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Abstract

This paper presents a distributed model that is in operational use for forecasting flash floods in northern Austria. The main challenge in
developing the model was parameter identification which was addressed by a modelling strategy that involved a model structure defined at
the model element scale and multi-source model identification. The model represents runoff generation on a grid basis and lumped routing
in the river reaches. Ensemble Kalman Filtering is used to update the model states (grid soil moisture) based on observed runoff. The forecast
errors as a function of forecast lead time are evaluated for a number of major events in the 622 km2 Kamp catchment and range from 10% to 30%
for 4e24 h lead times, respectively.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Recent years have seen an explosion in the development
and use of spatially distributed models in hydrology. For the
particular case of flash flood forecasting their merits are obvi-
ous. Spatially distributed data on the landscape are widely
available and are awaiting use in predictive analysis. Rainfall
inputs are increasingly available in a spatially distributed fash-
ion and one would expect that the location of rainfall relative
to the runoff contributing areas is important for making accu-
rate forecasts. The computational resources typically installed
in forecasting centres make complex spatial computations fea-
sible. The huge amount of information stored in the databases
might suggest that the development of distributed hydrological
models has been reduced to a software engineering task but it
is argued in this paper that indeed it has not. It is a genuinely
hydrological task that requires knowledge of the hydrological
processes involved and the skill of parameterising them in
suitable ways. This is in the spirit of the 10 iterative steps in

development and evaluation of models proposed by Jakeman
et al. (2006).

The aim of this paper is to discuss some of the challenges
of distributed modelling in the context of developing a distrib-
uted flood forecasting system. The discussion will be illus-
trated by the example of the flood forecasting system of the
Kamp catchment in Austria.

The paper is organised as follows. Section 2 discusses is-
sues in distributed modelling and a strategy to model building.
Section 3 gives a description of the Kamp catchment. Section
4 presents the model structure and the input data used. Section
5 gives the results of the parameter identification procedure
and Section 6 reports on the operational use and real time
updating.

2. Issues in distributed modelling and a strategy
to model building

With the computational resources available today to most
modellers, it has become feasible to build and apply highly
complex distributed hydrological models that represent many
different processes and consist of many model elements.
Among the first to recognise, however, that, in hydrology,
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‘‘finer’’ is not necessarily ‘‘better’’ were Stephenson and
Freeze (1974) and there is a long track record of studies dem-
onstrating and discussing the difficulties in model identifica-
tion and calibration once the model becomes too complex
(e.g., Loague and Freeze, 1985; Beven, 1989, 2001; Blöschl,
2005). What is the reason for this counterintuitive fact, which
is apparently at variance with experience in fluid dynamics and
other geosciences? There now is a growing awareness that dis-
tributed hydrological models are different from models in sis-
ter disciplines in at least three important aspects. First, and
probably most important, the media properties (both soil and
vegetation) are highly heterogeneous and essentially always
unknown or at least poorly known. There will always exist
some variability within a grid element e no matter how fine
the model resolution is e that cannot be resolved. Also, not
only is the landscape heterogeneous but the heterogeneity is
complex and an adequate statistical distribution of it is diffi-
cult to find. Second, there is no unique hydrological equation
that can be derived from first principles, so most of the model
equations are empirical in nature and tend to depend on the
hydrological setting. Third, hydrological models are very
much dependent on their boundary conditions, and these are
often poorly defined. The ‘‘model dynamics’’ are relatively
less important than, say, those in fluid dynamics. While it is
possible to study the global dynamics of the atmosphere by
spinning up a model and let it run for a period, this is not
possible for a hydrological model.

These three aspects have two important implications for
distributed modelling. The first is that there will always be
some degree of calibration needed for any model to accurately
represent the hydrological processes in a particular case. The
second is that the appropriate choice of model complexity at
the element scale depends on how much information is avail-
able on the natural variability. A model with very small ele-
ments and many process descriptions that, in principle can
represent great detail, will unlikely have value over coarser
models unless the data are available to define the variability
of the model parameters (Grayson and Blöschl, 2000a). It is
indeed a common situation for practical applications of dis-
tributed models that too complex a model with limited data
are used which causes identifiability problems. In the context
of this paper these issues are addressed by adopting a model-
ling strategy that is based on two principles: (a) model struc-
ture defined at the model element scale, and (b) multi-source
model identification and verification.

(a) Model structure: the idea of avoiding excessive model
complexity has a long tradition in science starting from
the ideas of 14th century philosopher William of Ockham.
An amazing range of modelling approaches exists in
hydrology. On the one end of the spectrum of approaches
are complex physically based models with the SHE Model
(Abbott et al., 1986) probably being the classical example
of models that are based on point (or laboratory) scale
equations. Point scale equations can be straightforwardly
extended to catchments, aquifers, reaches, etc. provided
the boundary conditions are known and the media

characteristics are known spatially (e.g. uniform) at the
scale of the equations. However, hydrological systems
are never completely uniform in terms of their parameters,
fluxes and states, and are often not even approximately
uniform and the variability is rarely known (Blöschl and
Zehe, 2005; Blöschl, 2006). This is the rationale of using
simpler models including models based on the systems ap-
proach or the related downward approach (Klemeš, 1983;
Sivapalan et al., 2003). For example, Jakeman and
Hornberger (1993) and Littlewood et al. (2007), suggested
that transfer function models involving four parameters
may suffice to accurately represent the runoff dynamics
from a catchment. In the context of distributed modelling,
four parameters may not be enough to represent the com-
plex interplay between rainfall patterns and the landscape
(Moretti and Montanari, 2007; Krysanova et al., 2007).
However, it may be prudent to formulate the model equa-
tions directly at the model element scale. This supports the
choice of conceptual models that are based on solving or-
dinary differential equations rather than partial differential
equations as is the case in physically based models. The
idea is that this type of model allows some level of hydro-
logical interpretation of the parameters defined at the
model element scale rather than at the point scale. Inter-
pretability of model parameters may be an advantage in
the parameter identification step. Additionally, these
models are usually numerically robust and efficient which
is important in an operational context, particularly if en-
semble methods are used, e.g., for updating the runoff
model in a real time mode.

