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During emergency situations (e.g. pollution peaks, nuclear/radiological accidents, flash-floods) it will often be
helpful for decision makers to have maps of the situation. Production of these maps has to be based on automatic
procedures, as there will be limited time to analyse the problem. These methods have to be both quick and robust.
Although the solutions to such problems tend to be complex, it is easy to forget that simpler methods can be
useful. This paper examines some simple geostatistical solutions to two complex mapping problems, showing that
these methods can be useful either as part of an automatic mapping procedure, for identification of the most
important issues of the method, or as benchmarks for more complex solutions. The first problem is the emergency
data set from the SIC2004 exercise, whereas the second problem is related to estimating runoff in flood situations.
Two methods are examined-linear variogram and the use of the same variogram in extreme situations as in
routine situations. The results from the SIC2004 data indicate that the anisotropy is the most important factor in
this case. Both linear variograms and variograms from routine situations give reasonably good results, compared
to more sophisticated methods submitted through the exercise. The results from the Austrian runoff data set also
indicate that variograms from routine situations can be applied in extreme situations, with reasonably good
results. The use of a routing model did not improve the results, and indicated that the flow velocities in flood

situations need to be assessed locally.
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Introduction

In case of hazards and emergencies (e.g. pollution
peaks, nuclear/radiological accidents, flash-floods),
decision managers need updated information about
the spatial distribution of the environmental variable
of interest. This information will for many variables
be given as point observations, which are difficult to
interpret. To be better able to asset the situation, the
decision makers will benefit from having maps
describing the situation as close to real-time as
possible. These real-time maps have to be interpo-
lated from the point observations of a monitoring
network, using the most recent observations.
Geostatistics provide a set of tools for interpolat-
ing maps from a set of point observations (Cressie,
1991; Isaaks and Srivastava, 1989; Journel and Huij-
bregts, 1978). Although these methods are supposed
to give the best linear unbiased estimates (BLUE)
(Journel and Huijbregts, 1978), they have only to a
limited extent been taken into use as tools for real-
time mapping. Many geostatisticians will claim that
the methods are not reliable without human inter-
vention. The largest problem lies in the fitting of a
theoretical variogram model to the sample vario-

gram. Webster (2001) argue for automatic calibra-
tion, but suggest that the estimated variogram should
be visually examined as well. A number of authors
have, however, provided arguments in favour of
visual fitting (4i-Geostats, 2004). As visual fitting of
variograms is not a feasible approach in an emer-
gency situation due to time constraints, automatic
methods have to be used, despite the fact that visual
fitting could have improved the maps.

The project Interoperability and Automated
Mapping (INTAMAP) started late 2006 and intends
to develop an interoperable framework for real time
automatic mapping of critical environmental vari-
ables by extending spatial statistical methods and
employing open, web-based, data exchange and
visualization tools. See www.intamap.org for more
information. The first case focuses on data from the
data base of gamma dose rates in Europe — EURDEP
(De Cort and De Vries, 1997).

A small subset of this data set was used in the
Spatial Interpolation Comparison from 2004
(SIC2004) (Dubois and Galmarini, 2005a; b), together
with a synthetic data set. Given several sets of routine
observations for training, the participants were to
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develop spatial interpolation for real-time mapping of
emergency data. The participants had to submit
the results from their real-time mapping short after
the emergency data were released, to make sure
that the methods could really work in emergency
situation.

The added difficulties when modelling an emer-
gency situation is one of the important issues of the
INTAMAP project, similar to the SIC2004 exercise. It
is typical for an emergency situation that the assump-
tions of different degrees of stationarity or intrinsic
hypothesis necessary for geostatistics are violated to
some degree. Methods that perform relatively well in
routine situations are not necessarily the best methods
for mapping in emergency situations.

As the problem is complex, it is tempting to
develop complex solutions. However, an emergency
situation is in some cases also often characterized by
a rather small number of extreme observations, which
easily leads to overfitting when a theoretical correla-
tion model is fitted to the observed data. The use of
sample variograms in geostatistics can easily give the
impression that the amount of information is larger
than it actually is, as will be shown later in this paper.

