspondence of rainfall return period
TP and flood return periodTQ is at the heart of the design
storm procedure, their relationship is still poorly understood.
The purpose of this paper is to shed light on the controls on
this relationship examining in particular the effect of the vari-
ability of event runoff coefficients. A simplified world with
block rainfall and linear catchment response is assumed and
a derived flood frequency approach, both in analytical and
Monte-Carlo modes, is used. The results indicate thatTQ

can be much higher thanTP of the associated storm. The
ratio TQ/TP depends on the average wetness of the system.
In a dry system,TQ can be of the order of hundreds of times
of TP . In contrast, in a wet system, the maximum flood re-
turn period is never more than a few times that of the cor-
responding storm. This is because a wet system cannot be
much worse than it normally is. The presence of a threshold
effect in runoff generation related to storm volume reduces
the maximum ratio ofTQ/TP since it decreases the random-
ness of the runoff coefficients and increases the probability
to be in a wet situation. We also examine the relation be-
tween the return periods of the input and the output of the
design storm procedure when using a pre-selected runoff co-
efficient and the question which runoff coefficients produce
a flood return period equal to the rainfall return period. For
the systems analysed here, this runoff coefficient is always
larger than the median of the runoff coefficients that cause
the maximum annual floods. It depends on the average wet-
ness of the system and on the return period considered, and
its variability is particularly high when a threshold effect in
runoff generation is present.
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1 Introduction

In catchments with limited streamflow data or subject to ma-
jor land use changes, the estimation of the design flood, i.e.,
the largest flood that should be considered in the evaluation
of a given project, is typically performed using thedesign
storm procedure. In this procedure, a particular storm with
a known return period is used as an input to a rainfall-runoff
model (e.g.Pilgrim and Cordery, 1993, p. 9.13), and it is
then assumed that the simulated peak discharge has the same
return period as the storm (e.g.Packman and Kidd, 1980;
Bradley and Potter, 1992). This is a pragmatic assumption
but clearly not always correct because it does not account for
the role of different processes in determining the relation-
ship between the frequencies of the design rainfall and the
derived flood peak (Pilgrim and Cordery, 1975, p. 81). This
relationship, hereafter referred to asmapping of rainfall to
flood return periods, is the result of the interplay of many
controls which include storm rainfall intensity, storm dura-
tion, temporal and spatial rainfall patterns, and antecedent
soil moisture conditions.

Due to the complexity of the problem, we examine here
a simplified world in which the effects of the processes on
the mapping of return periods are more transparent than in
the real world. InViglione and Bl̈oschl(2009) we have con-
sidered the basic case where only the storm durations play
a relevant role. It was shown that, even in this very simple
situation, the mapping of return periods is not trivial: ex-
cept for very particular cases, the return period of the flood
peak is always smaller than the return period of the generat-
ing rainfall. This is in contrast with the observations in the
real world where, often, very extreme floods are produced by
storms whose magnitude is not so extreme (Gutknecht et al.,
2002; Reed, 1999, vol. 1, p. 32–33). The reason for this has
then to be searched among other factors than the variability
of storm durations. In this paper we focus on the role of the
antecedent conditions of the basin expressed by the variabi-
lity of the runoff coefficients.

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


578 A. Viglione et al.: On the role of the runoff coefficient in the mapping of rainfall to flood return periods

The event runoff coefficientis defined as the portion of
rainfall that becomes direct runoff during an event. In hydro-
logical modelling, it represents the lumped effect of a num-
ber of processes on the catchment soil moisture state (includ-
ing antecedent evaporation, rainfall and snowmelt) and hence
runoff. The concept of event runoff coefficients dates back
to the beginning of the 20th century (e.g.Sherman, 1932)
but it is still widely used for design in the engineering prac-
tice. The importance of this coefficient as a lumped indica-
tor of the runoff generation is also confirmed by the inter-
est of the scientific community in recent research (e.g.Naef,
1993; Gottschalk and Weingartner, 1998; Dos Reis Castro
et al., 1999; Cerdan et al., 2004; Merz et al., 2006; Merz and
Blöschl, 2009).

Many studies on the design storm method (e.g.Sieker
and Verworn, 1980; Packman and Kidd, 1980; Pilgrim and
Cordery, 1993; Alfieri et al., 2008) have concentrated on the
choice of the design event, trying to fit its parameters in a way
that the correspondence of storm and flood return periods is
achieved in the real world. Concerning the runoff coefficient,
the choice is usually made considering “average antecedent
conditions” for the catchment (Pilgrim and Cordery, 1975,
1993). The use of the median value, for example, is moti-
vated by the fact that the probability of occurrence of higher
and lower values of the runoff coefficient would be equal.
As stated inPilgrim and Cordery(1993, p. 9.13) the “use of
these median values in design should minimize the problem
of joint probabilities and produce a flood estimate of similar
probability to that of the design rainfall”.

Rather than focusing on the design event, in this paper we
are interested in the relationship between the return periods
of the “occurring storms” and the corresponding flood peaks
(which was also the topic ofViglione and Bl̈oschl, 2009).
Our focus is on the hydro-meteorological system, and all
the events that may occur are considered as potential design
events. In our analysis, different artificial worlds are mod-
elled assuming simple hypotheses for the controlling pro-
cesses (block rainfall and linear catchment response) from
which the relationship between rainfall and flood return peri-
ods is derived. Concerning the runoff coefficients, two main
situations are considered: (1) the event runoff coefficients
vary independently of the storm characteristics, meaning that
they are completely determined by the antecedent conditions;
(2) the event runoff coefficients are related to the volume
of the flood producing storm, i.e., the storm that causes the
flood. In both cases we analyse the relationship between the
runoff coefficient and the mapping of return periods using
both Monte-Carlo simulations and analytical derivations in
the domain of frequency distributions. For the simplified
worlds analysed here, we also derive the relation between the
return periods of the input and the output of the design storm
procedure when using a pre-selected runoff coefficient and
the event runoff coefficient for which the one-to-one map-
ping is achieved and that should be used in the design storm
procedure.

We first summarise the design storm procedure and define
the storm return period. We then present the methods used
and provide one example system of the mapping of return
periods to illustrate the methods. In the results section we
compare different systems with different distributions of the
runoff coefficient.

2 Design-storm procedure and definition of storm
return period

The idea of the design storm procedure is to estimate a flood
of a selected return period from rainfallintensity-duration-
frequency(IDF) curves for the site of interest. In many cases,
the hydrological engineer has standard IDF curves available
for the site but it is important to understand the procedure
used to develop them. For each duration selected, the annual
maximum rainfall intensity is extracted from historical rain-
fall records. Then frequency analysis is applied to the annual
data obtaining a return period for each intensity and duration.
What is termed “duration” in the procedure is in fact not a
storm duration but an aggregation time interval, oraggrega-
tion level. For example, if hourly rainfall data are available
and one is interested in the IDF curve for an aggregation level
tIDF=3 h, one runs a moving averaging window of widthtIDF
over the hourly data and extracts the largest 3-h average of
each year to do the frequency analysis. The moving averag-
ing procedure is equivalent to convoluting the rainfall time
series with a rectangular filter (with a base of 3 h in the ex-
ample). Using the wording ofKoutsoyiannis et al.(1998),
the problem of the construction of the IDF curves is not a
problem of statistical analysis of a single random variable,
as it includes two variables, intensity and aggregation level.
Nor is it a problem of two random variables, becausetIDF is
not a random variable. It consists of the study of a family of
random variables, the maximum-annual average intensities
of rainfall over different time intervalstIDF.

