
Journal of Hydrology (2008) 357, 228–242
ava i lab le at www.sc iencedi rec t . com

journal homepage: www.elsevier .com/ locate / jhydro l
Soil moisture updating by Ensemble Kalman Filtering
in real-time flood forecasting
Jürgen Komma *, Günter Blöschl, Christian Reszler
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Summary The aim of this paper is to examine the benefits of updating soil moisture of a
distributed rainfall runoff model in forecasting large floods. The updating method uses
Ensemble Kalman Filter concepts and involves an iterative similarity approach that avoids
calculation of the Jacobian that relates the states and the observations. The soil moisture
is updated based on observed runoff in a real-time mode, and is then used as an initial
condition for the flood forecasts. The case study is set in the 622 km2 Kamp catchment,
Austria. The results indicate that the updating procedure indeed improves the forecasts
substantially. The mean absolute normalised error of the peak flows of six large floods
decreases from 25% to 12% (3 h lead time), and from 25% to 19% (48 h lead time). The
Nash-Sutcliffe efficiency of forecasting runoff for these flood events increases from
0.79 to 0.92 (3 h lead time), and from 0.79 to 0.88 (48 h lead time). The flood forecasting
system has been in operational use since early 2006.
ª 2008 Elsevier B.V. All rights reserved.
Introduction

Updating methods in real-time flood forecasting have en-
joyed wide popularity in the late 1970s and early 1980s with
the increasing use of telemetry in the control of water re-
source systems (Wood, 1980). While numerous national
flood forecasting systems have indeed implemented updat-
ing procedures (e.g., Gutknecht, 1991), scientific interest
soon ebbed off. The reasons may well be as O’Connell and
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Clarke (1981, pp. 202–203) noted: ‘‘The above discussion
suggests that there are still considerable unsolved estima-
tion problems in real-time forecasting, but it is not clear
to what extent their solution would result in improved fore-
casts. It may be more beneficial to seek a better represen-
tation of the spatial variation in rainfall and its effect on
streamflow response, and in improving the structure of
real-time forecasting models than to expend effort in solv-
ing estimation problems. Information on where efforts will
be best rewarded can only be obtained by feedback from
case studies.’’ Indeed, distributed modelling and use of ra-
dar rainfall have been key topics in hydrologic research in
the 1990s (e.g., Grayson and Blöschl, 2000). In the mean
.
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time, updating methods have been developed along a sepa-
rate avenue where the interest resided in how to best use
soil moisture satellite data in hydrological models to im-
prove climate forecasts (McLaughlin, 1994). In this context,
updating is usually referred to as data assimilation. Methods
have been gleaned from oceanography and atmospheric sci-
ences (Reichle et al., 2002) rather than from control theory
as had been the case in the earlier flood forecasting re-
search. The availability of new methods has kindled re-
newed interest in the updating problem of flood
forecasting. Specifically, Monte Carlo methods are appeal-
ing because of their flexibility, case of use and operational
robustness (Madsen and Skotner, 2005). The Ensemble Kal-
man Filter (Evensen, 1994) extends the traditional Kalman
Filter (Kalman, 1960) concept by Monte Carlo techniques
and is able to deal with non-linear model dynamics in a nat-
ural way without linearised model equations. Moradkhani
et al. (2005) found that the updating procedure improved
runoff forecasts of a conceptual hydrologic model when
using on-line measured runoff. Weerts and Serafy (2006)
compared the performance of three methods of updating
a conceptual runoff model – Ensemble Kalman Filtering,
particle filtering and residual resampling. They suggested
that the Ensemble Kalman Filter technique was the most
efficient method in case of a small number of realisations,
and was generally more robust than the other methods.
The Ensemble Kalman Filter is hence an obvious choice for
updating flood forecasts.

The aim of this paper is to examine the benefit of an
updating method that is based on Ensemble Kalman Filter
concepts in forecasting large floods. Using observed runoff,
the soil moisture state of the catchment is updated which is
then used as an initial condition for the forecasts. The anal-
ysis is based on a distributed rainfall-runoff model in the
Kamp catchment in Austria that is part of a flood forecasting
system that has been in operational use since early 2006.
Figure 1 Kamp catchment (622 km2) with telemetered rain
gauges and stream gauge shown. Thick line represents the
catchment boundary, thin lines the river network.
Data and methods

Study catchment and data

The Kamp catchment is located in northern Austria, approx-
imately 120 km north-west of Vienna. At the Zwettl stream
gauge the catchment size is 622 km2 and elevations range
from 500 to 1000 m a.s.l. The higher parts of the catchment
in the Southwest are hilly with deeply incised channels. To-
wards the catchment outlet in the Northeast the terrain is
flatter and swampy areas exist along the streams. Typical
flow travel times in the river system range from 2 to 4 h.
The geology of the catchment is mainly granite and gneiss.
Weathering has produced sandy soils with a large storage
capacity throughout the catchment. A catchment fraction
of 50% is forested. Mean annual precipitation is about
900 mm of which about 300 mm becomes runoff (Parajka
et al., 2005c). During flood events, only a small proportion
of rainfall contributes to runoff. Typically, the event runoff
coefficients are 10% or less (Merz and Blöschl, 2005). As
rainfall increases in magnitude, the runoff response charac-
teristics change fundamentally because of the soil moisture
changes in the catchment and the runoff coefficients can
easily exceed 50%. The catchment is hence highly non-linear
in its rainfall-runoff response. Representing catchment soil
moisture well is hence of utmost importance for producing
accurate flood forecasts.

For the development of the distributed model, data from
a total of 16 rain gauges were used. Out of these, 10 rain
gauges recorded at a time interval of 15 min, the others
were daily gauges. Eight of the recording rain gauges are
telemetered (Fig. 1) and are used for the operational fore-
casting. At each time step, the rain gauge data are spatially
interpolated to a 1 km grid, supported by climatologically
scaled radar information. While the operational system uses
rainfall forecasts, all analyses in this paper are based on the
assumption that future rainfall were known from the rain
gauge data to focus on the value of the updating procedure
in reducing forecasting errors.