The objective of this paper is to reconsider the
information actually available in extreme situations
and to examine some simple solutions to the real-time
mapping problem. It is not claimed that these
methods are advisable to use for all processes and
situations. The methods are applied on the SIC2004
data set and compared to the results of the partici-
pants in the exercise. As we had access to the
validation results before we interpolated the emer-
gency case from the exercise, we do not claim that we
could have achieved a certain result in the exercise.
The aim is more to see which results possibly could
have been achieved with these simple methods, and to
use the methods to identify which parts of the method
it is necessary to elaborate further. The aim is also to
consider what kind of information that is really
available in the data set. In a second example to
illustrate the use of simple methods is one of the
methods also applied on runoff data from Austria.
Estimation of variograms for runoff using the top-
kriging method (Skeien and Bloschl, 2007) is too
time-consuming for real-time mapping of the runoff
situation in in flood situations, and simplifications
are necessary.

Data
SIC2004

We have used two sources of data in this paper. The
first set of data is from the SIC2004 exercise (Dubois

and Galmarini, 2005a; b). 1008 stations in a rectan-
gular area from the German gamma monitoring
network were selected as the observation locations
for the test. The data set was divided into two groups,
the test data (200 stations) and the validation data
(the remaining 808 stations).

Routine situation data for the 200 stations were
released during the training phase for the exercise,
when the participants were to develop their methods.
An 11th data set was given as the exercise, covering
the same 200 stations from the network. In this data
set, a release of nuclear material had been simulated,
giving considerably higher gamma dose rates at two
of the observation locations. The task of the partici-
pants was, as good as possible, to interpolate the
gamma dose rates levels in this emergency situation at
the 808 remaining locations. The different data sets
are presented in Figure 1. The validation data were
available after the exercise had taken place.

Only two stations in the emergency situation
exhibit larger values than in the routine situation, as
can be noted from the central pane in Figure 1.
However, the observations at these two stations were
considerably larger than those of their neighbours,
i.e. 1070 nSv/h and 1499 nSv/h respectively, com-
pared to observations in the range 58-196 nSv/h for
the remaining 198 stations. The standard deviation
for these 198 stations was 19.6 nSv/h.

Austrian runoff data

The second data set in this paper stem from a
comprehensive hydrographic data set of Austria.
Austria has a varied climate with mean annual
precipitation ranging from 500 mm in the eastern
lowland region up to about 3000 mm in the western
alpine region. Runoff depths range from less than 50
mm per year in the eastern part of the country to
about 2000 mm per year in the Alps. Potential
evapotranspiration is on the order of 600-900 mm
per year. Austria has a dense stream gauge network.
Hourly runoff data over the period 1 August 1990 to
31 July 2000 are used in this paper. The raw runoff
data were screened to exclude catchments with
significant anthropogenic effects, karst and strong
lake effects, as the runoff from these catchments are
assumed to belong to a different type of processes.
The remaining data consisted of 386 stream gauges
with catchment areas ranging from 10 to 10,000 km?.

Figure 2 shows the Austrian river network with
gauging stations. A further description of the data is
given by Skgien and Bloschl (2007). The square
represents the the Innviertel region, used for detailed
analyses by Skeien and Bléschl (2007) and shown
with more details in Figure 3.
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Figure 1. Training set, data set of emergency situation and validation data for the SIC2004 exercise. Units are nSv/h.

We will in this paper focus on estimates of flood
events, which we have defined in two different ways
in this paper. First, for estimates of Model Efficien-
cies (see below), we considered the partial time series
when the runoff exceeded the 90th percentile of the
time series of a station. These events are high flows,
but not necessarily large floods. In addition, for other
flood characteristics, we only considered events where
the maximum runoff exceeded the 99th percentile.
For all stations, this last definition gave a total of
more than 25000 events in the 386 catchments.
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All runoff data given below refer to specific runoff
per second, i.e. the runoff divided by the upslope
contributing area:

Q1)
A.

4

qt) = )

where Q (7) i is the runoff measured at a runoff gauge
i and i 4 is the area of this catchment.