The way the design storm method is applied varies con-
siderably between countries (see e.g.DVWK, 1999; Pilgrim,
1987; Houghton-Carr, 1999) but the main components of the
procedure can be summarised as following:

1. Selection of many storms of different durations read-
ing off their mean intensities from the IDF curve corre-
sponding to the return periodTP of interest. As noted
above, rainfalls from the IDF curves do not represent
complete storms but are from intense bursts within these
storms. The storm durationtr may hence differ from the
aggregation leveltIDF used to read off the intensity from
the IDF curve. However, in many cases storm duration
is chosen equal to the aggregation level (seeChow et al.,
1988, for details).

2. Application of rainfall time patterns to these storms
(design hyetograph). Rigorously, the design temporal
patterns need to be appropriate for the intense bursts
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within storms, and not for complete storms (Pilgrim and
Cordery, 1993, p. 9.13) but, again, in practice these two
are often set equal.

3. Application of spatial patterns to rainfall or, more sim-
ply, of an areal reduction factor for catchment area.

4. Transformation of the design storm to a flood hydro-
graph using an event based runoff model calibrated for
the catchment of interest and with chosen initial soil
moisture conditions (which, in simple models, are rep-
resented by the event runoff coefficient).

5. Selection of the maximum flood peak of the flood hy-
drographs produced by storms of different durations.

It is then assumed that this flood peak has a return periodTQ

equal toTP .
When analysing occurring storms, thestorm return period

is defined as the return period which would be assigned to
the storm event if it were used as input to the design storm
procedure. It is indeed the maximum return period that can
be assigned to a rainfall event when considering different ag-
gregation levels, i.e., the return period read off the IDF curve
for the aggregation level corresponding to the main burst of
the storm, and hence equal toTP .

In the real world applications of the design storm proce-
dure, there is no rigorous solution to the problem of choos-
ing the design parameters (i.e., the shape of the hyetograph,
the rainfall-runoff model parameters, etc.) in a way thatTQ

matchesTP because of the large number of controls that are
difficult to understand. In contrast, when a simplified world
is assumed, the exact mapping of rainfall to flood return peri-
ods can be derived. In the case of block rainfall, as assumed
here, the total rainfall event and the main burst are indeed
identical, so the aggregation level used to evaluate the re-
turn period of a storm is equal to the duration of that storm
(tIDF=tr ).

3 Method and one example system

We use here a simplified version of the rainfall and rainfall-
runoff models presented inSivapalan et al.(2005). Essen-
tially, the rainfall model consists of uniform and independent
events whose durationstr and intensitiesi are random and
mutually dependent. Other factors such as multiple storms,
within-storm intensity patterns, seasonality and spatial vari-
ability of the rainfall intensities are deliberately neglected
for clarity. The lumped rainfall-runoff model considers the
runoff routing component as a linear reservoir with response
time tc, with variable event runoff coefficients and without
accounting for a base flow component. The runoff coeffi-
cient is always assumed constant during the event but is al-
lowed to vary between events. In AppendixA more details
on the rainfall and rainfall-runoff models are provided.

To be consistent with the design storm method, the return
periodTP of a block storm of durationtr is defined as the
inverse of the exceedance probability of its intensityi on the
distribution of maximum annual rainfall intensities averaged
over the aggregation leveltIDF=tr (seeViglione and Bl̈oschl,
2009). TQ is the inverse of the exceedance probabi-lity of
one flood peak on the distribution of maximum annual flood
peaks obtained by the model. The mapping of rainfall to
flood return periods is described by graphs that relate the
storm return periodTP to the return periodTQ of the cor-
responding flood peak (i.e., the same event).

We use two approaches to derive flood frequencies from
rainfall: Monte-Carlo simulations and an analytical ap-
proach. In Fig.1 a comparison between the two approaches
is provided for one particular system. To produce Panels (a)
and (b), the following Monte-Carlo approach has been used:

1. Synthetically generateN years (e.g.N=100 000) of
rainfall events using the rainfall model of AppendixA
(Eqs.A1 andA4);

2. Calculate the IDF curves from all storms;

3. For each event, draw a runoff coefficientrc from a beta
distribution (see Sect.4) and apply it to calculate runoff
(Eq.A8 in AppendixA);

4. Scan the resulting events and pick the largest flood peak
and the flood producing storm (i.e., the storm responsi-
ble for this flood) for each year;

5. Calculate the return period of all the flood peaks by the
Weibull plotting position formula;

6. Evaluate the return periodTP of the flood producing
storms comparing their intensities with the IDF values
corresponding to their durations (fortIDF=tr ).

The points in Fig.1a show the 100 000 maximum annual
floods. The colours represent the event runoff coefficients:
dark blue corresponds to large runoff coefficients, light yel-
low to low runoff coefficients. As would be expected, the
dark blue points concentrate in the upper part of the graph,
meaning that high runoff coefficients are responsible for high
flood return periods. However, a number of large runoff co-
efficients are associated with lowTQ because the durations
of these storms are very different from thecritical storm du-
ration t∗r (seeViglione and Bl̈oschl, 2009).

Panel (b) has been obtained by slicing Fig.1a by horizon-
tal planes, and plotting the ratio between the return periods
TQ/TP vs. the storm duration normalised by the basin re-
sponse time (tr/tc). For the slices, flood return periods be-
tween 50 and 200 years have been selected to represent the
TQ≈100 years case. As explained inViglione and Bl̈oschl
(2009), the maximum of the return period ratios is due to the
interplay between catchment processes and rainfall processes
and occurs at a critical storm durationt∗r . The maximum oc-
curs for the highest runoff coefficients.

www.hydrol-earth-syst-sci.net/13/577/2009/ Hydrol. Earth Syst. Sci., 13, 577–593, 2009



580 A. Viglione et al.: On the role of the runoff coefficient in the mapping of rainfall to flood return periods

Fig. 1. Relationship between rainfall return periodsTP and flood return periodsTQ: Monte-Carlo simulation vs. analytical derivation.
Panel (a) shows the mapping of return periods obtained simulating 100 000 years of events. Events characterized by high runoff coefficients
rc are dark-blue while lowrc events are represented in light-green. In Panel (c) the same system is analysed by the derivation in the domain
of frequency distributions. Each line corresponds to events with the same runoff coefficient (colour) and the same storm duration (line-type).
Horizontal slices forTQ=100 years are represented in terms ofTQ/TP in Panels (b) and (d) as a function of the storm durationtr normalised
by the basin response timetc.