(b) Multi-source model identification: this strategy builds on
the notion that runoff data are a necessary, but not a suffi-
cient, condition for identifying model parameters in a real-
istic way. Grayson and Blöschl (2000b) have argued that
the development, calibration and testing of distributed
models should ideally involve observed spatial patterns
of catchment response, and that the use of runoff data
alone can be greatly misleading. These patterns of catch-
ment response can come from a number of sources.
Recent years have seen an increase in the availability of
ground-based pattern data in catchments and from remote
sensing, up to the global scale. This has led to a number of
examples of using patterns for developing and testing dis-
tributed models most of which demonstrated the value of
observed patterns. The type of variable to be used clearly
depends on the hydrological processes that are relevant in
a particular hydro-climatologic setting. For example, in
snow dominated regimes, snow cover patterns have been
shown to be useful for testing distributed models (Blöschl
et al., 1991). Other examples include inundation patterns,
soil moisture patterns and the spatial distribution of the
groundwater table (Grayson et al., 2002). In the context
of the present study, a range of spatial data have been
used that are complementary. These data include piezo-
metric heads, spatial patterns of snow, both from satellite
data and ground-based data, inundation patterns as well as
soft information, e.g., on surface flow pathways during
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past floods. Also, different types of events have been ana-
lysed (e.g. convective events and snowmelt events) to bet-
ter constrain the parameter space of the model.

3. The Kamp catchment

The Kamp catchment is located in northern Austria, ap-
proximately 120 km north-west of Vienna, between 48.37
and 48.76�N, and 14.78 and 15.78�E. The catchment area of
the most downstream forecast point is 1550 km2. Elevations
range from 300 to 1000 m a.s.l. The geology of the catchment
is mainly granite and gneiss. Weathering has produced sandy
soils with a large storage capacity throughout the catchment.
Fifty per cent of the catchment is forested. The catchment is
heterogeneous in terms of its land use. As an illustration of
this, Fig. 1 shows a Landsat image of part of the Kamp area
in Austria with a 1 km� 1 km grid indicated. There is hetero-
geneity including forest, different paddocks and urban area at
scales much finer than the grid shown. Mean annual precipita-
tion in the Kamp catchment is about 900 mm of which about
300 mm become runoff (Parajka et al., 2005). The western part
of the Kamp catchment drains into the Kamp reservoir scheme
of the EVN-AG hydropower operator. The scheme consists of
the Ottenstein, Dobra und Thurnberg reservoirs.

Flood generation in the Kamp catchment is characterised
by a number of particularities as compared to other catchments
in Austria. First, it is only a small proportion of rainfall that
contributes to direct runoff. As rainfall increases in magnitude,
the runoff response characteristics change fundamentally be-
cause of the soil moisture changes in the catchment. This

may result in floods that are much larger than average ones.
Fig. 2 shows the observed runoff at the Kamp at Zwettl stream
gauge from October 2001 to September 2002. During most of
the year, runoff is less than 10 m3/s while the flood in August
2002 peaked at a discharge of 460 m3/s. This type of runoff
regime makes runoff modelling challenging. The Kamp flood
forecasting system continuously simulates the catchment soil
moisture state in order to obtain antecedent soil moisture as
an initial condition for the forecasts. Second, the Kamp catch-
ment is very heterogeneous, both in terms of the catchment
characteristics and in terms of the rainfall input. The interplay
of the spatial distributions of rainfall with the runoff contrib-
uting areas controls the magnitude and the shape of flood
hydrograph. This interplay is represented in the flood forecast-
ing system by using a distributed hydrological model with spa-
tially distributed rainfall input.

4. Model structure

The Kamp catchment was divided into 13 subcatchments
(1e13 in Fig. 3) and in each of them runoff generation is esti-
mated on a 1 km square grid. The subcatchments are connected
by 10 routing modules (aej in Fig. 3) as well as three modules
that represent the hydraulic characteristics of the Ottenstein,
Dobra and Thurnberg reservoirs (A, B, C in Fig. 3). The entire
forecast system runs on a time step of 15 min.

4.1. Pixel scale processes

The catchment is represented by a total of 1550 square grid
elements. For each grid element, snow processes, soil moisture

Fig. 1. Landsat image of part of the Kamp catchment Austria around the township of Zwettl (grid element C38/R26). Forests are dark, paddocks are light grey.

A 1 km grid is shown.
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processes and hillslope scale routing are simulated. These pro-
cesses are formulated directly at the model element scale of
1 km2.

Snow model: the snow routine represents snow accumula-
tion and melt by a simple degree day concept. Precipitation
input P at each pixel is partitioned into rain Pr, and snowfall
Ps, based on air temperature Ta:

Pr ¼ P if Ta � Tr

Pr ¼ P
ðTa� TsÞ
ðTr� TsÞ

if Ts < Ta < Tr

Pr ¼ 0 if Ta < Ts

Ps ¼ P�Pr

ð1Þ

where Ts and Tr are the lower and upper threshold tempera-
tures, respectively. Melt starts at air temperatures above
a threshold Tm:

M ¼ ðTa � TmÞD; if Ta > Tm and SWE > 0
M ¼ 0; otherwise

ð2Þ

where M is the amount of melt water per time step, D is a melt
factor and SWE is the snow water equivalent. In northern
Austria, large melt rates are known to occur during rain-
on-snow events (see Sui and Koehler, 2001). This enhanced
melting is represented in the model by increasing D by a factor
of 2 if rain falls on an existing snow pack. The catch deficit of
the precipitation gauges during snowfall is corrected by

a snow correction factor, Cs. Changes in the snow water equiv-
alent from time step i� 1 to i are accounted for by