Hydrologic model

The model used in this paper is a spatially-distributed con-
tinuous rainfall-runoff model (Reszler et al., 2006 and
Blöschl et al., 2008). The model runs on a 15 min time step
and consists of a snow routine, a soil moisture routine and a
flow routing routine. The snow routine represents snow
accumulation and melt by the degree-day concept. The soil
moisture routine represents runoff generation and changes
in the soil moisture state of the catchment and involves
three parameters: the maximum soil moisture storage Ls,
a parameter representing the soil moisture state above
which evaporation is at its potential rate, termed the limit
for potential evaporation LP, and a parameter in the non-lin-
ear function relating runoff generation to the soil moisture
state, termed the non-linearity parameter b. The details of
the soil moisture routine are given in Appendix A. Runoff
routing on the hillslopes is represented by an upper and
two lower soil reservoirs. Excess rainfall Qp enters the upper
zone reservoir and leaves this reservoir through three paths,
outflow from the reservoir based on a fast storage coeffi-
cient k1; percolation to the lower zones with a percolation
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rate cP; and, if a threshold of the storage state L1 is ex-
ceeded, through an additional outlet based on a very fast
storage coefficient k0. Water leaves the lower zones based
on the slow storage coefficients k2 and k3. Bypass flow Qby

is accounted for by recharging the lower zone reservoir
(k2) directly by a fraction of the excess rainfall. k1 andk2
as well as cP have been related to the soil moisture state
in a linear way. The outflow from the reservoirs represents
the total runoff Qt on the hillslope scale. These processes
are represented on a 1 km · 1 km grid. The model states
for each grid element are the snow water equivalent, soil
moisture Ss of the top soil layer, the storage of the soil res-
ervoirs S1, S2 and S3 associated with the storage coefficients
k1, k2 and k3, with k1 < k2 < k3. The model parameters for
each grid element were identified based on the ‘dominant
processes concept’ of Grayson and Blöschl (2000) which sug-
gests that, at different locations and different points in
time, a small number of processes will dominate over the
rest. Land use, soil type, landscape morphology (e.g., the
degree of incision of streams) and information on soil mois-
ture and water logging based on field surveys were used.
Discussions with locals provided information on flow path-
ways during past floods. Runoff simulations, stratified by
time scale and hydrological situations, were then compared
with runoff data, and the simulated subsurface dynamics
were compared with piezometric head data. The various
pieces of information were finally combined in an iterative
way to construct a coherent picture of the functioning of
the catchment system, on the basis of which plausible
parameters for each grid element were chosen. The model
was extensively tested against independent runoff data
both at the seasonal and event scales. Data from 1993 to
2003 were used for model identification and parameter cal-
ibration. Data from 2004 to 2006 were used for model
verification.

Runoff routing in the stream network is represented by
cascades of linear reservoirs with parameters n (number
of reservoirs) and k (storage coefficient) that are a function
of runoff. Decreasing travel times with increasing flood lev-
els are represented by linearly decreasing k with runoff over
a certain range but as the flood water exceeds bank full run-
off, k is decreased to represent flood attenuation on the
flood plains. The model parameters for each reach have
been found by calibration against observed hydrographs
and results of hydro-dynamic simulation models. The effect
of stream routing on the runoff hydrograph is relatively
small as compared to runoff generation within the catch-
ment, so most of the effort was devoted to obtaining a real-
istic representation of catchment processes. All model
equations have been implemented in state-space notation
to facilitate use of the Ensemble Kalman Filter.
Ensemble Kalman Filter

The idea of the Kalman Filter is to provide an estimate of a
state vector based on model information and measurement
information, balancing out the errors of the two. It is a
sequential algorithm for minimising the state error vari-
ance. While one would usually choose soil moisture as the
state vector in runoff forecasting, an alternative approach
is proposed in this paper. Runoff is treated as if it were a
state vector and is updated based on runoff data in real
time. For consistency with the usual notation (e.g., Madsen
et al., 2003) runoff is denoted by x here. The measurement
error is attributed to the error in runoff measurements, the
model error to the error in precipitation and evaporation in-
put. In the Ensemble Kalman Filter, the model U(Æ) is now
applied to each of the M members of the ensemble to esti-
mate the runoff:

xfm;i ¼ Uðxam;i�1; ui þ em;iÞ; m ¼ 1; 2; :::;M ð1Þ

where xm,i is the runoff of ensemble member m at time step
i, xm,i�1 is the runoff at the previous time step, superscript f
stands for forecast, superscript a stands for analysed, ui is
the model input (precipitation, evaporation) and em,i is
the model error which is randomly drawn from a normal dis-
tribution with zero mean and model error covariance Vi. As
an a priori forecast, the mean value of the ensemble fore-
casts is adopted:

xfi ¼ xfi ¼
1

M

XM
m¼1

xfm;i ð2Þ

The error covariance matrix Pf
i of the forecast is estimated

from the ensemble forecasts as:

Pf
i ¼ SfiðS

f
iÞ

T ð3Þ

with

sfm;i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

M� 1
p ðxfm;i � xfiÞ ð4Þ

where sfm;i is the mth column of Sfi. In a next step, the mea-
surements zi of runoff are contaminated by a measurement
error gm,i to generate an ensemble of M possible
measurements:

zm;i ¼ zi þ gm;i; m ¼ 1; 2; :::;M ð5Þ

where gm,i is randomly drawn from a normal distribution
with zero mean and covariance Wi. Each ensemble member
xfm;i is then updated according to

xam;i ¼ xfm;i þ Kiðzm;i � Cix
f
m;iÞ ð6Þ

where Ki is the Kalman gain:

Ki ¼ Pf
iC

T
i ½CiP

f
iC

T
i þWi��1 ð7Þ

and Ci is the Jacobian matrix that relates the measurements
and the state vector. Based on the updated ensemble mem-
bers, the updated a posteriori estimates of the state vector
xai and the error covariance matrix Pa

i are calculated analo-
gously to (2) and (3).