Panels (c) and (d) depict the same situation, but the deriva-
tion is performed in the domain of the frequency distribu-
tions. We use the same approach explained inViglione and
Blöschl(2009), with the only difference that the runoff coef-
ficients rc are allowed to vary randomly (see AppendixB)
while Viglione and Bl̈oschl (2009) used a constant runoff
coefficient. Random runoff coefficients make the analytical
derivation of the flood frequency distribution more complex
(see AppendixB1) while the IDF-based methodology is the
same as presented inViglione and Bl̈oschl(2009) (see Ap-
pendixB2). In Fig.1c the mapping ofTP andTQ is evaluated
for five runoff coefficients (rc=0.2, 0.4, 0.6, 0.8, 1) and six
storm durations (tr/tc=1/2, 1, 2, 3, 5, 10). This gives thirty
lines with colours relating torc (as in Panel a) and line-types
relating totr . The figure clearly shows that the mapping of
the return periods is a function of bothtr andrc. In particular,
theenvelope curve, corresponding to the most critical events,
has runoff coefficients equal to 1 and a critical storm dura-
tion t∗r . This curve is a maximum that cannot be exceeded

(for any durationtr and runoff coefficientrc). The analytical
derivation gives the relationship betweenTP andTQ of any
event of giventr andrc in a particular system, correspond-
ing to the application of the design storm method, but gives
no information about the probability that such an event hap-
pens. An estimation of this probability can be obtained from
the Monte-Carlo simulation of Panel (a), as it is related to the
density of points.

Panel (d) is analogous to Panel (b) but shows the maximum
more clearly to occur around a critical duration oft∗r ≈1.8 tc
for all the runoff coefficients. This is similar to the case of
constant runoff coefficients and is explained inViglione and
Blöschl(2009).

4 Results: comparison between systems

Different hypotheses on the distribution of the runoff coef-
ficient rc are formulated in the following. Two main situa-
tions are considered: in Sect.4.1 the event runoff coefficient
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Fig. 2. Relationship between rainfall return periodsTP and flood return periodsTQ for two possible runoff coefficientsrc1<rc2. Panel (a)
– Mapping of return periods and envelope curves forrc1=0.45 (dashed line) andrc2=0.55 (continuous line) with equal probabilities
p(rc1)=p(rc2)=0.5; Panel (b) – Horizontal slice of Panel (a) in terms ofTQ/TP for TQ=100; Panels (c) and (d) – Sensitivity to the ra-
tio rc1/rc2 (only the envelope curves are drawn) whenp(rc1)=p(rc2)=0.5; Panels (e) and (f) – Sensitivity to the ratio of probabilities
p(rc1)/p(rc2) (only the envelope curves are drawn) whenrc1=0.45 andrc2=0.55. In all the figures, we use colours when one system is
represented and the grey scale when many systems are compared.

varies independently of the storm characteristics, while in
Sect.4.2 it is related to the volume of the flood producing
storm through a threshold effect. The first case is moti-
vated by the results ofMerz and Bl̈oschl(2009) that indicate
that the runoff coefficients tend to be more controlled by an-
tecedent soil moisture than by rainfall event characteristics.
The second case is motivated by the importance of threshold
effects in runoff generation reported in the literature (West-
ern et al., 1998; Zehe and Bl̈oschl, 2004; Struthers and Siva-
palan, 2007; Zehe et al., 2007; Kusumastuti et al., 2007). In
both cases, we analyse first the simple situation where only
two runoff coefficients can occur, which is a small exten-
sion to the constant runoff coefficient case ofViglione and
Blöschl(2009). Next we analyse the more realistic case of
continuous variability of the runoff coefficients. Finally, we
examine what is the result of different choices for the runoff
coefficient in the design storm method and what runoff coef-
ficients give a 1:1 correspondence ofTP andTQ.

4.1 Event runoff coefficients independent of the event
storms

4.1.1 Two possible runoff coefficients

Suppose that only two runoff coefficientsrc1=0.45 and
rc2=0.55 are possible with occurrence probabilities
p(rc1)=p(rc2)=1/2. A Monte-Carlo simulation of such
a situation is shown in Fig.2 (Panels a and b), where the
light-green points representrc1=0.45 and the dark-green
pointsrc2=0.55. Obviously, for a given storm intensity and
duration, the events withrc2 produce larger floods. The two
black envelope curves in Panel (a) are derived analytically.
They represent the result of the design storm procedure in
such a system when usingrc1 (dashed line) orrc2 (continu-
ous line) as design runoff coefficient. The situation is also
shown as a slice withTQ≈100 years (Panel b). Similar to the
case of constant runoff coefficients (Viglione and Bl̈oschl,
2009), the ratio between the return periods increases with
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storm duration, reaches a maximum, and decreases for
larger durations. The maximum is reached attr/tc≈1.8 for
the events with the large runoff coefficientsrc2. However,
TQ/TP is always below 1 which is a similar result as the
constant runoff coefficient case of (Viglione and Bl̈oschl,
2009).

In Panels (c) and (d) different systems are compared in
order to investigate the sensitivity to the ratiorc1/rc2 of the
mapping of the return periods using the analytical derived
distribution approach. In Panel (c) the two envelope curves
are shown for each system: the curve of the events with crit-
ical storm durationt∗r and the small runoff coefficientrc1

(dashed lines), and the curve of the events with critical storm
durationt∗r and the large runoff coefficientrc2 (continuous
lines). The light-grey curve corresponds torc1=rc2 and is the
one obtained inViglione and Bl̈oschl (2009) (i.e., constant
runoff coefficients). Forrc1=0.8rc2 there is a separation into
two curves, one above and one below the light-grey line of
the basic system with constant runoff coefficient. By increas-
ing the difference betweenrc1 andrc2, the distance between
the upper and the lower curves increases but the maximum
TQ/TP does not exceed a threshold that is almost always be-
low the 1 to 1 line. The same situation is reflected in Panel (d)
consideringTQ=100 years and different storm durations.

Figure2e and f examine instead different occurrence pro-
babilities p(rc1) and p(rc2) when rc1=0.45 andrc2=0.55.
In the “drier system”, where the probability of ha-
ving a low runoff coefficient is high (p(rc1)/p(rc2)=10),
the ratio TQ/TP is greater than in the “wetter system”
(p(rc1)/p(rc2)=0.1). This could appear as counter intuitive
but has a simple justification: in the wetter system it is nor-
mal to have the high runoff coefficientrc2 so that heavy
floods are not particularly rare. In contrast, in the drier
system, occurrence of a large runoff coefficientrc2 is rare
and corresponds to a very unusual event (and to higherTQ).
Therefore, the envelope curve is high and can even exceed
the 1:1 line.

4.1.2 Continuous distribution of runoff coefficients

Assume the runoff coefficientsrc of all the events to be a
random variable, modelled according to the beta distribution
as inGottschalk and Weingartner(1998):

fR(rc) =
1

B(u, v)
ru−1
c (1 − rc)

v−1 0 < rc < 1 , (1)

whereB(u, v) is the incomplete beta function. Given the
meanδc and standard deviationσc of the runoff coefficients,
the parametersu andv of the beta distribution can be esti-
mated as

u =
δ2
c (1 − δc)

σ 2
c

− δc , (2)

v =
δc(1 − δc)

2

σ 2
c

− (1 − δc) . (3)
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Fig. 3. Average runoff coefficient̂δc vs. coefficient of variation
ĈVc (red crosses) for 459 Austrian catchments (Fig. 1 inMerz
and Bl̈oschl, 2009). The values ofδc and CVc corresponding to
the grey circles are used as parameters for the systems analysed in
Sect.4.1.2.