Figure 2. Stream gauges (circles) in Austria used in this paper. The square represents the Innviertel region.
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Figure 4. Variograms of emergency situation with different bin sizes. Units of semivariance are (nSv/h)?.
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Theoretical considerations
SIC2004 case

The SIC2004 exercise is characterized by the fact that
there are two observations in the training set that
exhibit considerably larger values than in the routine
situation. This will typically be the situation short
time after a release of nuclear material. Traditional
variograms can be inferred, as presented in Figure 4.
Different bin sizes were used, to indicate how the
variogram behaviour depends on this rather subjec-
tively chosen value.

The variogram to the left is characterized by an
apparent lack of spatial correlation. The semivariance
is large also for the shortest distances. The variogram
to the right apparently has a spatial correlation for
very small distances, but no spatial correlation for
larger distances. Still, it would be unwise to try to fit a
theoretical variogram model to this sample vario-
gram.

The critical issue in the emergency case is the
amount of information that is actually available. If
we (as commonly done) try to fit one of the possible
variogram models with three parameters (nugget, sill
and range) to the sample variogram in the right pane
of Figure 4, it is easy to do so in the belief that there
are lots of degrees of freedom in the fitting because
the theoretical variogram model will be fitted jointly
to the different semivariances of the sample vario-
gram. We think this is an assumption which is highly
questionable in this situation.

The sample variogram of this emergency case has
been inferred from a set of 200 observations. How-
ever, as the difference between the two extreme
observations and the remaining observations is so
large compared to the standard deviation between the
remaining observations, this situation can be approxi-
mated by a map of a binary process with two 1’s and
the remaining observations zero. The variogram will
be characterized by the following:

e The semivariance for each bin will be deter-
mined by how many stations have exactly this
distance to one of the two stations with
extreme observations.

e Small observed semivariances will only exist
for these distance classes that do not include
any of the stations with extreme observations.

The last point implies that small semivariances in
the short distance part of the variogram is possible
only when the separation distances between some of
the stations without extreme observations are smaller
than the distances between the stations with extreme
observations to their closest neighbours. This is the
situation in the right pane of Figure 4, where the limit

of the first bin is slightly smaller than the distance
from the stations with extreme values to their neigh-
bours. Although this variogram behaviour might
indicate that a correlation length can be estimated,
this correlation length is hence only founded on the
network topology and the distribution of distances
between stations, hardly at all on observations of the
underlying process (Skeien and Bloschl, 2006).
Several goodness-of-fit criteria were considered
for both for the routine situations and for the
simulated emergency situation. In this paper, we
consider two criteria, the correlation coefficient (r):
r— Y12 — nZ2 )
(n — Ds.s;

and the root mean square error (RMSE):
1 R A 2
RMSE = | > E-2) 3)

where z; and £, are the observed and predicted value
of the process, respectively, n is the number of
observations, and s, and s, are the standard devia-
tions of the observations and the predictions, respec-
tively.

Real time mapping of runoff

River runoff is a spatio-temporal process which
exhibits large variations in space and time. As the
measured runoff at a location along a river is the
ageregated value of the rather complicated rainfall-
runoff generation upstream this location, straightfor-
ward geostatistical methods are not possible to use.
Instead, newer methods that take this aggregation
into account have been developed (Gottschalk,
1993a,b; Gottschalk, et al., 2006; Sauquet, 2006;
Skaien et al., 2006, Skgien and Bléschl, 2007).
These methods include different kinds of integra-
tions of a point variogram. As such integrations can
be rather time consuming, it may be difficult to apply
these methods in a real-time mapping situation.
However, there are simplifications that can be made.
Kyriakidis (1999) pointed out that there are three
options when representing a spatio-temporal random
variable: full space-time models, simplified represen-
tations as vectors of temporally correlated spatial
random fields, and simplified representations as
vectors of spatially correlated time series. The latter
reduces to a spatial estimation problem for each time
step and is of interest for variables with observations
that are rich in time but poor in space as is the case of
runoff (Rouhani and Hall, 1989). Full spatio-temporal
kriging is more complicated than the two simplifica-
tions as the kriging system needs to be solved
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simultaneously for both spatial and temporal kriging
weights (Kyriakidis and Journel, 1999).