To illustrate the dynamics of the Ensemble Kalman Filter
for a simple case, Fig. 2 shows a comparison of updated out-
flows from a linear reservoir using the original Kalman Filter
(KF) and the Ensemble Kalman Filter (EnKF) with ensemble
sizes of M = 10 and 100. The model equation is xi = j Æ xi�1
with the recession parameter chosen as j = 0.9, the mea-
surement error variance W and the model error variance
Vboth chosen as 0.5 (m3/s)2 and the initial flow chosen as
x0 = 1 m3/s. The example can be interpreted as the reces-
sion of a flood hydrograph. Again for illustrative purposes,
it was assumed that runoff measurements are available
every seventh time step. As the measurements become
available, the estimation variance of the Kalman Filter



Figure 2 State variable (i.e., runoff) and estimation variance for the recession from a linear reservoir estimated by the Kalman
Filter (KF) and the Ensemble-Kalman-Filter (EnKF) making use of runoff data at intervals of 7 time steps. M is the ensemble size (i.e.,
the number of realisations).
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decreases to about 0.4 and increases as the system loses the
memory of that information. The degree to which the
Ensemble Kalman Filter matches the pattern of the estima-
tion variance depends on the size M of the ensemble. While
for M = 10 the patterns is not represented well, for M = 100
the match is much closer. Of course, in the limit of M!1,
the results of the Ensemble Kalman Filter should approach
those of the Kalman Filter for this simple linear case. The
estimated state variable (i.e., runoff) is adjusted as the run-
off measurements become available (lower panel of Fig. 2).
In contrast to the estimation variance, the estimated state
variable is represented well for an ensemble size as small as
10. This is hardly surprising in the light of the efficiency of
the method pointed out by Weerts and Serafy (2006), but
nevertheless satisfying for the purposes of flood forecast-
ing. While the flood forecasting model is non-linear, so
the efficiency of the estimates will be different, the simple
comparison does point to an order of magnitude of the
ensemble size needed of M = 10, if the main interest lies
in representing the state variable (i.e., runoff) well.

There are a number of possibilities for implementing the
Ensemble Kalman Filter with a flood forecasting model that
are related to formulating the errors and the states. One
can separately represent different sources of the model er-
ror by different error terms. The advantage of doing this is
that the physical basis of individual error sources remains
clear. For example, one can separately represent errors in
precipitation estimation, evaporation, as well as errors in
model structure and model parameters. While the separate
representation of many error sources is conceptually
appealing it may be difficult in a practical application to
specify the error distribution for each of the sources in a
reliable way. If the model error assumptions are inappropri-
ate, the updating may degrade the model performance as
compared to the case without updating, as illustrated by
Crow and Van Loon (2006) for the case of assimilating remo-
tely sensed surface soil moisture. Also, some of the errors
are likely correlated and, if the approach of separately rep-
resenting component errors were adopted one would also
have to account for these interrelationship. In this paper
we have hence chosen to represent the errors in precipita-
tion and evaporation input as the model error in an aggre-
gate way, both for simplicity and parsimony.

In terms of formulating the states one possibility is a
dual-state scheme. However, dual-state schemes may,
potentially, give rise to identifiability issues. For example,
Crow and Van Loon (2006) found that it was difficult to esti-
mate two states (surface soil moisture and root zone soil
moisture) from remote sensing data of surface soil moisture
alone. As a remedy they recommended dual assimilation of
both runoff observations and surface soil moisture observa-
tions (from remotely sensed data) that may allow more ro-
bust estimates of the two states. Dual assimilation of runoff
observations and surface soil moisture observations would
also be a possibility here but Parajka et al. (2005b) demon-
strated that very little can be gained in terms of runoff pre-
diction capabilities when assimilating remotely sensed soil
moisture in Austria. While in this paper the suitability of a
dual-state scheme has not been tested, a single-state
scheme was hence considered a robust choice. The main
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idea of the approach chosen here is that runoff is treated as
if it were a state vector and is updated based on runoff data
in real time according to Eq. (6). The main advantage of
doing this is that Ci in (7) then is the identity matrix and
there is no need to calculate it. The updated a posteriori
runoff xai represents an updated estimate of the current run-
off considering uncertainties of the model results and the
runoff measurements. Therefore the updated runoff xai pro-
vides a logical basis for the real-time flood forecast at the
current time step i. However, the catchment soil moisture
Ss, and the storage of the soil reservoirs S1, S2 and S3 of each
grid element associated with xai are unknown as they are
propagated forward in time according to the non-linear
model equations while xai is estimated directly from Eq.
(6). To run the model in a forecast mode from the updated
initial conditions, soil moisture and the storage of the soil
reservoirs are required. They are also required for the for-
ward propagation of the estimation covariance derived from
the runoff ensemble. While in the classical Kalman filter one
would obtain soil moisture by the Jacobian matrix Ci in Eq.
(7), as an alternative, a simple similarity approach is
adopted here to find soil moisture and the storage of the soil
reservoirs of each pixel that is consistent with the a poste-
riori runoff xa

i . For each ensemble member m, a set of N
additional realisations is generated by forward propagation
of the hydrologic model U which is the runoff model as pre-
sented in Blöschl et al. (2008):

xf
n;m;i ¼ Uðxfn;m;i�1; ui þ en;iÞ; n ¼ 1; 2; :::;N ð8Þ

adding random errors en,i of precipitation and evaporation
that are spatially uniform. These realisations are termed
auxiliary realisations while the ensemble of m = 1, M con-
tains the main realisations. The auxiliary realisations start
from a time step where soil moisture and the storage of
the soil reservoirs are known. At time step j the auxiliary
realisations xf

n;m;i differ because of the random errors. One
of the auxiliary realisations xfn;m;i is closest to the a posteri-
ori runoff xam;i. This realisation xfn;m;i is assumed to be consis-
tent with xam;i, i.e.,

jxam;i � xfn;m;ij ! min ð9Þ

which gives the soil moisture and the storage of the soil res-
ervoirs for all grid elements at time i for each realisation m.
Figure 3 (a) Schematic of the Ensemble Kalman Filter approach.
As the initial conditions of the real-time forecasts the real-
isation m is selected that is closest to the mean value of all
realisations in terms of runoff, i.e.,

jxai � xam;ij ! min with xai ¼
1

M

XM
m¼1

xam;i ð10Þ

A schematic overview of the real-time model update with
Ensemble Kalman Filter concepts and the similarity ap-
proach is given in Fig. 3. The current time step is labelled
i and the time increment is 1. Tests with the procedure sug-
gested that it is useful to start the realisations at u time
intervals before time step i for numerical reasons. Fig. 3a
shows three ensemble members of the Ensemble Kalman Fil-
ter with their respective values xf1;i, x

f
2;i, and xf3;i at time step

i. They approximate the probability density function (pdf)
of the a priori estimates (dashed dotted line in Fig. 3a).
The perturbed observations z1,i, z2,i and z3,i that approxi-
mate the pdf of the observation errors (dotted line in
Fig. 3a) are combined with the xf1;i, xf2;i and xf3;i by Eq. (6)
to obtain the xa1;i, xa2;i and xa3;i which approximate the pdf
of the a posteriori estimates (solid line in Fig. 3a). In the
schematic of Fig. 3, the Kalman gain has been chosen as
Ki = 0.6. To obtain the soil moisture and the storage of the
soil reservoirs of each pixel, auxiliary realisations are
started at time step i � u. In Fig. 3b, N = 3 auxiliary realisa-
tions are shown for the main realisation m = 1 which pro-
duce xf1;1;i, xf2;1;i and xf3;1;i. In the schematic, the auxiliary
realisation n = 3 is the one that is closest to the a posteriori
estimate of realisation m = 1 as jxa1;i � xf3;1;ij is small. The soil
moisture and the storage of the soil reservoirs of each pixel
associated with the auxiliary realisation n = 3 is hence used
to represent the a posteriori estimate of realisation m = 1.
For the example in Fig. 3 the initial conditions for the a pos-
teriori estimatexa

2;i are used for the forecasts according to
Eq. (10).