SWE;i ¼ SWE;i�1þ ðCs$Ps�MÞDt ð3Þ

where Dt is the time step of 15 min.
Soil moisture accounting: the sum of rain and melt, Pr þM,

is split into a component dS that increases soil moisture of
a top layer, Ss, and a component Qp that contributes to runoff.
The components are split as a function of Ss:

Qp ¼
�

Ss

Ls

�b

ðPrþMÞ ð4Þ

where Ls is the maximum soil moisture storage (Bergström,
1976); b controls the characteristics of runoff generation and
is termed the non-linearity parameter. If the top soil layer is
saturated, i.e., Ss ¼ Ls, all rainfall and snowmelt contributes
to runoff and dS is 0. If the top soil layer is not saturated,
i.e., Ss < Ls, rainfall and snowmelt contribute to runoff as
well as to increasing Ss through dS > 0:

dS¼ Pr þM�Qp �Qby; if PrþM�Qp�Qby > 0
dS¼ 0; otherwise

ð5Þ

where, additionally, bypass flow Qby is accounted for. Analysis
of the runoff data at the Kamp indicated that flow that by-
passes the soil matrix and directly contributes to the storage
of the lower soil zone is important for intermediate soil mois-
ture states Ss. For x1Ls < Ss < x2Ls (with x1 ¼ 0:4, x2 ¼ 0:9)
bypass flow was assumed to occur as

Qby ¼ abyðPrþMÞ; if abyðPrþMÞ< Lby

Qby ¼ Lby; otherwise
ð6Þ

while no bypass flow was assumed to occur for dry and very
wet soils. Changes in the soil moisture of the top soil layer
Ss from time step i� 1 to i are accounted for by

Ss;i ¼ Ss;i�1þ ðdS�EAÞDt; Ss;i � 0 ð7Þ

The only process that decreases Ss is evaporation EA which
is calculated from potential evaporation, EP, by a piecewise
linear function of the soil moisture of the top layer:

EA ¼ EP

Ss

LP

; if Ss < Lp

EA ¼ EP; otherwise
ð8Þ

where Lp is a parameter termed the limit for potential evapo-
ration. Potential evaporation was estimated by the modified
BlaneyeCriddle method (DVWK, 1996) as a function of air
temperature. As with all the other model components, the
time step is 15 min. This representation of potential evapora-
tion was compared to other methods in Parajka et al. (2003)
suggesting that it gives plausible results in Austria.

Hillslope scale routing: routing on the hillslopes is repre-
sented by three reservoirs (Fig. 4). The contribution Qp of
rain and snowmelt to runoff enters the upper zone reservoir
and leaves this reservoir through three paths: percolation to

Fig. 2. Runoff at the Kamp at Zwettl (622 km2), October 2001eSeptember 2002.

Fig. 3. Model components of the flood forecasting model. Catchments (1e13);

routing reaches (aej); reservoir simulation modules (AeC).
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the lower and groundwater zones with a given percolation rate
cp, outflow from the reservoir with a fast storage coefficient of
k1, and, if a threshold L1 of the storage state is exceeded,
through an additional outlet with a very fast storage coefficient
of k0. The percolation rate cp is split into two components by
a fraction ap which flow into the lower zone reservoir and the
groundwater reservoir. Bypass flow Qby is directly added to
the lower zone reservoir. Q0 represents fast runoff reflecting
surface runoff or near surface runoff. Q1 is a somewhat slower
component reflecting interflow. Q2 is a slower component
from the lower soil zone. Q3 is the slowest component and
is attributed to groundwater flow. This conceptualisation is
consistent with the observed runoff data in the catchments,
the hydrogeological interpretation, as well as other data as
used in the parameter identification step. The analysis of
catchment response data also suggested that k1 and k2 should
be related to Ss. A linear relationship was assumed:

k1 ¼ k�1

�
1þ d1$Ss

Ls

�
ð9Þ

where k�1 is a storage coefficient and d1 is a free parameter. An
analogous relationship for k2 was used. Finally, the runoff data
indicated that percolation cp changes with soil moisture. It was
hence related to the storage of the top soil Ss by

cp ¼
�

Ss

Ls

�g

Lcp ð10Þ

where Lcp
is the maximum percolation rate. Both Lcp

and g are
free parameters. For those catchments where part of the dis-
charge is in the deep subsurface and not captured by the
stream gauge, the slowest groundwater component is reduced
by a factor f3 < 1 to account for deep percolation. Total runoff
Qt from a pixel then consists of the following components:

Qt ¼ Q0þQ1þQ2 þQ3 f3 ð11Þ

A total of 21 parameters exist for each pixel. Snow model
parameters: Ts, Tr, Tm, D, Cs; soil moisture accounting param-
eters: Ls, b, aby, Lby, Lp; hillslope scale routing parameters: k0,
k�1, d1, k�2, d2, k3, L1, Lcp

, g, ap, f3.

4.2. Within-catchment routing

The outflow from the reservoirs, Qt, is then convoluted by
a transfer function which represents the runoff routing in the
streams within each of the catchments. As a transfer function,
a linear storage cascade with the parameters nc (number of res-
ervoirs) and kc (time parameter of each reservoir) is used. For
parsimony, it is assumed that these parameters do not vary spa-
tially within each catchment but they do vary with time to
reflect non-linearities in the within-catchment routing. Specif-
ically, it was assumed that kc decreases stepwise above dry
weather flow Qc0

and a high flow Qc1
to represent the increase

in stream connectivity as runoff increases:

kc ¼ k�c if Qt < Qc0

kc ¼ k�c fc1
if Qc0

� Qt � Qc1

kc ¼ k�c fc2
if Qt > Qc1

ð12Þ

with fc2
< fc1

< 1. The convolution is performed in the state
space notation in a similar way as stream routing (see Section
4.3). The sum of this convoluted runoff over each direct catch-
ment is used as the lateral inflow to the stream routing model
of each river reach. A total of six within-catchment routing pa-
rameters exist for each catchment: nc, k�c , fc1

, fc2
, Qc0

, Qc1
.

