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Patterns of predictability in hydrological threshold systems
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[1] Observations of hydrological response often exhibit considerable scatter that is
difficult to interpret. In this paper, we examine runoff production of 53 sprinkling
experiments on the water-repellent soils in the southern Alps of Switzerland; simulated
plot scale tracer transport in the macroporous soils at the Weiherbach site, Germany; and
runoff generation data from the 2.3-km® Tannhausen catchment, Germany, that has
cracking soils. The response at the three sites is highly dependent on the initial soil
moisture state as a result of the threshold dynamics of the systems. A simple statistical
model of threshold behavior is proposed to help interpret the scatter in the observations.
Specifically, the model portrays how the inherent macrostate uncertainty of initial soil
moisture translates into the scatter of the observed system response. The statistical model
is then used to explore the asymptotic pattern of predictability when increasing the number
of observations, which is normally not possible in a field study. Although the physical
and chemical mechanisms of the processes at the three sites are different, the predictability
patterns are remarkably similar. Predictability is smallest when the system state is close to

the threshold and increases as the system state moves away from it. There is inherent
uncertainty in the response data that is not measurement error but is related to the

observability of the initial conditions.
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1. Introduction

[2] Understanding predictive model uncertainty (its quan-
tification and its reduction) is a major concern in hydrolog-
ical science [Sivapalan et al., 2003]. This includes an
understanding of how the uncertainties of model parame-
ters, model structure, and inputs affect the uncertainty of the
model predictions. However, as pointed out by Beven
[1996, p. 260], one cannot expect process models to be
more accurate than the repeatability of nature herself. Hence
it is similarly important to understand how well one may
repeat observations of cause and effect. Repeatability of
experiments or observations is a prerequisite to the predict-
ability of that system. A system one hopes to predict with
perfect accuracy needs to give exactly the same response if
an experiment is repeated under identical conditions, i.e.,
when the forcings and the initial states of the repeated trials
are exactly the same. However, distributed hydrological
measurements are never exhaustive and therefore uncertain.
Their support, spacing, and extent scales tend to be incom-
patible with the scale of state variables and processes
in natural systems [Bléschl and Sivapalan, 1995]. For
instance, the space-time pattern of soil moisture is usually
estimated from a set of point observations, for example,
using time domain reflectometry (TDR). Typically, these
measurements do not even suffice to fully characterize the
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spatial probability distribution of soil moisture at the catch-
ment scales [Deeks et al., 2004; Western et al., 2004]. Even
if the probability density function (pdf) were known, the
detailed spatial pattern will still elude full quantification.

[3] Hydrological states and, in particular, their spatial
patterns are hence not fully observable and inherently
uncertain [Rundle et al., 2006]. Because of this, one can
never repeat an observation under truly identical conditions
albeit under apparently identical conditions. Observations of
hydrological system response, such as tracer transport
depths, residence times, and runoff volumes, often exhibit
considerable scatter, even if the initial and boundary con-
ditions are apparently identical [Lischeid et al., 2000; Zehe
et al., 2005; Zehe and Bloschl, 2004]. This implies a lack of
repeatability and hence poor predictability. Unobserved
(and indeed unobservable) small-scale variability in the
states along with nonlinear system characteristics may
explain this lack of repeatability [Pitman and Stouffer,
2006; Rundle et al., 2006; Zehe and Bloschl, 2004]. If we
want to understand the limits to the accuracy of model
predictions, we have to understand how inherent uncertain-
ties of state observations limit the repeatability of observa-
tions of the hydrological system response, especially in the
presence of strongly nonlinear behavior such as threshold
controlled dynamics.

[4] Pitman and Stouffer [2006] define threshold behavior
as abrupt changes in system dynamics that occur at time-
scale that are much smaller than the usual timescales of the
system. Threshold behavior can hence be considered as an
extreme type of nonlinear dynamics. Threshold-type non-
linearities occur when state variables switch from zero to
nonzero values [Bloschl and Zehe, 2005] as is the case for
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water levels of overland flow, rainfall rates, or flow in
macropore systems [Vogel et al., 2005; Zehe and Flihler,
2001b]. Threshold behavior may be further enhanced by
emerging and vanishing features as in the case of swelling
and cracking soils [Navar et al., 2002; Lindenmaier et al.,
2006] and hydrophobic soils [e.g., DeJonge et al., 1999;
Doerr and Thomas, 2000], and during phase transitions.