Application of the Ensemble Kalman Filter concepts
to the Kamp catchment

The soil moisture and the storage of the soil reservoirs of
the grid elements of the hydrologic model at the beginning
of a flood event are clearly important for reliable flood
(b) Schematic of the similarity approach. For symbols see text.



Soil moisture updating by Ensemble Kalman Filteringin real-time flood forecasting 233
forecasts. If the initial system state deviates from the opti-
mal state, the flood forecasts will also be less than perfect.
An overestimation of soil moisture at the beginning of a
flood event would be expected to lead to an overestimation
of the observed flood peak and, in a similar way, an under-
estimation of soil moisture would cause an underestimation
of flood peaks. Biases in the soil moisture may be the result
of small biases in the input, i.e., precipitation and evapo-
transpiration, that may accumulate over weeks and months.
It is these biases the updating procedure of this papers aims
to correct. While updating methods commonly used in real-
time flood forecasting (e.g., Gutknecht, 1991) update run-
off generation during events, the procedure presented here
updates the evolution of soil moisture between events by
attributing the model uncertainty to rainfall and evapo-
transpiration inputs. This means, it is the slow component
of soil moisture change in the catchment that is adjusted.
The model error variance must hence be set to reflect the
slow processes. As there is a single stream gauge, the
covariances simplify to scalar variances.

In order to find suitable parameters for the updating pro-
cedure we performed extensive test calculations with dif-
ferent sets of parameters and different error models
(white and red noise) for time periods including floods and
low flow conditions. Based on the results of these calcula-
tions, the model variances for the ensemble of main and
auxiliary realisations are set to Vi = 0.005 (mm/15 min)2.
As the variance of the sum of independent random variables
scales with the number of aggregation steps, this value is
equivalent to an error standard deviation of 1.8 mm/week
(with a time step of 0.25 h). This is the order of magnitude
one would expect for the uncertainty of the precipitation
measurements and estimation of evaporation, although it
is difficult to separate the individual effects. It is clear that
this magnitude relates to the small biases over a relatively
long time period rather than to precipitation errors during
a flood event which could be much larger. The small model
variance updates the system states between the flood
events to improve the initial conditions for the forecasts
of future flood events.

The accuracy of runoff measurements tends to decrease
with increasing runoff. Typically, the error standard devia-
tion is set to a fixed percentage of runoff. The measurement
error variance of runoff was hence formulated as
Wi ¼ n � z2i . Again based on test simulations, n was set to
n = 0.0025. Runoff measurement errors depend on the sam-
pling method and on the local stream geometry but, typi-
cally, the error standard deviations are on the order of 5%
of the runoff (Herschy, 2002). This means that the measure-
ment error variance used here is the order of magnitude one
Table 1 Parameters of the Ensemble Kalman Filter

Parameter Symbol

Time step Dt
Updating time step Dtu
Measurement error variance of runoff Wi

Model error variance Vi
Ensemble size M
Auxiliary ensemble size N

zi is measured runoff.
would expect for the uncertainty of the runoff
measurements.

One of the advantages of the Ensemble Kalman Filter is
its flexibility with regards to the statistical characteristics
of the model and measurement errors. During the parame-
terisation of the update procedure test calculations with
red noise (i.e., temporally correlated) model errors were
carried out. The test calculations indicated that for the
red noise case, larger ensemble sizes M are needed than
in the white noise case to get similar results. White noise er-
ror terms without a correlation in time were hence used for
the model and measurement errors. As there is a single
stream gauge, Ci = Ci = 1.

Test simulations were performed to determine a suitable
ensemble size. For a given time period the updating proce-
dure was run with a large ensemble size and the ensemble
size was gradually reduced, similar to Fig. 2. These compar-
isons suggested that an ensemble size of M = 10 gives very
similar estimates of runoff to the case of large ensemble
sizes with less than 1% difference. M = 10 was hence
adopted in this case study. N was set to N = 10 in a similar
comparison. The update interval was set to u = 12. With a
time step of Dt = 0.25 h the update interval Dtu is hence
3 h. This lag is needed because of the non-linearity – any
additional rainfall will not immediately produce a response
at the catchment outlet as there is some time lag within the
catchment. Table 1 summarises the parameters of the
updating procedure used in this paper.
Sensitivity to soil moisture

The way the updating procedure operates in the Kamp mod-
el is illustrated in two scenarios (Figs. 4 and 5). To emulate
the situation in real-time flood forecasting, the update of
the system states is only performed during the low flow per-
iod before the first rise of the hydrograph on October 20,
which would be the past in a forecast situation. From Octo-
ber 20 (which would be the future), the simulation is per-
formed without any updating and observed precipitation
from rain gauges is used as a model input for clarity. In
Fig. 4, the initial soil moisture at the beginning of the calcu-
lation period was set to 0%, i.e., the top soil was assumed to
be perfectly dry. Shown in the graphs is the mean value of
the relative soil moisture within the catchment

Ss=Ls ¼
1

np
�
Xnp
k¼1

Ssk
Lsk

ð11Þ

where Ssk and Lsk are the simulated soil moisture and their
limit at grid element k. np is the number of grid elements
Unit Value

h 0.25
h 3
(m3/s)2 n � z2i ; n ¼ 0:0025
(mm/15 min)2 0.005

10
10



Figure 4 Scenario with initial soil moisture set to an arbitrary low value to illustrate the effect of updating by the Ensemble
Kalman Filter on mean relative soil moisture Ss=Ls and runoff. October 1996, stream gauge Zwettl/Kamp.