When estimating runoff time series in Austria,
Skoien and Bloschl (2007) assumed that the spatio-
temporal pattern of runoff could be modelled as
spatially correlated time series. A simple routing
model was added to model the flow from upstream
to downstream gauges. Although we also examined
different routing velocities, we only present the results
without routing in this paper. The proposed routing
model was also dependent on measurements at
downstream gauges at later time steps, what is not
available in a real-time mapping situation. As a
further simplification, they assumed that the correla-
tion between the time series was constant in time, i.e.
one theoretical point variogram model was fitted to
the data and used for different runoff situations.
However, the further away from routine situation,
the more likely it is that the process has a different
correlation structure than the one of a routine
situation.

Unlike Skeien and Bloschl (2007), we now focus
on estimates of floods events. The Nash-Sutcliffe
coefficient (Nash and Sutcliffe, 1970), equivalent to
R? in regression (Pebesma, et al., 2007) and used by
Skeien and Bloschl (2007), is a measure of the model
efficiency (ME) that is usually applied on continuous
time series. It is of less interest when it comes to
floods, but we will still apply it for the partial time
series of floods above the 90th percentile. The ME for
a certain catchment 7 is then:

ME =1— 22:1(%(6&)) — w)z
l Yo (gl0) — g))

where Q is the number of time steps estimated, g, (®)
is the observation at time step ®, §,(®) is the estimate
at time step ® and g(w) is the average of the
observations at these time steps. This model efficiency
indicates a perfect estimate if ME =1. The estimate is
no better than the mean of the observations if ME =
0, and even poorer if ME <.

As a comparison, a review study by Merz et al.
(2007) suggested that typical rainfall-runoff models
would give ME for ungauged catchments in the order
of 0.6-0.7. We are not aware of similar reviews of
the efficiency of rainfall-runoff models for flood
situations. However, it can be assumed that the
efficiency will be lower for these situations.

Two other variables are better for the analyses of
large floods, i.e. the difference between observed and
estimated time of peak (fpg) and the difference
between observed and estimated peak flow (gpk).
Due to the large number of events, it was necessary to
automatically identify events and to pair a peak from

4)

the estimated time series with the correct observed
peak. We used a rather empirical approach for this
identification, which in some cases resulted in wrong
pairing of peaks. We discarded all pairs with tpx >40
hours, as larger time differences most likely could be
addressed to misclassification of events belonging
together.

We normalized the deviation between estimated
and observed peak flow, for better comparison of
such a large number of events. For each peak flow,
we estimated the relative difference as

Ag Irx — dpx (5)

dprx

where §px is the estimated peak flow. Equation 5
gives Age [—o0,1] where Ag=0 means correct
estimate, Ag <0 represents overestimation and
0 <Agq <1 represents underestimation.

Are geostatistical methods still applicable?

The two cases above describe situations where the
assumptions behind geostatistical interpolation are
violated. In the first of these cases is the initrinsic
hypothesis violated (expected variance is a function
of separation distance) and the observations are far
from having a Gaussian distribution. In the second
case is the correlation structure non-stationary over
time, whereas the use of one single variogram
necessitates a stationary correlation structure.

Despite the fact that these violations indicate that
geostatistical analyses will be deceiving, we will still
suggest that geostatistical interpolation methods can
be useful. The fact that the two observations with
extreme values in the SIC2004 case are neighbours
suggests that there is a spatial correlation also in the
area affected by the release, although it is difficult to
find through variogram analyses. There are also
reasons to assume that there will be a spatial
correlation between observations also in a flood
situation, although the correlation structure may be
different than in a routine situation.