In order to consider a realistic range of distributions for
the runoff coefficient, we used the database collected inMerz
and Bl̈oschl(2009) that consists of 64 461 events in 459 Aus-
trian catchments. In Fig.3 the sample coefficient of variation
ĈVc is plotted against the sample mean event runoff coeffi-
cientsδ̂c for each Austrian catchment (red crosses). There is
a clear decreasing trend of CV with increasing mean runoff
coefficients (continuous black line), meaning that in catch-
ments where runoff coefficients tend to be large, the vari-
ability between the events is small. On the other hand, in
catchments where runoff coefficients tend to be small, events
with runoff coefficients much greater than the mean can oc-
cur, which results in a much higher CV.

Figure 4 compares three different systems characterised
by different distributions ofrc: panels (a) and (b) represent
a dry system havingδc=0.1 andσ 2

c =0.009 (CVc=0.95), Pa-
nels (c) and (d) a wetter system withδc=0.3 andσ 2

c =0.038
(CVc=0.65), and Panels (e) and (f) a very wet system with
δc=0.7 andσ 2

c =0.022 (CVc=0.21). These three systems cor-
respond to three of the grey points in Fig.3 (respectively the
first, the third and the last, starting from left). The simulated
runoff coefficients are indicative of the type of system: the
dry system has lower runoff coefficients (i.e., yellow, light-
green colours), while the wet system has higher runoff co-
efficients (i.e., dark-green, blue colours). Looking at these
graphs one question immediately arises: why does the dry
system have higherTQ/TP ? One would have expected the
contrary with larger runoff coefficients and hence larger flood
peaks in the wet system. The explanation is analogous to the
one given for the case of two possible runoff coefficients with
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Fig. 4. Relationship between rainfall return periodsTP and flood return periodsTQ for beta distributed runoff coefficientsrc independent
from the rainfall events. The three upper Panels (a), (c) and (e) represent the mapping ofTP vs. TQ. The crosses are obtained by Monte-
Carlo simulations (100 000 years). The envelope curves (continuous lines) are calculated analytically. The three lower Panels (b), (d) and
(f) represent one horizontal slice (TQ=100 years) of Panels (a), (c) and (e) respectively in terms of the ratio of return periodsTQ/TP . The
parameters of the beta distribution are: Panels (a) and (b) – Dry system with average runoff coefficientδc=0.1 and varianceσ2

c =0.009
(CVc=0.95); Panels (c) and (d) – Wetter system withδc=0.3 andσ2

c =0.038 (CVc=0.65); Panels (e) and (f) – Very wet system withδc=0.7
andσ2

c =0.022 (CVc=0.21).

different probabilities. In the wet system, the flood peaks
are indeed higher, because of the higherrc, but high flood
peaks are frequent (i.e.,TQ is not particularly high). In con-
trast, havingrc≈1 in the dry system is rare and corresponds
to very unusual events (resulting in highTQ), i.e., in dry sys-
tems the effect of the event runoff coefficient on the flood
return period is larger than in wet systems. The black enve-
lope curves of Fig.4, for the critical storm durationt∗r and
rc=1, are calculated by the analytical approach. The distance
between these curves and the simulated events, particularly
evident in the dry system of Panels (a) and (b), is related to
the probability that such extreme events happen.

4.1.3 Choice of the runoff coefficient in the design storm
method

In the engineering practice, when applying the design storm
procedure, one is usually interested in obtaining flood peaks
with the same return period as the input storms. In

this section, we examine what is the result of the design
storm method when choosing different runoff coefficients.
In particular we comment on the result of the design storm
method when choosing the commonly used median value of
rc showing that generally, in our simplified world, this does
not give the correspondenceTQ=TP . What runoff coeffi-
cients need to be selected in order to obtain this correspon-
dence is calculated for different systems.

The coloured lines of Fig.5show the mapping correspond-
ing to the critical storm durationt∗r (i.e., the result of the
design storm method) when differentrc are selected for the
three systems (dry, wet, very wet) analysed in Fig.4. The
spacing between these lines is a measure of the sensitivity
of the design storm method to the choice of the runoff co-
efficient. In the dry system, the result of the design storm
method changes a lot for small variations ofrc, much more
than in the wet case. Moreover, once the designrc is chosen,
the ratioTQ/TP for the dry case is not a constant but highly
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Fig. 5. Relationship between rainfall return periodsTP and flood return periodsTQ resulting from the application of the design storm method
for beta distributed runoff coefficientsrc independent from the rainfall events, as in Fig.4. The coloured lines correspond to the critical storm
duration and the runoff coefficientrc ranges from 0.1 to 1 with intervals of 0.1; the black line corresponds to the critical storm duration and
the median flood producing runoff coefficient.

depends on the desiredTQ. In the wet case of Panel (c) this
dependence is much weaker. This is a general result: in
dry systems, great emphasis should be given to the correct
choice of the design runoff coefficient when applying the de-
sign storm method, much more than in wet systems.

The black line in Fig.5 refers to the medianflood pro-
ducing runoff coefficient, which is the median value of the
runoff coefficients of the maximum annual flood events. In
all three cases, using the median runoff coefficients produces
flood return periods that are different from the rainfall re-
turn periods. Reading the graphs, the black line provides
the storm return periodTP that should be considered to ob-
tain a flood return periodTQ when using the median flood
producing runoff coefficient in the three systems. In the dry
system, one should use a value ofTP close to 1000 years to
obtainTQ=100 years and the ratioTQ/TP changes a lot de-
pending on the desiredTQ (i.e.,TP should be chosen smaller
than TQ for TQ<10 years). In the wet case, instead, one
should always chooseTP >TQ, e.g. TP ≈300 years to have
TQ=100 years.

Note that the median runoff coefficient highlighted as the
black line in Fig.5 is different from the median of the dis-
tribution of runoff coefficients of all flood events (Eq.1)
as only a small fraction of all events are maximum annual
events. Figure6 shows the transition from the parent distri-
bution (all events,fR(rc) of Panel a) to the flood producing
distribution (maximum annual events,f ∗

R(rc) of Panel b) of
the runoff coefficients. The darkest grey shade represents
the driest system, and the lightest grey shade represents the
wettest system, using the same grey scale as for the points in
Fig. 3.

The runoff coefficientsr1:1 (for whichTP =TQ) have been
back calculated from the results in Fig.5 and are shown in
Fig.7a for the seven systems corresponding to the seven grey
points in Fig.3. Obviously, there is a big difference between

Fig. 6. Distributions of the runoff coefficients corresponding to the
grey points in Fig.3. Panel (a) – Parent distributions of the runoff
coefficientsfR(rc); Panel (b) – Distributions of the flood producing
runoff coefficientsf ∗

R
(rc).

the runoff coefficients that should be used for the different
cases: r1:1 has low values for the dry systems and high
values for the wet systems. Moreover, as already emerged
from Fig. 5, r1:1 varies with the return period considered: it
increases with increasing magnitudes of the event, especially
in the driest systems.
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Fig. 7. Runoff coefficientsr1:1 that give a 1 to 1 correspondence between rainfall and flood return periods plotted against return period.
Panel (a) – Runoff coefficientr1:1; Panel (b) – Non-exceedance frequency ofr1:1 on the parent distributions ofrc; Panel (c) – Non-exceedance
frequency ofr1:1 on the distribution of the flood producing runoff coefficients. The parent beta distributions correspond to the seven grey
points in Fig.3 (from dry to wet systems).