Figure 5 Scenario with initial soil moisture set to an arbitrary large value to illustrate the effect of updating by the Ensemble
Kalman Filter on mean relative soil moisture Ss=Ls and runoff. October 1996, stream gauge Zwettl/Kamp.
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with np = 622. In a simulation mode without updating
(dashed lines) the model consistently underestimates soil
moisture and hence runoff. When updating is allowed (thin
solid lines) the model adjusts the perceived errors in precip-
itation and evaporation and hence increases soil moisture
more quickly than in the simulation case. The updating of
the model input affects the entire hydrologic system includ-
ing the storage of the soil reservoirs not shown. The updated
runoff hence reaches the level of the observed hydrograph
after a short time period. In case of the simulation without
updating, the flood peak on October 23 is clearly underesti-
mated while the forecast that uses updated initial
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conditions (thin solid lines) is much closer to the observed
hydrograph. As noted above, it is antecedent soil moisture
that is aimed to be improved on by the updating procedure.

A similar scenario, but with very wet initial conditions is
shown in Fig. 5. The effect of the updating is similar in that
it adjusts the soil moisture to a reasonable value. Without
Figure 6 Simulations without updating (dashed lines) and updating
at Zwettl/Kamp from May to September 2005. Example of excellen

Figure 7 Simulations without updating (dashed lines) and updating
at Zwettl/Kamp from November 2005 to April 2006. Example of
significant.
updating the flood peak is vastly overestimated as a conse-
quence of the overestimated soil moisture at the beginning
of the flood event. A comparison of Figs. 4 and 5 indicates
that, in both cases, updated soil moisture converges to a va-
lue that is consistent with runoff. On October 20 (i.e., the
hypothetical time of the forecast) soil moisture in both Figs.
(thin solid lines) of runoff (top) and cumulative errors (bottom)
t model performance where the benefits of updating are small.

(thin solid lines) of runoff (top) and cumulative errors (bottom)
poor model performance where the benefits of updating are
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4 and 5 was 38%, while without updating, it was 23% and
79%, respectively.

The scenarios illustrate that accurate estimates of ante-
cedent soil moisture are indeed of utmost importance for
producing accurate forecasts. Inadequate initial moisture
can be corrected and suitable moisture conditions can be
estimated by updating the model input during the dry period
before the flood event on October 23.

Results

Updating soil moisture in a simulation mode

Fig. 6 shows the results of simulation runs with and without
model update from May to September 2005. The calculation
results with model update are simply the analysed state
estimates xai . During this period, the simulation without
updating performs very well. Both the shape and the peaks
of the simulated flood hydrographs are close to the observa-
tions. The cumulative errors (lower part of Fig. 6) are very
small. The cumulative error never exceeds 7 · 106 m3 within
this period which is small as compared to the total flow vol-
ume of 140 · 106 m3. This is because of the favourable mod-
el performance. There is a slight improvement in the May
event and the August events, but overall there is hardly
any difference between the simulations with and without
updating. This example is the ideal case for real-time flood
forecasting, where the model performs well in the simula-
tion mode, so one would also expect the model to work well
in the forecasts.

An alternative example is shown in Fig. 7 for the period
from November to April 2006. Until the end of December
Figure 8 Effect of updating soil moisture in the forecast mode.
conditions on 18 July 1997 at 0 h. Future precipitation is assumed
time (vertical line). Zwettl/Bahnbrücke (622 km2).
the simulated hydrograph is slightly lower than the data.
This is most likely due to uncertain precipitation and evap-
oration inputs during this relatively dry period. From Janu-
ary until the end of March the differences between
simulation and observation increases which is reflected in
a progressive increase in the negative cumulative errors.
During this period the likely reason for this underestimation
are the uncertainties in simulating snow accumulation and
snow melt. The effect of these biases is the underestima-
tion of the soil moisture at the beginning of the flood event
in April 2006. As a result, the entire flood event in April is
substantially underestimated. In contrast, the simulation
with updating performs much better during the low flow
period until the end of March. The antecedent soil moisture
at the beginning of the flood event in April is larger than for
the simulation case without updating and the flood event is
represented much more accurately. For this example, the
advantage of the updating during the low flow period is
obvious.

Updating soil moisture in a forecast mode

The examples in Figs. 6 and 7 were illustrative of the merits
of updating, depending on the performance of the simula-
tion per se. In a forecast situation, however, the updating
is for the past only. The forecast starts with the updated ini-
tial conditions but, of course, with no additional updating of
the forecast as future runoff data are not available. This sit-
uation is illustrated in Figs. 8 and 9. Up to the time the fore-
cast is made (vertical lines in Figs. 8 and 9), the updating is
as in Figs. 6 and 7 but beyond that point in time no more
updating is allowed although future precipitation is assumed
The forecast was started from simulated and updated initial
to be known but no updating is performed beyond the forecast



Figure 9 Effect of updating soil moisture in the forecast mode. The forecast was started from simulated and updated initial
conditions on 15 August 2005 at 21 h. Future precipitation is assumed to be known but no updating is performed beyond the forecast
time (vertical line). Zwettl/Bahnbrücke (622 km2).
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to be known. The difference between the updating and no
updating (simulation) cases in Figs. 8 and 9 for the points
in time later than the forecast time is hence only related
to the difference in the initial conditions at the forecast
time.

The upper panel of Fig. 8 shows simulated and updated
mean relative soil moisture Ss=Ls, the lower panel shows
the associated hydrographs. During July 16 and 17 before
the start of the event, runoff is overestimated in the simu-
lation (no updating) case because soil moisture and the stor-
age of the soil reservoirs are overestimated as a result of
biases accumulated over the previous months. The updating
brings soil moisture and the storage of the soil reservoirs as
well as runoff down, so that runoff is very similar to the
data. At the time the forecast is made, relative soil mois-
ture is 62% and 51% in the simulation and updating cases,
respectively. These are the initial conditions for the fore-
casts along with the storage of the soil reservoirs S1, S2
and S3 not shown. The forecast based on the simulated ini-
tial conditions overestimates the observed hydrograph dur-
ing most of the forecast lead time (19–22 July). The
forecast based on the updated initial conditions does under-
estimate the first peak but performs substantially better for
the remaining forecast lead time. Fig. 8 is an example
where soil moisture (without updating) is overestimated
prior to the event which is quite apparent in the overestima-
tion of runoff. Fig. 9 shows the converse example where soil
moisture (without updating) is underestimated prior to the
event but this is not so obvious in the hydrograph. In fact,
the simulated initial runoff is only slightly lower than the
measurement but the flood peak of the following event is
clearly underestimated by the simulation. In this example,
the updated initial soil moisture improves the forecast accu-
racy very substantially which is due to the updating of soil
moisture during the dry period before the flood event. It
is interesting that the non linearity of the rainfall-runoff
model amplifies the small differences in runoff prior to
the event. This means that small differences between sim-
ulated and observed hydrographs can have a great effect
on the runoff forecast. Conversely, these small differences
can be exploited to improve the forecasts. It is also interest-
ing that the difference in soil moisture of the updated and
simulated forecast runs decreases during the forecast peri-
od. This is due to the formulation of the soil moisture
accounting scheme (Eq. A.1) which is a stable dynamic sys-
tem where small perturbations in the initial conditions van-
ish over time. For the second event, hence, the difference
between the two runoff forecasts (with and without updat-
ing) is much smaller than for the first event in Fig. 9.