It is general knowledge that the quality of the
predictions is relatively insensitive to the choice of
variogram (see e.g. Lark, 2000), at least as long as
there are several observations within the range of the
variogram. This insensitivity is not without limits
though, but we will still test a couple of simple
geostatistical solutions for interpolation of the two
data sets introduced earlier in this paper. The
simplicity is assumed to increase the robustness of
the result. The simple methods can also be used to
identify which part of the modeling needs to be closer
examined. In this paper, we examine the following
simple solutions:
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e Use a variogram inferred for a routine situa-
tion for the emergency case. The correlation
length will most likely be too long in this case,
but at least this is a variogram describing a
process that has similarities with the extreme
situation to be mapped (Pebesma, 2005).

e Use a linear variogram. This takes away the
necessity of fitting sill or correlation length of
the process.

The disadvantage for both of these solutions is
that we are not able to give reliable quantitative
estimates of the prediction errors. These are normally
useful results from geostatistical interpolation. How-
ever, although the level of the prediction errors is not
correct, we will examine the correlation between these
prediction errors and the model efficiency for the case
with Austrian runoff data.

The use of a linear variogram model can be seen
as a slightly more sophisticated method than an
inverse distance weighting (IDW) approach. Kriging
automatically takes into account the correlation
between the neighbours, and compensates for a
possible clustering of the observations that IDW is
not able to take into account.

In addition, it is possible to assume anisotropy for
kriging, i.e., that the correlation is larger in
one direction than in the other. The emergency case
of SIC2004 suggest anisotropy, as the two stations
with extreme values are further apart in the
x-direction than the unaffected neighbours in
y-direction. The anisotropy consist of two para-
meters; the direction of the larger correlation and
the ratio between the correlations in the direction of
the larger correlation and the correlation in the
perpendicular direction.

We will examine both methods for the SIC2004
case. For the case with Austrian runoff data, we will
only examine the use of fixed variogram. Whereas
Skeien and Bloschl (2007) estimated the complete
time series, we will in this paper examine the extreme
values of the estimated hydrographs more closely, as
this is the situation where real-time mapping of
runoff will be of largest interest. We will for each
station only examine the part of the hydrographs
which exceeds the 90th percenentile of the station, as
mentioned above.

Results

SIC2004

We tested the ability of four different variogram
models to make predictions at the locations of the
validation example. We also tested the effect of using

a local kriging neighbourhood. The following models
were examined:

1. Isotropic linear variogram

2. Linear variogram with eye-ball fitted aniso-
tropy parameters (largest correlation in x-
direction, ratio 1:3)

3. Linear variogram with fitted anisotropy para-
meters

4. Spherical variogram fitted to one of the routine
data cases

It is only the first and last of the models above that
can really be compared to the automatic interpolation
results of the SIC2004 participants. The second
model is based on a subjective consideration of
the case, whereas the third model necessitates knowl-
edge of the validation data which is of course not
available in advance in an automatic modelling
exercise.

For all models, the gamma dose rate was inter-
polated for the locations of the validation data and
compared to the validation data in terms of the
correlation coefficient (r) and the root mean squared
error (RMSE). These were among the goodness-of-fit
criteria applied to the estimates of the participants of
the SIC2004 exercise. Figure 5 presents the results
from the models tested in this paper and the results
from the SIC2004 exercise, taken from Table 4 in
Dubois and Galmarini (2005b).

In the SIC2004 exercise, 13 participants submitted
31 solutions to the automatic mapping problem.
Some of the extra solutions were intended more as
comparisons, and not as the best possible solution to
the problem. Hence, the best submission from each of
the participants has been given a separate colour in
Figure 5.

It can be noted from the figure that estimation
using the isotropic linear variogram performs poorest
of the models examined in this paper. Still, this model
performs better than several of the submitted solu-
tions in the SIC2004, even better than one of the best
efforts from one of the participants in terms of root
mean square error and four of the participants in
terms of correlation coefficient. The estimates from
an exponential variogram model fitted to one of the
data sets from a routine situation performs slightly
better than the linear model, in terms of both of the
goodness of fit measures we consider in this paper.

A considerably larger improvement comes when
anisotropy is introduced in the linear model. Model 2
is then among the best of the participants of the
SIC2004 exercise, for both goodness of fit measures.
The result is further improved when the anisotropy
parameters are fitted, and the result is better than all
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Figure 5. Results from SIC2004 exercise and the models presented in this paper. Units of Root mean square error are nSv/h.

the participants of the SIC2004 exercise. The results
hence indicate that properly estimated anisotropy
parameters are more important than the variogram
parameters in the SIC2004 case.