4.3. Stream routing

In a similar way as catchment processes are formulated
directly at the grid scale, stream routing processes are formu-
lated directly at the reach scale by making use of a lumped
routing model. The main advantage of lumped routing models
in a flood forecasting context is numerical stability and com-
putational efficiency. Also, as there are usually only a small
number of model parameters involved, these can be tested
for plausibility to maximise the reliability and credibility of
the forecasting procedure. A linear storage cascade in the state
space notation of Szolgay (2004) is used here with discharge
dependent parameters. If one assumes that the input vector
U to each reservoir is constant within a time interval
ði; i� 1Þ of duration Dt,

Si ¼ Fi;i�1$Si�1þGi;i�1$Ui;i�1 ð13Þ

Qi ¼Hi$Si ð14Þ

where S und Q are the (nr $ 1) state vectors of reservoir stor-
ages and outflow with nr being the number of reservoirs. H is an
(nr $ nr) matrix that contains the inverse of the time parameter
kr in the diagonal

H¼ ð1=kr;1=kr;.;1=krÞ$I ð15Þ

Fig. 4. Structure of the rainfall runoff model on the pixel scale. S are the stor-

age states and Q are fluxes.
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where I is the identity matrix. The transition matrices F and G
(dimension nr $ nr) are defined as:

Fði; 2Þ ¼ e�Dt=kr
Dti�2�

i� 2
�
!ki�2

r

ð16Þ

Gði; 2Þ ¼ kr� e�Dt=kr

Xi�2

y¼0

Dty

y!ky�1
r

ð17Þ

for i greater than or equal to 2, and F¼ 0, G¼ 0 for i less than
2, where i and 2 relate to the rows and columns of the matrices,
respectively. The duration Dt of the time interval is 15 min.
Inflow U

ð1Þ
i;i�1 to each reach is the outflow from the upstream

reach. Lateral inflow from the direct catchments is added to
the downstream node. To account for non-linear routing ef-
fects, kr is allowed to vary as a function of the inflow to the
river reach based on the concept of Becker and Kundzewicz
(1987). Varying kr is straightforward in the state space notation
as Eqs. (15)e(17) are evaluated for each time step as a function
of the states S and Q of the previous time step and the value of
kr that is consistent with the inflow between the previous time
step and the current time step. Typically, kr is expected to
increase with discharge due to the non-linearity in the flowe
resistance relationship but beyond bank full discharge, kr is ex-
pected to decrease because of inundation into the flood plain.
Hence kr was assumed to be a piecewise linear function of the
inflow to the reach, U

ð1Þ
i;i�1:

kr ¼ k�r if U
ð1Þ
i;i�1 < Qr0

kr ¼ k�r fr1
if Qr1

� U
ð1Þ
i;i�1 � Qr2

kr ¼ k�r fr2
if U

ð1Þ
i;i�1 > Qr2

ð18Þ

and kr is linearly interpolated between mean annual discharge
Qr0

and Qr1
. Qr2

is bank full discharge. The number of reser-
voirs nr is not allowed to vary with the inflow but does vary
between the river reaches. A total of seven stream routing pa-
rameters exist for each river reach: nr, k�r , fr1

, fr2
, Qr0

, Qr1
, Qr2

.
The outflow hydrographs from the hydropower scheme

(reservoirs A, B, C in Fig. 3) can significantly differ from
the inflow hydrographs. As a part of the Kamp flood forecast-
ing system the operators communicate a planned release dis-
charge over the next 48 h to the forecasting centre. These
planned releases are routed to the downstream forecast points
as one of the forecast variants in the forecasting system. As an
alternative variant, the effect of the future operation of the
scheme on the flood hydrograph is simulated by a reservoir
simulation model which is, however, beyond the scope of
this paper.

4.4. Input data

For the development of the distributed model, data from
a total of 35 raingauges were used. Out of these, 19 raingauges
recorded at a time interval of 15 min, the others were daily
gauges. Sixteen of the recording raingauges are telemetered
and are used for the operational forecasting. At each time

step, the raingauge data are interpolated to the 1 km grid sup-
ported by climatologically scaled radar information.

Additionally, at each time step, deterministic precipitation
forecasts are made by the Austrian Meteorological Office
(ZAMG). The forecasts are at 15 min temporal resolution
over a lead time of 48 h and are estimated as two components.
The first component is an observation-based extrapolation or
nowcast of the interpolated precipitation field using motion
vectors determined from consecutive fields. The second com-
ponent is a weighted mean of the forecast fields of the ALA-
DIN and ECMWF numerical weather prediction (NWP)
models (Wang et al., 2006). The weighting reduces areal pre-
cipitation forecast errors by about 20e30% (Haiden et al.,
2006). Another weighting function is used for a smooth tran-
sition between the two components (nowcast and NWP fore-
cast) (Golding, 1998). Analyses of the forecast performance
indicated that, in most cases, over the first 2e6 h of the fore-
cast the nowcast had smaller errors than the NWP forecast
combination. The weighting function was hence chosen in
a way to give full weight to the nowcast during the first 2 h,
decreases linearly to zero at 6 h, and remains at zero for larger
lead times.

Air temperatures observed at eight stations are interpolated
to the 1 km grid. The temperature forecasts are based on
a combination of the station data with the ALADIN forecasts.

The interpolated precipitation and air temperature fields are
used to drive the runoff model to estimate the state variables
such as soil moisture, soil and groundwater reservoir storage
and snow water equivalent at each time step. These state vari-
ables are used as the initial conditions for the flood forecasts.
The forecasts of precipitation and air temperature are then
used for the actual flash flood forecasts over the lead time
of 48 h.

For the development of the distributed model, runoff data
between 1990 and 2005 from a total of 12 stream gauges
were used. These range in catchment size from 77 to
1493 km2. Out of these, nine stream gauges are telemetered
and are used in the operational forecasting model for the up-
dating procedures.