The previous figures have illustrated the temporal evolu-
tion of mean relative soil moisture. The model used is a dis-
tributed model where the model parameters are non-
uniform in space and the inputs also differ spatially. The soil
moisture is hence variable within the catchment. It is of
interest to see how this spatial distribution changes with
the updating. Fig. 10a shows a comparison of the spatial dis-
tribution of relative soil moisture within the catchment at
the start of the forecast run on 15 August 2005 at 21 h (ver-
tical line in Fig. 9). In this example, the updating increases
mean relative soil moisture from 0.54 to 0.60 (Fig. 9) which
is also apparent in Fig. 10a. It is mainly the mean that in-
creases while the shape of the distribution does not change
much. This spatial distribution indicates that most of the
runoff stems from a relatively small portion of the catch-



Figure 10 Spatial distributions of simulated and updated
relative soil moisture Ss/Ls and soil storage S2 on 15 August 2005
at 21 h at Zwettl/Bahnbrücke (622 km2) used as initial condi-
tions for the forecasts in Fig. 9.
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ment with above soil moisture (Eq. A.1) and this spatial dis-
tribution is maintained in the updating. Indeed, the assump-
tions involve spatially uniform random errors en,i of
precipitation and evaporation. Fig. 10b shows the corre-
sponding spatial distribution of the storage of the soil reser-
voir S2. This soil reservoir has a storage parameter k2 that
ranges between 6 and 17 days within the catchment, so rep-
resents an intermediate component in terms of the timing
of runoff response. It is interesting that it is mainly the wet-
ter parts of the catchment where the updating increases the
soil storage, while the relatively dry parts remain almost
unaffected. The wetter parts (larger S2) are those that are
hydrologically more active, and are also those that are more
affected by the updating as one would expect.

Performance for large flood events

Most of the time, updating soil moisture leads to an
improvement of the forecast accuracy. In particular, during
low flow and average flow conditions the forecasts are very
close to the data. However, the main interest in this paper
Table 2 Flood peaks, return periods and evaluation periods for
record at Zwettl/Bahnbrücke (622 km2)

August 2002a August 2002b Ju

Observed flood peak (m3/s) 459 367 95
Return period of peak (yrs) �1000 �500 5
Peak time 8 August, 0 h 13 August, 13 h 11
Beginning of entire event 6 August, 0 h 11 August, 0 h 5
End of entire event 10 August, 21 h 15 August, 21 h 15
Beginning of rising limb 6 August, 12 h 11 August, 12 h 10
End of rising limb 8 August, 6 h 13 August, 18 h 11
is on flood forecasting, and in particular on the forecasting
of large floods. The six largest flood events on record at the
Kamp have hence been examined in more detail (Table 2).
Some of these events are indeed extraordinary events.
Flood records at the Kamp have been available since,
1977, and flood marks and archive information from the
early 19th century. Based on this information, the largest
flood on record (first event in August 2002) was assessed
to be on the order of a 1000 year flood (Blöschl and Zehe,
2005). Some of the other floods are also large (second event
in August 2002, about 500 years; March 2006 about ten years
return period). The data set is hence particularly well suited
to address the science question of whether the updating
prior to events will actually improve the forecasts of large
floods.

As in the previous analyses, two cases were examined,
with and without updating soil moisture. In a first step the
ability of the updating procedure to improve on the forecast
of the flood peaks is examined. To this end, the forecasts
are analysed that have been made 3 h before each flood
peak occurred. For example, for the first event in August
2002, the flood peak occurred on August 8 at 0 h, so the
forecast made on August 7, 21 h is analysed. Future precip-
itation was assumed to be known as in all the previous anal-
yses, but no updating beyond the forecast time was
allowed. The results of the comparison are shown in
Fig. 11. For five out of the six flood events, the flood peaks
are indeed improved. For example, the peak flow of the
largest event was observed as 459 m3/s while the forecast
without and with updating soil moisture gives 508 and
470 m3/s, respectively. The improvement of updating is lar-
ger for those events that are not represented so well in the
simulation case. For the smallest event, the peak flow is
slightly deteriorated (65 m3/s observed and 56 and 53 m3/
s, respectively, without and with updating). The mean nor-
malised absolute error of the peaks

e ¼ 1

p

Xp
k¼1

j bQ k � Qkj
Qk

ð12Þ

was evaluated where Qk are the observed flood peaks andbQ k are the flood peak forecasts and p = 6. For the six peaks
in Fig. 11 the mean normalised absolute error of the peaks is
25% without updating and decreases to 12% with updating.
This is for a lead time of 3 h. For a lead time of 48 h the
mean normalised absolute error of the peaks is 25% without
updating and decreases to 19% with updating. It is clear,
that overall, there are significant merits of the updating in
terms of forecasting peak flows.
the statistical error analysis of the six largest flood events on

ly 2005 August 2005a August 2005b March 2006

68 65 112
3 3 10

July, 10 h 16 August, 17 h 22 August, 8 h 31 March, 23 h
July, 0 h 14 August, 0 h 20 August, 0 h 25 March, 0 h
July, 0 h 19 August, 21 h 26 August, 21 h 5 April, 12 h
July, 12 h 16 August, 0 h 21 August, 12 h 26 March, 6 h
July, 6 h 17 August, 21 h 22 August, 12 h 2 April, 3 h