It was also tested whether it would improve the
results using only local observations. Although also
the number of neighbours could be optimised, the
result using the complete data set was better than
most choices of a local neighbourhood.

Austrian runoff data

Skeien and Bloschl (2007) presented several hydro-
graphs of flood situations from the Innviertel region.
We will therefore not reproduce a series of hydro-
graphs in this paper, but include Figure 6 as an
example (Figure § in Skeien and Bloschl, 2007). In
this figure, the runoff of the catchment Ried (69 km?)
has been estimated from the observations of its
neighbours, including a simple routing model. This
catchment has neither nested upstream nor down-
stream neighbours. In the three day period in fall
1998 two events occurred. The first event (shown at
time 18 hours) was properly estimated. The second
event (shown at time 48 hours) was not. This is
because it was apparently the result of a local
precipitation event. None of the surrounding catch-
ments experienced more than a small change in runoff
for this period. It is interesting to note that the local
event was also missed by the rain gauges in the
region, so rainfall-runoff models could not have
simulated this event either.

As a first statistic for evaluation of the model, we
will focus on the model efficiencies, measured by the
Nash-Sutcliffe coefficient (Nash and Sutcliffe, 1970).
Figure 7 presents the cumulative distribution func-
tions (cdf) for the model efficiencies of top-kriging for
large runoff. The results for three data sets are shown,
“All” represents the cdf for all 386 catchments,
“Parajka et al.”” represents the 208 stream gauges in
common with Parajka et al. (2005), whereas “Inn-
viertel” represents the 19 stream gauges in the Inn-
viertel region.

The results are indeed poorer than the results
from Skeien and Bloschl (2007). The number of
interpolated catchments with ME <0 has increased
from a few to about 20 percent for the catchments in
common with Parajka et al. (2005) and to around 30
percent of all catchments. The median for all catch-
ments is 0.37, whereas it was 0.75 for the same
catchments in the paper of Skgien and Bloschl (2007)
and 0.52 for the catchments in common with Parajka
et al. (2005), wheres the median was 0.82 for these
catchments in the paper of Skgien and Bloschl (2007)
The median for the catchments in the Innviertel
region was still high, 0.78 compared to 0.87.

The results of Skeien and Bloschl (2007) were
improved by the inclusion of a routing model. For
real-time mapping of a flow situation, this is only
possible to take into account for the upstream stream
gauges. The routing model was still tested assuming
different flow velocities, mostly with poorer results.

The kriging error is in geostatistical methods a
measure of the estimated prediction uncertainty,
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from Skeien and Blgschl (2007).

which can be in terms of the standard deviation of the
estimates. When, as in our case, using a variogram
inferred from a mixture of situations for a flood
situation, we must acknowledge that the kriging error
cannot be referred to as the standard deviation of the
flood estimates. Still, we can examine how the

1

differences in kriging error compares to the estimated
ME. Figure 8 gives a comparison of estimated
prediction uncertainty in terms of standard deviation
of the estimates and the model efficiencies for the 208
catchments in common with Parajka et al. (2005).
The model efficiencies have been grouped in bins with
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Figure 7. Cumulative distribution function of model efficiencies ME of hourly runoff estimated by top-kriging for 386 (all),

208 (Parajka et al.) and 19 (Inn-viertel) catchments in Austria.
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Figure 8. Model efficiencies of hourly flood estimates from top-kriging plotted as a function of the estimated kriging error for
386 catchments in Austria. The thick line represents the median ME and the error bars represent the 25 and 75 percentiles.
Both model efficiencies and the kriging variance relate to the ungauged catchment case obtained in a cross-validation mode.

similar prediction uncertainty, similar to figure 16 of
Skeien and Bloschl (2007). The line represents the
median within such a bin, the error bars represent the
25 and 75 percentiles within the bin. The model
efficiency is high for prediction uncertainties up to
8§ x107° m’km %~ H%

Although we cannot expect the kriging error to
give reliable quantitative information about the
prediction errors, Figure 8 does indicate a rather
strong relationship between the kriging error and the
model efficiency. The internal ranking of the predic-
tion uncertainties of the estimates does indeed give a
qualitative indication of the model efficiency for a
certain catchment.