5. Parameter identification

5.1. Identifying parameters of pixel scale model and
within-catchment routing

As runoff data are a necessary, but not a sufficient, condi-
tion for identifying model parameters in a realistic way, nu-
merous other hydrological response data were used. Rather
than optimising an objective function (e.g. Parajka et al.,
2007), the identification of parameters builds on the ‘dominant
processes concept’ of Grayson and Blöschl (2000b) which
suggests that, at different locations and different points in
time, a small number of processes will dominate over the
rest. In a first step, Hydrological Response Units (HRUs)
were defined manually rather than by overlaying GIS maps,
allowing some interpretation of the understanding of the hy-
drology of the area to be introduced. The HRUs are urban
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areas, steep slopes open, steep slopes forest, hills open, hills
forest, tablelands, saturated areas, areas with aquifers, and
lakes and reservoirs. Each 1 km pixel was assigned to one par-
ticular HRU. A priori parameter values were then assigned for
each pixel (grid element) based on preliminary analyses of ob-
served streamflow hydrographs and piezometric heads in the
catchment as well as field surveys. The various pieces of infor-
mation were then combined in an iterative way to construct
a coherent picture of the functioning of the catchment system,
on the basis of which plausible parameters for the HRUs were
chosen. Different sources of information have been used:

The runoff simulations of the individual steps were com-
pared with runoff data, stratified by time scale and hydrologi-
cal situations which is in line with the ‘dominant processes
concept’. A seasonal analysis allows one to infer the magni-
tude of the evaporation parameters, the percolation parameter
and the parameters of the slow groundwater components. In
the context of the flood forecasts, the seasonal dynamics are
important to estimate well the initial conditions of the fore-
casts, in particular the catchment soil moisture state as well
as the snow distribution. An analysis of the event hydrograph
shapes allows one to infer the characteristics of fast catchment
response as well as the associated model parameters. The
event analysis was stratified by event magnitude and event
types, again following the ‘dominant processes concept’. Syn-
optic (large scale) and convective (small scale) events, snow-
melt events, and rain-on-snow events have characteristic
runoff dynamics of their own (see, e.g., Merz and Blöschl,
2003). An example of a convective event is shown in Fig. 5
for the Kamp at Zwettl stream gauge which is located at the
confluence of reaches a and b (Fig. 3). The peak is not com-
pletely captured because of very local rainfall that was not re-
corded by the raingauges or the radar data. However, the main
shape is matched well. Fig. 6 shows a snowmelt event in
March 1998. The main difference from the convective event
is the soil moisture status which was much higher during the
snowmelt event. It is important to examine these event types
separately for the model to be able to represent a spectrum

of hydrological situations. This is essential in an operational
forecasting context were situations that are not represented
in the data used for model development are likely to occur.
For example, after implementing the model in the forecasting
centre in early 2006, unusually large snowfalls occurred e
much larger than any in the past 16 year of runoff data used e
and the following melt event was simulated well.

Discussions with locals were another source of information
used. For example, these discussions provided information on
flow pathways during past floods. This information was used
to test the plausibility of the model simulations. Fig. 7 shows
maps of simulated overland flow at the beginning of a large
event (the August 2002 flood) and 18 h later during the
same event. At the beginning of the event, it is mainly the
sealed areas and the near stream areas that contribute to the
flooding in the north-west of the catchment while there is al-
most no overland flow in the remainder of the catchment.
Eighteen hours later, the spatial pattern has changed. The pre-
cipitation intensity is somewhat lower and hence overland flow
on the sealed areas is lower. Additional areas contribute to
overland flow, particularly the gullies and the rolling hills of
the west of the catchment. The shift in the runoff patterns dur-
ing the event is consistent with the understanding of runoff
processes obtained during the recognisance trips and through
the discussions with locals. Other spatial information that
was used to test the plausibility of the model were snow
data. Fig. 8 shows an example of this test, simulated snow wa-
ter equivalent on the left and observed snow depth interpolated
from snow depth readings on the right. The field recognisance
trips also provided information on soil moisture and water log-
ging which was used in a similar way. As part of the model
identification, the model structure was adjusted to what has
been considered is the hydrological functioning of this partic-
ular catchment. For example, a bypass flow component was
added to represent the fast drainage of the top soil during
events as a result of percolation into heavily weathered bed-
rock (Eq. (6)). Other examples are the functional dependences
of some of the parameters on soil moisture (Eqs. (9) and (10)).
For illustration, the parameters obtained for catchment 1
(Fig. 3) are given in Tables 1 and 2.

5.2. Identifying parameters of stream routing model

A lumped routing model is numerically more efficient and
more robust than a hydrodynamic model which may be impor-
tant in an operational flood forecasting context. However,
calibration of the model parameters is more important, partic-
ularly if the interest resides in forecasting extreme floods
where the routing characteristics of the flood plain play an im-
portant role. For small to medium sized catchments such as the
Kamp examined here, lateral inflows to the river reaches can
be very significant, so changes in the shape of the hydrograph
cannot be uniquely traced back to channel routing. A double
strategy of identifying the parameters of the routing model
was hence adopted here. The first part of the strategy involved
analysis of runoff data to which the routing parameters were
calibrated for individual events. To minimise the effect ofFig. 5. Convective event at the Kamp at Zwettl (622 km2) in August 2003.
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lateral inflow, the events used for calibration were convective
events where the rain storm was limited to a relatively small
area upstream of the upstream gauge of the reach analysed
with very little or no rainfall in the direct catchment of the
reach. The second part of the strategy involved calibration of
the lumped routing model to the results of hydrodynamic
models. The idea of this calibration was to combine the merits

of the two approaches, i.e., robustness, numerical efficiency
and a small number of model parameters that can be checked
for plausibility on the one hand, and reliable extrapolation to
large events and estimation for ungauged river reaches on
the other hand.

In the Kamp catchment, the results of various one-dimensional
and two-dimensional hydrodynamic models are available such

Fig. 6. Snowmelt event at Kamp at Zwettl (622 km2) in March 1998. Precipitation and simulated snow water equivalents are catchment averages. Snow depths are

observations at the Bärnkopf station in the catchment.