Figure 11 Comparison of the forecasted peak flows with and
without updated initial conditions for the six largest flood
events on record as of Table 2. Both forecast runs (updated and
simulated) were started 3 h before the observed flood peaks
(forecast lead time of 3 h) based on observed precipitation
inputs.
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In a second step, the forecast accuracy of the two cases is
analysed for the entire events rather than the peaks only.
Two error measures are used, the mean normalised absolute
error ej (Eq. 13) and the Nash-Sutcliffe efficiency Ej (Eq. 14):

ej ¼
1

i2 � i1

Xi2
i¼i1

j bQ ij � Qij
Qi

ð13Þ

Ej ¼ 1�
Pi2

i¼i1ðQi � bQ ijÞ2Pi2
i¼i1ðQ � QiÞ2

ð14Þ
Figure 12 Forecast errors (Eq. (13)) for the six largest flood even
Dashed lines relate to the forecasts with simulated soil moisture
moisture. (a) Entire flood events; (b) rising limbs only.
where j is the forecast lead time, bQ ij is runoff at time step i
that is forecasted with a lead time of j, Qi is the observed
runoff at time step i, and i1 and i2 are the beginning and
the end of the analysis interval, respectively (Table 2). In
this analysis, the forecasts were made at 3 h intervals and
different lead times of up to 48 h were analysed. We ana-
lysed two evaluation periods (i1 to i2); entire flood events,
and the rising limbs only (see Table 2). The forecast errors
for the entire events and the risings limbs are shown in
Fig. 12a and b, respectively. In all instances, the updating
of soil moisture reduces the forecast errors. For a lead time
of 3 h, for example, the errors decrease from 20% to 12% in
the case of the entire events, and 33% to 15% in the case of
analysing the rising limbs only. For the case of simulated ini-
tial conditions, the forecast errors do not change with lead
time as would be expected, as this is a simulation case
where the forecast time does not come into play. In con-
trast, for the case of updated initial conditions, the errors
are smallest for the short lead times, which again would
be intuitively expected. At the time of the forecast, ob-
served runoff at the time of the forecast captures some of
the hydrological process dynamics that continue over the
following hours. As the memory fades away with time, the
improvement in forecast accuracy is largest for the short
lead times. It is interesting that even after a forecast lead
time of 48 h the updated initial conditions improve the fore-
casts substantially. Quite clearly, it is not only the fast run-
off components that contribute to a given forecast
accuracy.

The errors for the rising limbs (Fig. 12a) are generally lar-
ger than those for the entire flood events (Fig. 12b). This is
because the forecast errors during the rising flood limbs are
larger than those during the falling limbs due to rainfall
uncertainty. During the falling limb rainfall is zero or very
small, so rainfall uncertainty is small too. It is also possible,
that the fast components of runoff are more uncertain than
the slow components. Generally speaking, the rising limbs
are more difficult to predict than the falling limbs but it
ts on record (Table 2) assuming future precipitation is known.
(no-updating), solid lines to the forecasts with updated soil



Figure 13 Nash-Sutcliffe model efficiency of the forecasts (Eq. (14)) for the six largest flood events on record (Table 2) assuming
future precipitation is known. Dashed lines relate to the forecasts with simulated soil moisture (no-updating), solid lines to the
forecasts with updated soil moisture. (a) Entire flood events; (b) rising limbs only.
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are the former that are of most interest to flood
management.

Fig. 13 shows the results of the Nash-Sutcliffe efficiency.
This error measure involves squared errors (Eq. (14)), so the
large deviations from the data are weighted more strongly
than in the case of the mean absolute error. The error pat-
tern of the Nash-Sutcliffe efficiency is similar to that of the
mean absolute error. In both evaluation periods, rising limbs
and entire flood events, the model efficiency is improved by
the updating. For the entire flood events, the Nash-Sutcliffe
efficiency at a forecast lead time of 48 h increases from
0.79 to 0.88 by the updating, and it increases from 0.79 to
0.92 at a lead time of 3 h. For the rising limbs, the Nash-
Sutcliffe efficiency at a forecast lead time of 48 h increases
from 0.68 to 0.82 by the updating, and it increases from
0.68 to 0.88 at a lead time of 3 h.

Discussion and conclusions

Renewed interest in updating methods in hydrology has
come from the availability of Monte Carlo methods because
of their flexibility, ease of use and operational robustness.
The Ensemble Kalman Filter extends the traditional Kalman
Filter concept by Monte Carlo techniques and is able to deal
with non-linear model dynamics in a natural way. The aim of
this paper is to examine the benefit of an updating proce-
dure based on Ensemble Kalman Filter concepts in forecast-
ing large floods. The soil moisture of a distributed runoff
model is updated based on observed runoff. The updated
soil moisture is then used as an initial condition for the fore-
casts. The ensemble size was set to M = 10 with N = 10 aux-
iliary realisations. Hardly any improvement in forecast
accuracy was obtained when increasing the ensemble size
in test simulations. A typical ensemble size used in the
updating of hydrological models is 50 (Moradkhani et al.,
2005). The advantage of the method proposed here is that
it avoids calculation of the Jacobian that relates the states
and the observations by using an iterative procedure of aux-
iliary realisations. The proposed method may be numerically
less efficient than direct estimation of the Jacobian,
depending on how it is calculated, but all the states of
the model (soil moisture, ground water, snow) are fully con-
sistent at all times. The main interest of this paper was,
however, not in the particular formulation of the updating
procedure but in the degree it will actually improve the
forecasts for a real world case. During low and average flows
the value of updating is usually obvious because of the long
time scales associated with these hydrological processes.
For large flood flows, the difficulty with updating runoff dur-
ing an event is that phase errors usually cannot be handled
well. There can be overshooting of the forecasts if phase er-
rors are interpreted as volume errors. The procedure exam-
ined here mainly updates the slow runoff components, i.e.,
soil moisture between events which is then used as an initial
condition for the flood forecasts. Sensitivity analyses and
comparisons of individual events suggest that the concept
of updating the slow component is plausible and robust. It
is interesting that the non linearity of the rainfall-runoff
model amplifies the small differences in runoff prior to
the event. This means that small differences between sim-
ulated and observed hydrographs can have a great effect
on the runoff forecast (Zehe and Blöschl, 2004). Conversely,
these small differences can be exploited to improve the
forecasts. The updating mainly changes the mean value of
the catchment soil moisture, while the spatial structure of
the moisture distribution is preserved during the update.
Therefore, increasing catchment soil moisture leads to an
increasing fraction of runoff contributing areas within the
catchment. Analyses of six large flood events at the Kamp
indicate that the updating indeed reduces forecast errors
substantially during the flood events. It is considered a
strength of this case study that data on a number of large
floods (including two extreme floods) were available which
is not usually the case in practical applications. This is
important as one of the main motivations of implementing
flood forecasting systems is to improve on the forecasting
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of extreme events where the damage potential is largest
(Apel et al., 2006).