The second test statistic that we examine is the
time between the peaks of the observed runoff and of

the estimated runoff. Figure 9 shows the box plot of
the time differences between the peaks of the ob-
servation and the peak of the estimated time series.
The centre of the box indicates that estimates are on
the average unbiased, as the median of the differences
are zero and the mean indicates that the method
estimates the peaks 0.5 hours too late. The borders of
the box refer to the 25 and 75 percentiles, respec-
tively. Also these percentiles suggest that the method
estimates the time of the peak relatively well, but with
the peaks slightly too late. This is probably a result
of the lack of a routing routine, and a large number
of the catchments being headwaters without
upstream neighbours. Approximately 10 percent of
the events are outside the whiskers of the plot at
—6 and 5, respectively. A considerably part of the
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Figure 9. Boxplot of time differences between peak times of observed and estimated time series.
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wrong peak estimates can also be assumed to come
from wrong pairing of peaks from observations and
simulations.

Figure 10 presents a similar box plot for the
relative difference of peak flow, calculated as in Eq. 5.
It can be observed that the median of the relative
differences is positive, Ag =0.18. This indicates that
the method tends to underestimate the peak, com-
pared to the observation. A better result would
maybe be possible applying a routing model, or by
assuming that the specific peak flow is negatively
correlated with catchment area, as assumed in Sk@ien
et al. (2006).

Figure 11 presents scatter plots of observed
and simulated peaks for different catchment areas.
Although the number of events decreases with catch-
ment area does the figure clearly indicate that there is
a strong relationship between the catchment area
and the correspondence between observed and esti-
mated peak flow. The scatter is large for small
catchments, with a tendency of underestimation
indicating that floods in small catchments are not
properly estimated using this method. Floods in the
two largest groups of catchment areas are better
estimated, although there is a larger scatter for the
most extreme floods.

The findings above were confirmed when examin-
ing the correlations between observed and simulated
peak flow. The correlation for the smallest catch-
ments was 0.65, increasing to 0.81 and 0.94 for the
two groups with the largest catchments.

Conclusions

The results in this paper indicate that it is possible to
use geostatistical methods also when the assumptions
behind these methods are unlikely to hold, but that
the quality of the results decrease with increasing

deviations from these assumptions. The results also
support that it may be possible to achieve good
results also with simple methods. Only two examples
were handled in this paper, but they were of very
different character; one example was characterised by
two extreme values whereas the true correlation
structure in the other example could be assumed to
be non-stationary over time.

For the SIC2004 case, the results indicated that
the most important parameters to estimate were the
anisotropy parameters. If these were reasonably well
estimated, even the simple linear model was able to
give better estimates than most of the participants in
the SIC2004 exercise. It is not straightforward to
estimate these parameters automatically, and parti-
cularly not in a case with only two extreme values.
Ecker and Gelfand (1999) developed a method using
a Bayesian updating metod. More recent develop-
ments includes the covariance tensor identity method
of Hristopulos (2005). This method is further devel-
oped by Chorti and Hristopulos (2008) within the
INTAMARP project. Although we have not tried to
incorporate their results in this paper, these methods
are promising for the type of problems encountered
with the SIC2004 data.

The results from estimating floods in Austria by
top-kriging (Skoien and Bloschl, 2007) using the same
variogram as in routine situations did indeed give
poorer results than what Skeien and Bloschl (2007).
A reduction was expected, as spatial variation is likely
to increase with increasing floods. The estimation
of the catchments used for comparison with
Parajka et al. (2005) performed a bit poorer than
the rainfall-runoff models examined by Merz et al.
(2007), but it should be noted that they examined the
model efficiency for all situations. Hence it would be
expected that also the rainfall-runoff models would
perform poorer for floods, and the results presented

-2.0 -15 -1.0

0.0 0.5 1.0

Relative deviation peak estimate

Figure 10. Boxplot of relative deviations from peak estimate.
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Figure 11. Scatterplots of observed and simulated peaks
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here are acceptable. Comparisons of estimated runoff
hydrographs and estimated hydrographs for flood
situations by Skeien and Bloschl (2007) indicated that
top-kriging performed well also in flood situations,
though it should be noted that these hydrographs
were all taken from the Innviertel area.