Fig. 7. Plausibility check of spatial patterns. Simulated surface runoff Q0 at the beginning (left) and halfway into a major flood event (right) have been compared to

qualitative field evidence.
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as HEC RAS and the model of Nujic (1998). Scenarios in-
clude events that have actually occurred plus floods asso-
ciated with return periods from 30 to 1000 years, where
a prescribed hydrograph shape was used. These different
event magnitudes allowed an assessment of the non-linearity
in the routing processes which translates into a change of
routing parameters with discharge in the model used here.
Examples of the calibration of the lumped routing model
to the results of a 2D hydrodynamic model for the reaches
between Rosenburg and Stiefern, and Rosenburg and Zöbing
are shown in Fig. 9. Within the accuracy to be expected from
a flood forecasting model, the model fits are excellent. Very
little would be gained from directly using the hydrodynamic
model in the operational forecasts, provided the lumped
model is calibrated well for the full range of flows to be ex-
pected at the sites.

The parameter estimates from the two sources were then
combined to obtain a functional relationship between the rout-
ing parameters and discharge for each reach of the model. The
typical pattern of the functional relationship between the rout-
ing time parameter with discharge is as follows: below mean
annual flow Q0, the routing parameter fi is approximately con-
stant and decreases with increasing discharges because of in-
creasing flow velocities. Beyond bank full discharge, Q2,
inundation of the flood plain occurs and travel times are larger
which is represented as a step increase in the routing parame-
ter fr2

beyond the value of fr1
. For reaches g, i and j there is

very little inundation as the banks are steep, so fr2
and fr1

are
identical. Examples of the routing parameters for reaches
a and i are given in Table 3.

6. Operational use and real time updating

The complete spatially distributed model was comprehen-
sively tested in a simulation mode for all the available stream
gauges. Observed historical rainfall input was used for these
tests which involved both analyses at the event scale and the
seasonal scale. Examples of the simulation mode tests at the
seasonal scale are shown in Fig. 10 for three gauges in the Up-
per Kamp area (Zwettl at Zwettl, Kamp at Zwettl and Purzel-
kamp at Rastenberg). The model represents the streamflow
dynamics very well. However, the performance of the model
hinges on the accuracy of the rainfall data. Minor biases in
rainfall may accumulate over weeks and months and produce
streamflow estimates that are not as accurate as those shown in
Fig. 10. In particular, in the real time mode of the forecasting
system, only 16 raingauges are available while the model de-
velopment was based on 35 raingauges. The result of small
biases in rainfall is biases in the simulated soil moisture which
in turn will affect the forecasts as runoff generation very
strongly depends on antecedent soil moisture in the Kamp
catchment. Other error sources are possible biases in the esti-
mation of evaporation which will affect estimated soil mois-
ture in a similar way. To minimise the forecast uncertainties,
two updating algorithms have been used.

The first updating algorithm adjusts the catchment soil
moisture state by making use of runoff data in a real time
mode. The rationale of this is that runoff is usually an excel-
lent indicator of the catchment soil moisture state. An updat-
ing method widely used is the Kalman Filter which consists
of weighting measurements and simulation, the weight

Fig. 8. Plausibility check of spatial patterns. Simulated snow water equivalent (left) and observed snow depth interpolated from snow depth readings (right). April

8, 1996 at 6:00.
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(or Kalman gain) being a function of the measurement error
and the model error. Originally, the Kalman Filter has been de-
signed for linear models. Extended variants such as the ex-
tended Kalman Filter and the Ensemble Kalman Filter
(EnKF) are applicable to non-linear models. In the EnKF,
a number of realisations or ensemble members are used to es-
timate the Kalman gain (Evensen, 1994; Madsen and
Ca~nizares, 1999). The advantages of the Ensemble Kalman
Filter are that no linearisation is needed and it tends to be nu-
merically robust. For the flood forecasts at the Kamp, the En-
semble Kalman Filter has hence been used. Runoff has been
chosen as the state vector and, for consistency with the usual
notation, is denoted by x here. The measurement error is the
error in runoff measurements, the model error is attributed
to the error in rainfall and evaporation input as these errors
were assumed to be larger than the structural errors of the run-
off model. The model Fð Þ is now applied to each of the M
members of the ensemble to estimate the state x:

xf
m;i ¼ F

�
xa

m;i�1;uiþ 3m;i

�
; m¼ 1;2;.;M ð19Þ

where xm;i is the runoff of ensemble member m at time step i,
xm;i�1 is the runoff at the previous time step, superscript f
stands for forecast, superscript a stands for analysed, ui is
the model input (precipitation, evaporation) and 3m;i is the
model error which is randomly drawn from a normal distribu-
tion with zero mean and model error covariance Vi. As an
a priori forecast, the mean value of the ensemble forecasts
is adopted:

xf
i ¼ xf

i ¼
1

M

XM

m¼1

xf
m;i ð20Þ

The error covariance matrix Pf
i of the forecast is estimated

from the ensemble forecasts as:

Pf
i ¼ Sf

i ðSf
i Þ

T ð21Þ

with

sf
m;i ¼

1ffiffiffiffiffiffiffiffiffiffiffiffi
M� 1
p

�
xf

m;i� xf
i

�
ð22Þ

where sf
m;i is the mth column of Sf

i . In a next step, the measure-
ments zi of runoff are contaminated by a measurement error
hm;i to generate an ensemble of M possible measurements:

zm;i ¼ ziþ hm;i; m¼ 1;2;.;M ð23Þ

where hm;i is randomly drawn from a normal distribution with
zero mean and covariance Wi. Each ensemble member xf

m;i is
then updated according toT
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Table 2

Within-catchment routing parameters for catchment 1 (Fig. 3)

nc k�c ðhÞ fc1
fc2

Qc0
ðm3=sÞ Qc1

ðm3=sÞ
4 1.5 0.67 0.2 8 50
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xa
m;i ¼ xf

m;iþKi

�
zm;i�Cix

f
m;i

�
ð24Þ

where Ki is the Kalman gain:

Ki ¼ Pf
i C

T
i ½CiP

f
i C

T
i þWi��1 ð25Þ

and Ci is a matrix that relates the measurements and the state
vector. Based on the updated ensemble members, the updated
a posteriori estimates of the state vector xa

i and the error co-
variance matrix Pa

i are calculated analogously to Eqs. (20)
and (21). In a final step, the catchment soil moisture in each
pixel is adjusted by

Sa
s ¼ Ss f a ð26Þ

where the factor f a is chosen such that the runoff simulated by
the model matches the Kalman estimate of xa

i . As all stream
gauges are treated independently, Ci ¼ Ci ¼ 1, and the covari-
ances simplify to scalar variances. The measurement error var-
iance of runoff was set to Wi ¼ xz2

i where x ¼ 0:0025 was
obtained from sensitivity analyses. The model error variance
was set to a constant value Vi ¼ 0:005 ðmm=15 minÞ2, again,
based on sensitivity analyses.

While updating methods commonly used in real time flood
forecasting (e.g. Gutknecht, 1991) update runoff generation
during events, the procedure presented here updates the evolu-
tion of soil moisture between events. The way the Ensemble
Kalman Filter operates in the Kamp model is illustrated in
Fig. 11. In a simulation mode without updating (dashed lines)
the model consistently underestimates runoff during Novem-
ber to February, likely due to errors in precipitation and

evaporation estimates. When updating is allowed (thin solid
lines) the model adjusts the errors in precipitation and evapo-
ration and hence soil moisture, producing less bias. In March,
the flood event is much better simulated by the updating var-
iant as antecedent soil moisture was better estimated (i.e.
larger in this case) than for the simulation without updating.

The second updating algorithm exploits the autocorrelation
of the forecast error. The procedure consists of an additive
error model (termed MOS or model output statistics) that
updates runoff directly. Error analyses were performed from
which the autocorrelation lag of events was found as 4 h.
The entire model has then been set up in a forecasting mode
that involves precipitation forecasts as well as both real time
updating algorithms. An example of the output of the model
is shown in Fig. 12. For clarity of presentation, the forecasts
are shown at three hourly intervals while the operational fore-
casts are produced at quarter hourly intervals. During August
15, some precipitation has been forecasted but as soil moisture
is relatively low, runoff hardly increases. On August 16 at
0:00, 20 mm of rainfall has been predicted over the following
12 h while 45 mm has actually been observed. The rising limb
is hence underestimated. At 3:00 there is a similar underesti-
mation but at 6:00, 20 mm of rainfall has been predicted and
19 mm observed. The rising limb is hence predicted very
accurately. At the following time steps rainfall is smaller, so
the dynamics of the hydrograph are mainly controlled by rout-
ing, and the predictions are accurate.

To examine the contributions of the individual model com-
ponents to the forecast accuracy, comprehensive tests were
performed. As this study is concerned with a flood forecasting
system, forecast errors during floods were of interest rather
than errors during medium and low flows. The forecast errors
ej were estimated for five major flood events on record as:

ej ¼
1

i2� i1

Xi2

i¼i1

		bQij �Qi

		
Qi

ð27Þ

where ej is the mean normalised absolute error in per cent for
lead time j, bQij is runoff at time step i that is forecasted with
a lead time of j, Qi is the observed runoff at time step i, and
i1 and i2 are the time steps of the beginning and the end of
the analysis interval, respectively. Fig. 13 shows the averages
of the forecast errors over the five events, separately for entire
events (Fig. 13, left) and the rising parts of the hydrographs
only (Fig. 13, right). Four variants were analysed. In the first
variant (thick solid lines in Fig. 13) future precipitation was
assumed to be known from interpolating station data and the
initial conditions of soil moisture were not updated. The aver-
age errors of the entire flood events are about 15% and do not
depend on the lead time. This is because this is a simulation
problem (rather than a forecast problem). In the second variant
(dashed lines in Fig. 13) the initial conditions of soil moisture
were updated by the Ensemble Kalman Filter, again based on
the assumption that future precipitations were known. The up-
dating reduces the errors, particularly for the short lead times
that are closer to the time the forecasts are calculated. The thin

Fig. 9. Calibrating the lumped routing model (dashed lines) to the results of

a 2D hydrodynamic model (thick solid lines) for the reaches between Rosen-

burg and Stiefern (reach i, 18 km) and Rosenburg and Zöbing (reaches i and j,

25 km). Scenario of a 1000 year flood.

Table 3

Routing parameters for reaches a and i (Fig. 3)

nr k�r ðhÞ fr1
fr2

Qr0
ðm3=sÞ Qr1

ðm3=sÞ Qr2
ðm3=sÞ

Reach a 6 0.67 0.6 0.8 40 50 100

Reach i 6 0.67 0.5 0.5 80 110 110
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solid lines in Fig. 13 show the variant in which, additionally,
the forecasts were updated by the error model (MOS) which
further decreases the forecast errors for lead times of less
than 6 h. Six hours is the same order of magnitude as the av-
erage autocorrelation length of the forecast errors during
floods which is 4 h. In the fourth variant, the two updating pro-
cedures were used in the same way but future precipitation
was not assumed to be known; rather the precipitation

forecasts were used (dashed dotted lines in Fig. 13). For the
first hours, the errors are identical with the previous variant
as the forecasts are controlled by routing and fallen precipita-
tion. For larger forecast lead times, the errors increase signif-
icantly. This is related to the uncertainty of the precipitation
forecasts as well as to the combined forecast approach. For
short lead times, the errors are small as runoff routing is the
most accurate model component and the updating procedures

Fig. 10. Test of the combined rainfall runoff and routing model in a simulation mode for three gauges in the Upper Kamp area: Purzelkamp at Rastenberg (95 km2,

catchment 5), Zwettl at Zwettl (269 km2, catchments 2 and 4 and reach b), Kamp at Zwettl (622 km2, catchments 1, 2, 3, 4 and reaches a and b in Fig. 3), October

2000eSeptember 2001. Thick lines, observations; thin lines, simulations. Top panel shows catchment precipitation of the Kamp at Zwettl catchment.