Nash-Sutcliffe efficiencies of runoff models without
updating reported in the literature are, typically, on the or-
der of 0.7–0.9 (e.g., Parajka et al., 2005a). The efficiencies
without updating found in this paper are at the lower end of
this range (Fig. 13). It should be noted that low flow and
average flow conditions can usually be simulated much more
accurately than flood flows. For comparison, the Nash-Sutc-
liffe forecast efficiency at the Kamp was evaluated for en-
tire years (as opposed to events) following an analogous
procedure. The efficiencies without updating were always
larger than 0.85 and increased to more than 0.98 if updating
of soil moisture was allowed. Clearly, the updating is most
efficient for low and medium flows, but from a practical
perspective the flood flows are usually of much more inter-
est. However, these tend to be more difficult to predict and
errors are usually much larger. For example, a model com-
parison of Reed et al. (2004, their Fig. 18b) gave mean nor-
malised absolute errors of peak flows in a typical range of
20–50%, depending on the model and the catchment ana-
lysed. Based on the results of this study, one would expect
that such errors could be substantially reduced if soil mois-
ture were updated. In the present paper, the peak flow er-
rors for 3 h forecasts were reduced from 25% to 12% by the
updating procedure, and from 25% to 19% for 48 h forecasts.
It should be noted that the forecast lead time of 48 h is
much larger than typical flow travel time in the streams
within the catchment which are less than 2 h. It is hence
the water in the landscape rather than that in the stream
that needs to be adjusted in this case study.

Remotely sensed soil moisture is sometimes used for
updating the soil moisture of hydrological models. The sig-
nificant increase in forecast accuracy found here suggests
that use of runoff data to infer catchment soil moisture
may be an efficient alterative to remote sensing data. In
fact, in the study area examined here it appears that updat-
ing soil moisture through observed runoff is a better choice
than to directly use remotely sensed soil moisture data for
updating (Parajka et al., 2005b).

The model parameters and structure were chosen very
carefully in this case study. The model identification proce-
dure went substantially beyond the calibration to runoff.
Piezometric head data, and information from local surveys
and other sources (such as snow data, Parajka and Blöschl,
2006) were used and combined by hydrological reasoning.
This means that the model can be expected to represent
the hydrological processes in the Kamp catchment reason-
ably well. We believe it is important to very carefully adjust
the model to the local conditions (going beyond calibration
to runoff) for the updating procedure to work efficiently.
The events in 2005 and 2006 (Table 2) were not used for cal-
ibration but retained for model validation. In the current
procedure, the main error source is attributed to the inputs
(rainfall, evaporation) and their effect on soil moisture, so
model parameters are not updated. A plausible model struc-
ture and carefully adjusted model parameters are hence the
basis for a good performance of the updating routine. This is
important as it then avoids the ‘‘flogging a dead horse’’ syn-
drome, i.e., attempting to update models that do not repre-
sent the processes well. Also, the availability of input data
(16 rain gauges for model development, 8 telemetered rain
gauges in a 622 km2 catchment) along with radar data in this
study is probably more than what one usually encounters in
operational applications. With these caveats, it is suggested
that updating procedures such as the one proposed in this
paper can indeed substantially improve the forecasting of
large floods at the catchment scale examined here.
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Appendix A. Structure of the soil moisture
model

A conceptual soil moisture accounting scheme is used at the
model grid scale. The sum of rain and melt from timestep i-
1 to i, Pr,i/ i�1 + Mi/i�1, is split into a component dSi/i�1 that
increases soil moisture of a top layer, Ss, and a component
Qp,i/i�1 that contributes to runoff. The components are split
as a function of Ss,i�1:

Q p;i=i�1 ¼
Ss;i�1
Ls

� �b

� ðPr;i=i�1 þMi=i�1Þ ðA:1Þ

Ls is the maximum soil moisture storage. b controls the
characteristics of runoff generation and is termed the
non-linearity parameter. If the top soil layer is saturated,
i.e., Ss,i�1 = Ls, all rainfall and snowmelt contributes to run-
off and dSi/i�1 is 0. If the top soil layer is not saturated, i.e.,
Ss,i/i�1 < Ls, rainfall and snowmelt contribute to runoff as
well as to increasing Ss through

dSi=i�1 > 0 :

dSi=i�1 ¼ Pr;i=i�1 þMi=i�1 � Q p;i=i�1 � Qby;i=i�1 if Pr;i=i�1

þMi=i�1 � Qp;i=i�1 � Q by;i=i�1 > 0

dSi=i�1 ¼ 0 otherwise

ðA:2Þ

where, additionally, bypass flow Qby, i/i�1 is accounted for.
Analysis of the runoff data at the Kamp indicated that flow
that bypasses the soil matrix and directly contributes to the
storage of the lower soil zone is important for intermediate
soil moisture states Ss. For

n1 Æ Ls < Ss, i�1 < n2 Æ Ls (with n1 = 0.4, n2 = 0.9) bypass flow
was assumed to occur as

Q by;i=i�1 ¼ aby � ðPr;i=i�1 þMi=i�1Þ if aby � ðPr;i=i�1 þMi=i�1Þ< Lby

Q by;i=i�1 ¼ Lby otherwise

ðA:3Þ

while no by pass flow was assumed to occur for dry and very
wet soils. Changes in the soil moisture of the top soil layer Ss
from time step i � 1 to i are accounted for by

Ss;i ¼ Ss;i�1 þ ðdSi=i�1 � EA;i=i�1Þ � Dt ðA:4Þ
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The only process that decreases Ss is evaporation EA,i/i�1
which is calculated from potential evaporation, EP,i/i�1, by
a piecewise linear function of the soil moisture of the top
layer:

EA;i=i�1 ¼ EP;i=i�1 � Ss;i�1Lp
if Ss;i�1 < Lp

EA;i=i�1 ¼ EP;i=i�1 otherwise
ðA:5Þ

where Lp is a parameter termed the limit for potential evap-
oration. Potential evaporation was estimated by the modi-
fied Blaney-Criddle method (DVWK, 1996) as a function of
air temperature. This representation of potential evapora-
tion was compared to other methods in Parajka et al.
(2003) suggesting that it gives plausible results in Austria.

References

Apel, H., Thieken, A.H., Merz, B., Blöschl, G., 2006. A probabilistic
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Parajka, J., Merz, R., Blöschl, G., 2005a. A comparison of
regionalisation methods for catchment model parameters.
Hydrology and Earth Systems Sciences 9, 157–171.
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