Comparisons between observed and estimated
peak flows in this paper indicate that the top-kriging
method is able to estimate peak flow for medium to
large catchments, but have larger difficulties with the
smaller catchments. One explanation for this lies in
the source of the floods; whereas floods in larger
catchments are typically a result of more regional
precipitation, floods in smaller catchments are typi-
cally of a more local behaviour. For a method based
on regionalisation of data, these floods are then
difficult to estimate.

Geostatistical methods are known to smooth the
output compared to the observations. This is prob-
ably a part the reason for the underestimation of
large floods, seen in Figure 10. There is also a
negative correlation between catchment area and
peak flow, as noted by Merz and Bloschl (2005)
and used by Skeien et al. (2006) when estimating
flood statistics. A similar approach for correcting
flood peaks could also prove useful in a real-time
case.

It was also interesting to notice the difference
when analyzing different parts of the data set. The
order (estimates of Innviertel catchments best, esti-
mates of all catchments worse) is the same as in
Skeien and Bloschl (2007), but the differences seems
to increase. Skeien and Bloschl (2007) suggested that
Parajka et al. (2005) had been more restrictive in

selecting high quality runoff records. The results in
this paper support that suggestion, and indicates that
a proper examination of the catchments and the
runoff records is even more important when estimat-
ing floods. Figure & also indicates that the prediction
uncertainty obtained from the top-kriging estimates is
important for the model efficiencies, even though the
number itself is not a reliable quantitative descriptor
of the uncertainty of the estimates. Hence, the top-
kriging method with one variogram for all situations
can be used in regions with a high stream gauge
density.

It could be seen as surprising that the best results
were achieved without applying a simple routing
model. We assume that there are two reasons for
this, first that a higher velocity should be used than
by Skeien and Bloschl (2007), second that that the
different velocities throughout Austria is of larger
importance than for the continuous case. Hence,
these velocities should be assessed through more local
analyses, e.g. as done by Merz and Bléschl (2003). A
routing model can only be applied for the upstream
stream gauges for real-time mapping.

One of the methods suggested in this paper was
used in both cases; the use of a variogram estimated
from a routine situation also for the extreme situa-
tion. The results indicated that this worked better in
the runoff case than in the radioactivity case. The
reason is most likely that the deviations from
the assumptions behind kriging were larger for the
SIC2004 data. Also the analyses of the runoff case
indicated that the results from using only one
variogram for different situations depend on how
extreme the situation is.

Although geostatistical methods are suited for
direct predictions of a process, it is also important to
remember that the methods presented here can be
applied on the residuals of a deterministic model. For
the case of radioactivity, there are some deterministic
models that also can provide predictions of the
locations of the plume; the geostatistically based
methods can then be applied on the residuals,
attempting to model the difference between the
deterministic model and the observations.

We cannot take for granted that simple methods
as the ones presented in this paper will be satisfying
for all estimation purposes, despite acceptable results
for two very different case studies. The advantage of
more complex methods may be that they are more
able to deal with problems of different complexities.
The participants in the SIC2004 exercise were not
aware of the possible difficulties of the data sets
before they had to submit their solutions. We both
knew the distribution of the data and were able to
make some subjective judgements of the interpolation
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procedure. We can hence not compare our results
with the results of the participants of the SIC2004
procedure.

However, we find the results an important remin-
der that simple methods in many cases can perform as
good as the more complex methods. Even if they will
not be used as such in the final implementation of an
automatic mapping procedure, can they be useful for
identification of critical parts of the procedure, and
for benchmarking of the more complex models.
According to the law of parsimony and Occam’s
razor should a simpler model be preferred to more
complex models if their results are otherwise the
same.
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