Panel (b) represents the probability of non-exceedance of
r1:1 corresponding to the parent distributions ofrc (i.e., all
events) in Fig.6a. For all wetness conditions and return
periods, the non-exceedance probabilityFR(r1:1) of r1:1 is
around 0.9 and decreases slightly with increasing wetness of
the system.

The patterns of the probability of non-exceedance ofr1:1
corresponding to the distribution of the flood producing
runoff coefficientsf ∗

R(rc) (i.e., only the maximum annual
events) is more complex. It is shown in Panel (c) and relates
to Fig. 6. There is no unique non-exceedance probability of
the runoff coefficients that give a 1:1 correspondence ofTP

and TQ, which depend significantly on the wetness of the
system and the return period. For the driest system,F ∗

R(r1:1)

significantly depends on the return period (ranging from 0.5
to 0.8), while it is almost constant and close to 0.8 for the
wettest system. In all cases, however, it is evident thatr1:1 is
greater than the median value off ∗

R(rc), that is represented
by the black line in Fig.5 and that would be used in a com-
mon application of the design storm method.

4.2 Non-linear relationship between flood runoff coeffi-
cients and event storm volumes: the threshold effect

Up to this point, the runoff coefficients were assumed to vary
randomly, independent of storm characteristics. This sec-
tion now considers a situation in which the runoff coefficient
is dependent on the overall storm volumeV =i tr through
a threshold effect. Specifically, we assume that, below a
fixed threshold volumeV ∗, the average runoff coefficient is
low, while aboveV ∗ the average runoff coefficient is large.
Hydrologically, this threshold effect represents, for exam-
ple, the transition from saturation excess runoff to infiltra-
tion excess runoff, the activation of macropores beyond a
moisture threshold, the onset of subsurface stormflow once

the catchment soil moisture exceeds a threshold, or the esta-
blishment of connected flow paths within a catchment (West-
ern et al., 1998; Zehe and Bl̈oschl, 2004; Struthers and Siva-
palan, 2007; Zehe et al., 2007; Kusumastuti et al., 2007).

4.2.1 Two possible runoff coefficients

We, again, first consider the simple case where only two
runoff coefficientsrc1<rc2 are possible. In Fig.8, if V is un-
der the thresholdV ∗, the runoff coefficient isrc1, otherwise
it is rc2. This means thatrc is deterministically related to the
storm volume, i.e.,rc is not fully random because its vari-
ability is determined by storm randomness. Panels (a) and
(b) show the events obtained by a Monte-Carlo simulation
of 100 000 years. As in Fig.2 the light-green points repre-
sentrc1=0.45 and hence correspond to storms with volumes
V <V ∗ (with V ∗=100 mm), while the dark-green points re-
presentrc2=0.55 and volumes larger than the threshold. In
Panel (b) the deterministic relationship between runoff coef-
ficients and storm event volumes is clearly represented for
a flood return period of 100 years. Short storms, that have
smaller volumes, are associated withrc1 and produce lower
flood peaks. The transition to the long storms, responsible for
the highest floods, is abrupt and is characteristic of the non-
linearity of the model. The continuous lines show the results
of the analytical derivation: in Panel (a) only the envelope
curve is plotted; in Panel (b) the relationship(TP , TQ, tr) is
represented forTQ=100 years. The shapes of the two graphs
are due to the fact that the rainfall event volume depends on
the rainfall intensity, which explains the subdivision between
rc1 andrc2 in Panel (a), and on its duration, which explains
the two peaks in Panel (b). In Panel (b) the transition between
the two runoff coefficients is a short segment which we term
separation line.
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Fig. 8. Relationship between rainfall return periodsTP and flood return periodsTQ for two possible runoff coefficientsrc, where the highest
one occurs when the storm volume is over the thresholdV ∗ [mm]. The three upper Panels (a), (c) and (e) represent the mapping ofTP vs.
TQ. The crosses are obtained by Monte-Carlo simulation (100 000 years). The three lower Panels (b), (d) and (f) represent horizontal slices
(TQ=100 years) of Panels (a), (c) and (e) respectively in terms of the ratio of return periodsTQ/TP . Panels (c) and (d) show the sensitivity to
the ratio betweenrc1 andrc2; Panels (e) and (f) show the sensitivity to the thresholdV ∗. In Panels (a), (b), (e) and (f)rc1=0.45 andrc2=0.55.

Panels (c) and (d) examine the sensitivity of the map-
ping to the ratio betweenrc1 and rc2 for a given threshold
V ∗=100 mm. If the ratio between the two runoff coefficients
is far from unity (i.e., the runoff coefficients are dissimi-
lar) the transition betweenrc1 andrc2 of the envelope curves
shown in Panel (c) happens for small return periods. Looking
at the horizontal slices of Panel (d), the difference between
TP andTQ under and above the threshold is very different for
different systems, but the separation line is always the same,
as it is a consequence of the threshold only.

It is also of interest to examine the sensitivity to the
threshold value. For very low and very high thresholds,
the mapping of the return periods is the same (not shown
here), because the systems have essentially only one pos-
sible rc and the situation is the one examined inViglione
and Bl̈oschl(2009). In the transition between these two ex-
tremes (Panels e and f of Fig.8) the envelope curve is slightly
higher than in the case of a single runoff coefficient, be-
cause the nonlinear threshold effect introduces some degree
of variability of rc. Panel (f) shows how the separation line

depends on the threshold. For low thresholds, the line is part
of the rising limb of the graph while for large thresholds it is
part of the decreasing limb (viewed from left to right). The
maximum ratioTQ/TP occurs when the separation line stays
close to the critical storm duration.

4.2.2 Continuous distribution of runoff coefficients

To account for the random nature ofrc, the following as-
sumption is made: ifV is under the thresholdV ∗, then the
runoff coefficient follows a beta distribution with meanδc1

and standard deviationσc1; otherwise the mean isδc2 and the
standard deviationσc2. This means that the threshold volume
V ∗ splits the(i, tr) space into two regions whererc has two
different distributions (see Fig.B1 in AppendixB).

Some examples are given in Fig.9 that depicts three sys-
tems where the difference between the distributions ofrc un-
der and over the threshold is large. Below the threshold the
system tends to be dry (δc1=0.2,σ 2

c1
=0.024), while it tends to

be wet when the threshold is exceeded (δc2=0.6,σ 2
c1

=0.035).
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Fig. 9. Relationship between rainfall return periodsTP and flood return periodsTQ for beta distributed runoff coefficientsrc dependent
on the storm volumeV . Below the threshold the system tends to be dry (δc1=0.2,σ2

c1
=0.024), while it tends to be wet if the threshold is

exceeded (δc2=0.6,σ2
c1

=0.035). The sensitivity to the thresholdV ∗ [mm] is analysed. The three upper Panels (a), (c) and (e) represent the
mapping ofTP vs.TQ. The crosses are obtained by Monte-Carlo simulation (100 000 years). The three lower Panels (b), (d) and (f) represent
horizontal slices (TQ=100 years) of Panels (a), (c) and (e) respectively in terms of the ratio between return periodsTQ/TP .