Fig. 11. Top: runoff simulations with EnKF updating (thin solid line) and without updating (dashed line). Bottom: cumulative errors of the two simulations. Kamp

at Zwettl (622 km2, catchments 1, 2, 3 and 4, and reaches a and b in Fig. 3) during November 2005eApril 2006.
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increase the accuracy additionally. Quantitatively, the average
forecast errors range from 10% to 30% for 4e24 h lead times,
respectively. It should be noted that this is an analysis of flood
events only. The error statistics of forecasts over the entire
year are much smaller.

Fig. 13 right shows similar analyses but for the rising
limbs of the flood events only. Overall, the error patterns
are similar although in absolute terms they are larger than
those for the entire events, particularly for the variant of
the precipitation forecasts (dashed dotted lines) which is
the real time case. The larger errors are related to the fact
that during the rising limb the uncertainty in precipitation af-
fects flood flows more strongly than during the remainder of
the hydrograph.

7. Conclusions

This paper has presented a strategy to model building
where the model structure is defined at the model element
scale and that is based on multi-source model identification
and verification. Formulating the structure directly at the
model element scale of 1 km2 attempts to mimic the catch-
ment functioning (Sivapalan, 2005) instead of using point
scale relationships that may not be relevant in the presence
of heterogeneity. Also, the approach allows parameters to be
interpreted at the element scale, and it is numerically efficient.
The multi-source model identification and verification strategy
uses a multitude of hydrological response data, as available, in
addition to runoff data. The strategy builds on the ‘dominant
processes concept’ of Grayson and Blöschl (2000b) which
suggests that, at different locations and different points in
time, a small number of processes will dominate over the
rest, such as fast runoff as a result of convective storms and
subsurface driven runoff associated with snowmelt. It is im-
portant to examine these event types separately for the model
to be able to represent a spectrum of hydrological situations.
This is essential in an operational forecasting context where
situations that are not represented in the data used for model
development are likely to occur. The approach adopted here
is fundamentally different from the common procedure of
minimising objective functions that does not allow such a strat-
ification and hence is less likely to capture different hydrolog-
ical situations. In a similar way as catchment processes are
formulated directly at the grid scale, stream routing processes
are formulated directly at the reach scale by making use of
a lumped routing model. A double strategy of identifying
the parameters of the routing model was adopted here. The
first part of the strategy involved analysis of runoff data to
which the routing parameters were calibrated for individual

Fig. 12. Top panel: 12 h forecasts of cumulative precipitation. Bottom: 12 h

runoff forecasts. Kamp at Zwettl (622 km2, catchments 1, 2, 3 and 4, and rea-

ches a and b in Fig. 3) during August 2005. Solid lines, observations; dashed

lines, forecasts.

Fig. 13. Average forecast errors at the Kamp at Zwettl (622 km2) for various model components. Five large flood events during 2002e2005. Left: errors over the

entire flood events. Right: errors over the rising limbs only.
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events. The second part of the strategy involved calibration of
the lumped routing model to the results of hydrodynamic
models. The idea of this calibration is to combine the merits
of the two approaches, i.e., robustness, numerical efficiency
and a small number of model parameters that can be checked
for plausibility on the one hand, and reliable extrapolation to
large events and estimation for ungauged river reaches on
the other hand.

The approach proposed here is in line with some of the
steps in development and evaluation of models suggested by
Jakeman et al. (2006). These steps include model choice
with a focus on the nature of the data used to construct and
test the model, providing a strong rationale for the choice of
model family, and serious analysis, testing and discussion of
model performance. However, the strategy proposed here dif-
fers from the one of Jakeman et al. (2006) in that, here, less
emphasis is on formal calibration and more emphasis is on un-
derstanding the behaviour of the model vis a vis perceived
catchment behaviour.

Comprehensive model tests indicate that not only is the
methodology feasible but also are the simulation results accu-
rate for a range of hydrological situations and a range of tempo-
ral scales. However, the performance of the model hinges on the
accuracy of the rainfall data, and biases in rainfall may translate
into biases in soil moisture and hence diminished forecast accu-
racies. Two updating algorithms have hence been implemented
that use runoff in a real time mode. The first updating algorithm
adjusts the catchment soil moisture state by the Ensemble Kal-
man Filter. The second updating algorithm exploits the autocor-
relation of the forecast error and consists of an additive error
model that updates runoff directly. The error analyses of five
major events indicate that both algorithms improve the fore-
casts, the first over longer time scales and the second over
shorter time scales. If the forecast lead times are longer than
the catchment response time, the uncertainty of the precipita-
tion forecasts dominates over the uncertainty of the hydrologi-
cal model. For five major flood events, the average forecast
errors range from 10% to 30% for 4e24 h lead times, respec-
tively, but the errors are much smaller if the error statistics are
evaluated over the entire year. The forecasting system has
been implemented in the Kamp forecasting centre in early
2006 and has been in operational use since then.
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Klemeš, V., 1983. Conceptualisation and scale in hydrology. Journal of Hy-

drology 65, 1e23.

Krysanova, V., Hattermann, F., Wechsung, F., 2007. Implications of complex-

ity and uncertainty for integrated modelling and impact assessment in river

basins. Environmental Modelling & Software 22 (5), 701e709.

Littlewood, I.G., Clarke, R.T., Collischonn, W., Croke, B.F.W., 2007. Predict-

ing daily streamflow using rainfall forecasts, a simple loss module and unit

hydrographs: two Brazilian catchments. Environmental Modelling & Soft-

ware 22 (9), 1229e1239.

Loague, K.M., Freeze, R.A., 1985. A comparison of rainfall-runoff modeling

techniques on small upland catchments. Water Resources Research 21,

229e248.
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