In Panels (a) and (b) the thresholdV ∗ is high, meaning that
the wet behaviour is less probable. This leads to a high en-
velope curve. In Panels (e) and (f), instead, the envelope
curve is lower because the wet behaviour of the system is
more probable (lower threshold). Panels (c) and (d) depict
an intermediate situation. Similar to the case of two runoff
coefficients, the abrupt switch caused by the threshold can
be clearly recognised. The horizontal slices of Panels (b), (d)
and (f) show that the separation line exists and corresponds
to the change of density of the points. The position of the
line is related to the thresholdV ∗.

In Panels (b) and (d) the critical storm durationt∗r (i.e.,
where the maximum ofTQ/TP occurs) corresponds to storm
volumes far below the thresholdV ∗. This means that, for
storms of durationt∗r , the runoff coefficients belong to the
distribution typical of dry systems, and events withrc≈1
happen rarely. Fortr longer thant∗r , V is greater thanV ∗ and

rc≈1 can be more easily reached. If the threshold is lower,
see Panel (f),t∗r is closer to the separation line, which is the
reason why the envelope curve in Panel (e) is closer to the
simulated events (highrc can be easily reached) than in Pan-
els (a) and (c).

Figure10 shows the effect of the threshold on the parent
and the flood producing distributions of the runoff coeffi-
cients. The parent distributionfR(rc), is hardly affected by
the threshold (Panel a) causing only a small increase in the
thickness of the right tail of the distribution. In contrast, the
threshold significantly affects the distribution of flood pro-
ducing runoff coefficientsf ∗

R(rc) (Panel b). This is because
the flood producing storms have significant volumes to ex-
ceed the threshold regularly, while the relative number of to-
tal storms exceeding the threshold is small. For the same
reason, the effect is more pronounced for small thresholds
than it is for large thresholds.
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Fig. 10. Distributions of the runoff coefficients corresponding to
different threshold valuesV ∗. Below the threshold the system tends
to be dry (δc1=0.2,σ2

c1
=0.024), while it tends to be wet if the thresh-

old is exceeded (δc2=0.6,σ2
c1

=0.035). Panel (a) – Parent distribu-
tions of the runoff coefficientsfR(rc); Panel (b) – Distributions of
the flood producing runoff coefficientsf ∗

R
(rc).

4.2.3 Choice of the runoff coefficient in the design storm
method

The coloured lines of Fig.11show the mapping correspond-
ing to the critical storm durationt∗r (i.e., the result of the
design storm method) when differentrc are selected for the
three systems analysed in Fig.9. The black line refers to the
median flood producing runoff coefficient. In all three cases,
using the median runoff coefficients produces flood return
periods that are very different from the rainfall return periods.
Comparing Fig.11with Fig.5, one sees that the ratioTQ/TP

strongly depends on the desiredTQ when the threshold effect
is present. This would be expected because of the different
percentage of under-threshold and over-threshold events for
different values ofTQ (see Fig.9, Panels a, c, d), i.e., dif-
ferent mechanisms dominate for different flood magnitudes.
The graphs can be used to selectTP so that the design storm
method results in a flood with the desired return periodTQ.
If considering the median flood producing runoff coefficient,
with a valueTP =1000 years one would obtainTQ≈70 years
in the system with high threshold, while one would obtain
TQ≈20 years only in the system with low threshold volume.
This is a clear example of how wrong can be the assumption

TQ=TP of the design storm method when the design runoff
coefficient is not correctly selected.

In Fig. 12a the runoff coefficientr1:1, for which TP =TQ,
has been derived for different values of the threshold. The
darkest line (V ∗=160 mm) is very close to the line with
δc=0.2 in Fig.7a. Because of the high thresholdV ∗ the sys-
tem is almost always in the dry condition. The value ofr1:1
increases for decreasing thresholds from about 0.4 to about
0.8. This is because the systems change to increasingly prob-
able wet conditions. In the limiting case ofV ∗=0 (not shown
here)r1:1 would correspond to the line withδc=0.6 in Fig.7a
(i.e.,r1:1 of about 0.8). In all the intermediate cases, because
of the non-linearity of the threshold effect,r1:1 varies a lot
for varying return periods.

Panel (b) represents the probability of non-exceedance of
r1:1 in the parent distributions ofrc, i.e., the ones represented
in Fig. 10a. The runoff coefficient to be used in the driest
system corresponds to the lowest quantile offR(rc), and in-
creases for increasing wetness of the system. This is because
the parent distribution ofrc does not vary much with decreas-
ing thresholdV ∗, so that higher values ofr1:1 correspond to
higher quantiles (that was not the case in Fig.7). Moreover
r1:1 is always greater than the 90% quantile (FR(r1:1) is be-
tween 0.9 and 1).

A similar behaviour is shown in Panel (c), representing
the probability of non-exceedance ofr1:1 in the distribu-
tion of the flood producing runoff coefficientsf ∗

R(rc) (see
Fig. 10b). Here the non-exceedance probabilities range be-
tween 0.5 and 0.9 and increase with decreasing threshold.
For example, if one is to match the return periods for the
case ofTQ=TP =100 years, for a threshold of 160 mm one
would have to choose a runoff coefficient that is exceeded in
35% of the maximum annual events, while for a threshold of
60 mm one would have to choose a runoff coefficient that is
exceeded in less than 10% of the maximum annual events.
If one considers the dry and wet systems of Fig.7c corre-
sponding to the situations below and above the threshold, the
respective percentages range between around 35% and 30%
depending on the average wetness of the system. In all cases
r1:1 is greater than the median value off ∗

R(rc) that is usually
recommended for design flood applications.

4.3 Biases in the design storm method when assuming
TQ=TP and the medianrc

Although the focus of the paper is on return periods (i.e.,
on probabilities), a practical question related to our analy-
sis of the design storm method arises: how far is theTQ-
year flood peak quantileqTQ

from the flood peak̂qTQ
ob-

tained when applying the design storm method? We consider
here the common application of the method, i.e., we assume
TQ=TP and we choose the median flood producing runoff
coefficient as design value. In Table1 the percentage bias
100(q̂TQ

/qTQ
−1) has been calculated for different systems

and different return periods. The three systems of Figs.4 and
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Fig. 11. Relationship between rainfall return periodsTP and flood return periodsTQ resulting from the application of the design storm
method for beta distributed runoff coefficientsrc dependent on the storm volumeV , as in Fig.9. The coloured lines correspond to the critical
storm duration and the runoff coefficientrc ranges from 0.1 to 1 with intervals of 0.1; the black line corresponds to the critical storm duration
and the median flood producing runoff coefficient.

5 (dry–wet) and the three systems of Figs.9 and11 (high–
low threshold) have been considered. The percentage biases
of estimation ofqTQ

are consistent with the mapping of the
return periods represented by the black lines in Figs.5 and
11. For the dry system, the design storm method under-
estimatesqTQ

moderately (−2.8%) when the return period
of interest is 10 years but considerably more (−30%) when
TP =1000 years. On the other hand, in the wet system the bias
is essentially non-affected by the desired return period and is
approximately always equal to−10%. When a threshold ef-
fect in runoff generation is present, the bias of estimation of
qTQ

is generally greater than in the no-threshold cases. This
can also be observed qualitatively comparing Figs.5 and11.
The difference between percentage biases for low–high val-
ues of the desired return period is more pronounced when
the threshold is high (i.e., when the dry situation dominates),
ranging from −4.9% whenTP =10 years to−41% when
TP =1000 years. When the threshold is low (i.e., when the
wet situation dominates), this difference is less evident: the
percentage biases range from−26% whenTP =10 years to
−44% whenTP =1000 years. This means that in a practi-
cal case of a true design value of, say,qTQ

=100 m3/s for
TQ=1000 years, the design storm method would only give
q̂TQ

=60 m3/s if runoff generation thresholds are present.

5 Conclusions

In this paper we examine the effect of event runoff coeffi-
cients on the relationship between rainfall and flood return
periods to shed light on design practice. We make simple hy-
potheses for the controlling processes (block rainfall and lin-
ear catchment response) and analyse the relationship using a
derived flood frequency model in analytical and Monte-Carlo
modes. Two main hydrological systems are considered: (1)

Table 1. Percentage bias of the flood peak quantile when applying
the design storm method assumingTQ=TP and the medianrc of
all maximum annual floods. The systems considered are: three sys-
tems with beta distributed runoff coefficientsrc independent of the
rainfall events (Fig.5); three systems with beta distributed runoff
coefficientsrc depending on the storm volumeV (Fig. 11).

TP =10 TP =100 TP =1000

Fig. 5a −2.8% −21% −30%
Fig. 5b −1.2% −11% −17%
Fig. 5c −8.4% −9.2% −9.9%

Fig. 11a −4.9% −29% −41%
Fig. 11b −12% −37% −45%
Fig. 11c −26% −41% −44%

the event runoff coefficient varies independently from the
storm characteristics, i.e., it is determined by the antecedent
conditions; (2) the event runoff coefficient is related to the
volume of the flood producing storm, i.e., it is determined by
the storm that causes the flood as well as antecedent condi-
tions.

In the design storm procedure the ratio of flood and rainfall
return periodsTQ/TP is maximised by varying storm dura-
tion. Viglione and Bl̈oschl(2009) showed that, for a system
with a constant runoff coefficient, this maximum ratio is al-
ways lower than unity, being around 0.4 forTQ≈100 years.
The findings in this paper indicate that allowing for variabil-
ity of the runoff coefficients may increase the maximum ratio
significantly. In a dry system, where high runoff coefficients
are very rare, one event with a high runoff coefficient can pro-
duce a flood with a return periodTQ that is hundreds of times
the return period of the corresponding storm. In a wet sys-
tem, where runoff coefficients are always high, the maximum
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Fig. 12. Sensitivity of the runoff coefficientr1:1 to the threshold storm volumeV ∗ [mm]: Panel (a) – Runoff coefficientr1:1; Panel (b) –
Non-exceedance frequency ofr1:1 on the parent distributions ofrc; Panel (c) – Non-exceedance frequency ofr1:1 on the distribution of the
flood producing runoff coefficients.

flood return periods are never more than a few times that of
the corresponding storm. This is because a wet system can-
not be much worse than it normally is.

A threshold effect in runoff generation was examined
where it was assumed that, beyond a threshold rainfall vol-
ume, large runoff coefficients are more probable. Presence
of a threshold effect reduces the maximum ratio ofTQ/TP

since it increases the probability of the system to be in a wet
situation and decreases the randomness of the runoff coeffi-
cients in relation to the storm. If a continuous deterministic
relationship between the runoff coefficient and storm volume
exists (not shown here), the mapping would be the same as in
the constant runoff coefficient systems examined inViglione
and Bl̈oschl(2009). In other words, the absence of “indepen-
dent randomness” ofrc in relation to the storm leads to the
same mapping of return periods as a constant runoff coeffi-
cient.

Regarding the design storm method, its result when choos-
ing a design runoff coefficient (in particular the median of the
runoff coefficients that cause the maximum annual floods)
has been analysed. It was shown that, in dry systems, the
results of the method are much more sensitive to the cho-
senrc and the desiredTQ than in wet systems. When us-
ing the median runoff coefficient, the bias of estimation of
the design flood peak in the dry system ranges from−2.8%
for TQ=10 years to−30% forTQ=1000 years. On the other
hand, in the wet system the bias is essentially non-affected
by the desired return period and is approximately equal to
−10%. If a runoff generation threshold is present, the ra-
tio TQ/TP strongly depends on the desiredTQ because dif-
ferent mechanisms dominate for different flood magnitudes.
Also, the bias of estimation of the design flood peak is more
pronounced when the threshold effect is present, reaching
percentage values of−45% for a desired return period of
1000 years.

We also examined the question which runoff coefficients
r1:1 produce a flood return period equal to the rainfall re-
turn period if the design storm procedure is applied (i.e.,
maximising TQ/TP with respect to storm duration). For
the systems analysed here, the runoff coefficient that gives
a perfect match of the return periods is always larger than
the median of the runoff coefficients that cause the maxi-
mum annual floods. For a system without runoff genera-
tion thresholds, one would have to choose a runoff coeffi-
cient that is exceeded in about 30% and 35% of the max-
imum annual flood events for wet and dry systems respec-
tively (for TQ=TP =100 years). If a runoff generation thresh-
old is present, the mapping depends on the threshold, the
exceedance probabilities associated withr1:1 have a wider
range and the variability with the return period is higher. For
TQ=TP =100 years one would have to choose a runoff coef-
ficient that is exceeded in about 10% and 35% of the maxi-
mum annual flood events for low and high thresholds respec-
tively. This means that the choice of a runoff coefficient for
design, based on the distribution of the runoff coefficients of
the maximum annual flood events, is more complex if the
system has a threshold effect in runoff generation.

Comprehensive sensitivity analyses (not shown in this pa-
per) indicate that the above results are generic and do not
depend much on the particular rainfall model used. For a
world where

– storm duration varies,

– rainfall intensities are distributed according to a
positively skewed distribution,

– extreme rainfall intensity decreases with storm duration

and considering the simplifying assumptions made in this
paper

Hydrol. Earth Syst. Sci., 13, 577–593, 2009 www.hydrol-earth-syst-sci.net/13/577/2009/



A. Viglione et al.: On the role of the runoff coefficient in the mapping of rainfall to flood return periods 591

– block rainfall,

– linear catchment response,

– random runoff coefficients and/or existence of threshold
effects

the mapping of rainfall to flood return periods will always
look very similar to the results shown here.

In ongoing work, we will deal with the effect of storm
time-patterns and multiple storms on the mapping of rainfall
to flood return periods.

Appendix A

Rainfall and rainfall-runoff models

We use a simplified version of the rainfall and rainfall-runoff
models presented inSivapalan et al.(2005). The main sim-
plifications are that we do not consider seasonality and do not
generate a continuous series of synthetic rainfall but a num-
ber of independent storms. As a stochastic rainfall model,
we consider the Weibull distribution for storm durationstr ,
whose probability density function is

fTr (tr) =
βr

γr

(
tr

γr

)βr−1

exp

(
−

tr

γr

)βr

, (A1)

with known parametersγr (scale) andβr (shape). The first
parameter is linked toδr , the mean storm duration, by the
relationship

γr = δr

[
0

(
1 +

1

βr

)]−1

. (A2)

while the shape parameter is linked to the coefficient of vari-
ation of the distribution, that is

CVr =

√
0 (1 + 2/βr)

[0 (1 + 1/βr)]2
− 1 . (A3)

We assume that the number of storm events per year is Pois-
son distributed with meanm. In particular, in this paper
m=40,δr=6 h andβr=0.7.

The rainfall intensityi within the storm is imposed to be
constant (rectangular storms), while its distribution only de-
pends ontr , according to the gamma distribution

fI |Tr (i|tr) =
λ

0(κ)
(λi)κ−1exp(−λi) , (A4)

where parametersλ andκ are functions oftr as

E[i|tr ] = a1t
b1
r and CV2

[i|tr ] = a2t
b2
r , (A5)

that means

κ =
t
−b2
r

a2
and λ =

t
−b1−b2
r

a1a2
. (A6)

In the following, we assume the parametersa1, b1, a2 and
b2 to be known (Sivapalan et al., 2005estimate them from
data) and to be respectively equal to 1.05 mm h−b1−1, 0.01,
1.5 and−0.55.

The rainfall-runoff model is a standard linear reservoir
with response timetc with which the rainfall time series is
convoluted. For a single storm, the transformation of rainfall
to runoff can be expressed by the convolution integral of the
exponential UH

q(t) =
rc

tc

∫ t

0
i(t ′)exp

(
−

t − t ′

tc

)
dt ′ , (A7)

wherei(t) is the rainfall input time series,q(t) is the result-
ing runoff time series andrc is the runoff coefficient. Other
components, such as base-flow and seasonality, are not con-
sidered. As rainfall intensity within the storm is assumed to
be constant, the flood peak is

qp = 5Q(i, tr , rc) = rc·i·

[
1 − exp

(
−

tr

tc

)]
, (A8)

where we assumetc as a constant. In this paper we consider
always the same exponential UH withtc=12 h.

Appendix B

Derived distribution approach

B1 Derived flood return period

Given the joint probability density function of rainfall in-
tensity i, rainfall duration tr and runoff coefficientrc as
fI,Tr ,Rc (i, tr , rc), the probability for a given flood peak dis-
chargeY to be less than or equal toqp is

FY (qp) = Pr[Y ≤ qp] =

=

∫ ∫ ∫
R

fI,Tr ,Rc(i, tr , rc)didtrdrc , (B1)

whereR is the region of the(i, tr , rc) space for which the
combination of these three values is transformed into a peak
smaller than or equal toqp by the rainfall-runoff model.

In the case of storm intensity being dependent on storm
duration but runoff coefficient being independent, applying
the Bayes theorem, the integral of Eq. (B1) simplifies to

FY (qp) =

∫ 1

0

∫
∞

0
FI |Tr

(
5−1

Q (qp, tr , rc)|tr

)
·

·fTr (tr)fR(rc)dtrdrc , (B2)

whereFI |Tr (.|tr) is the conditional cumulative distribution of
rainfall intensities conditioned ontr , andfTr (tr) andfR(rc)

are the probability density functions oftr andrc. This is the
case discussed in Sect.4.1.

www.hydrol-earth-syst-sci.net/13/577/2009/ Hydrol. Earth Syst. Sci., 13, 577–593, 2009



592 A. Viglione et al.: On the role of the runoff coefficient in the mapping of rainfall to flood return periods

When there is a dependence between the event runoff
coefficient and the storm event, for the relationship between
joint and conditional probability density functions (e.g.Kot-
tegoda and Rosso, 1997, p. 126), the joint distribution ofI ,
Tr andRc is given by:

fI,Tr ,Rc (i, tr , rc) = fRc|I,Tr (rc|i, tr)·

·fI |Tr (i|tr)fTr (tr) .
(B3)

and the integral of Eq. (B1) simplifies to

FY (qp)=

∫
∞

0

∫
∞

0
FRc|I,Tr

(
5−1

Q (qp, tr , rc)|i, tr

)
·

·fI |Tr (i|tr)·fTr (tr)didtr . (B4)

This formulation ofFY (qp) is particularly convenient when
the non-linear threshold relationship between the event
runoff coefficient and the storm event of Sect.4.2 holds. In
this case the spaceR of integration in Eq. (B1) is represented
in Fig. B1. The regionR is the one above the black surface,
that provides a representation of the rainfall-runoff model ex-
pressed by Eq. (A8). This surface corresponds to one flood
peakqp and is a 3-D representation of the curve in Fig. 1 of
Wood(1976) (here alsorc is taken into account). The surface
corresponding to the thresholdV ∗ is shown in grey. Below
the grey surface (V =i tr<V ∗) the probability distribution of
the runoff coefficient has parametersδc1 andσc1; above,δc2

andσc2. The integration of Eq. (B4) can then be easily di-
vided into two parts considering these two separate regions.

Assuming the number of independent floods in a year to be
Poisson distributed with meanm, the cumulative distribution
function of the annual maximum floodQ is

FQ(qp) = exp
{
−m

[
1 − FY (qp)

]}
. (B5)

The same result can also be expressed in terms of the return
period (in years):

TQ =
{
1 − FQ(qp)

}−1
. (B6)

B2 Derived storm return period

As explained inViglione and Bl̈oschl(2009), we derive the
return period of storms referring to the IDF-based methodol-
ogy. If we let a random variableI denote the rainfall inten-
sity of storms averaged over the aggregation leveltIDF, the
probability that this intensity is lower or equal toφ is called
FI (φ, tIDF). The cumulative distribution ofI (defined for a
singletIDF) is then

FI (φ, tIDF) = Pr[I ≤ φ] =

∫ ∫
R′

fI,Tr (i, tr)didtr , (B7)

whereR′ is the region of the(i, tr) space such that the combi-
nation of these two values is transformed into a value smaller

tr rc

i

Fig. B1. Representation of the surfaces corresponding to the thresh-
old rainfall-volumeV ∗ (grey) and to one flood peakqp (black) in
the (tr , i, rc) space (storm duration, storm intensity, runoff coeffi-
cient).

than or equal toφ by the IDF filter with aggregation level
tIDF. The result of the rectangular filtering can be written as:

φ = 5P (i, tr) =

{
i if tIDF ≤ tr

i·tr/tIDF if tIDF > tr
. (B8)

so that Eq. (B7) can be simplified to

FI (φ, tIDF) =

∫
∞

0
FI |Tr

(
5−1

P (φ, tr)|tr

)
fTr (tr)dtr , (B9)

where5−1
P (φ, tr) is the inverse of Eq. (B8) and expresses the

intensity of a storm of durationtr that has average intensity
φ over the aggregation leveltIDF. If we denote byP the
annual maximum rainfall intensity of storms averaged over
the aggregation leveltIDF, then the probability distribution of
P is

FP (φ, tIDF) = exp{−m [1 − FI (φ, tIDF)]} , (B10)

and

TIDF(φ, tIDF) = {1 − FP (φ, tIDF)}−1 (B11)

is the return period of storms with average intensityφ over
the aggregation leveltIDF. This equation represents the IDF
curves.

In our simplified world, the return period of indi-
vidual storms can now be read off the IDF curve as
TIDF(φ=i, tIDF=tr). The return periodTP of the storms that
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produce the maximum annual peaksqp (here called flood-
producing storms) is then

TP = TIDF(φ = 5−1
Q (qp, tr = tIDF, rc), tIDF = tr) (B12)

where5−1
Q (.) is the storm intensity that, for giventr , rc and

tc, produces the flood peakqp.
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