[5s] Zehe and Bloschl [2004] drew from the concept of
macrostates and microstates of gases in statistical mechanics
[Tolman, 1979] to characterize the observability of state
variables in environmental systems. The microstate is rep-
resented by the values of the kinetic energy of each of the
individual molecules in a volume of gas which are never
observable. The macrostate, in contrast, is defined as the
average kinetic energy (or gas temperature) of the gas
molecules in that volume, and it is the macrostate that is
observable. A very large number of possible microstates are
consistent with the same macrostate. The term “identical
state” of two volumes of gas can only refer to their macro-
states, as the microstates cannot be observed and hence
cannot be compared.

[6] In analogy, the microstate of initial soil moisture can
be defined as the true spatial pattern of soil moisture of,
say, a field plot. Clearly, this microstate is not observable
as there will always be fine-scale detail that cannot be
resolved by the measurements. The macrostate can, for
example, be defined as the first two statistical moments,
the variogram and the probability density function of
soil moisture, as these are the variables that are observable
in a typical field study. An infinite number of possible soil
moisture patterns (i.e., microstates) will be consistent with
the same observed macrostate. This will introduce uncer-
tainty that will propagate through the system and cause
uncertainty in the system response such as streamflow and
infiltration patterns.

[7]1 Zehe and Bloschl [2004] conducted numerical simu-
lations to illustrate the effect of lack of knowledge of the
microstate on hydrologic response in the presence of
threshold behavior. They found that, under apparently
identical conditions, repeated trials produced uncertainty
in system response of more than 100% of the average
response. So far, it has, however, been unclear whether
these effects are consistent with the observed scatter of
hydrological field experiments and whether they apply to
other threshold processes.

[8] The objective of this paper is to contribute to a better
understanding of the repeatability of experiments and hence
the scatter of observed hydrological response by analyzing
the transformation of the inherent uncertainties of observed
states into uncertainties in hydrological response. We will
examine the transformation for three different processes
with threshold behavior at the plot and catchment scales.

[o9] This paper goes beyond that of Zehe and Bléschl
[2004] in a number of ways. First, we use field data from
three case studies to examine three different processes that
involve threshold behavior, whereas Zehe and Bloschl [2004]
used simulations for a single process (matrix/macropore
flow transitions). Second, we propose a statistical model
that helps interpret field observations for a limited number
of trials relative to a hypothetical ensemble of an infinite
number of observations.
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[10] This paper is organized as follows. Section 2 reviews
the three threshold processes for three field experiments and
gives details on the field data. Section 3 presents the
statistical model and the methods to quantify the repeatabil-
ity and hence predictability of the response. Section 4 gives
the results, which are discussed in section 5.

2. Threshold Processes, Study Sites, and Data

2.1. Plot Scale Runoff Generation in a Water-Repellent
Soilscape

2.1.1. Water Repellency and Runoff Generation

[11] The first process examined is runoff generation on
water-repellent soils. Water repellency was reported as early
as 1910 by Schreiner and Shorey [1910] for soils in
California that could be wetted neither by infiltration nor
by the rise of groundwater tables. Water repellency of soils
is related to degraded organic matter [Krammes and
DeBano, 1965] and sometimes to forest fires [de Bano
and Rice, 1973]. Water repellency is often associated with
sandy soils and occasionally with clay soils. The main
controls are the type of organic matter, the occurrence of
the dry season, and the soil moisture [DeJonge et al., 1999].
de Bano and Rice [1973] suggested that water repellency
occurs after soil moisture drops below a certain threshold.
Bond [1964] emphasized the role of organic matter coatings
on coarse grains, whose hydrophobicity forces water to act
as a nonwetting fluid that tries to minimize the interface to
the water-repellent environment. The most important con-
cepts of quantifying the degree of hydrophobicity/water
repellency are the “Water Drop Penetration Time” [Letey
et al., 2000], which is the time it takes for a water droplet to
infiltrate into the soil, and the “Molarity of Aqueous
Ethanol Droplets™ [King, 1981], which is the concentration
of an ethanol/water mix that infiltrates within 10 s into the
soil sample. The higher the molarity of the ethanol/water
mix, the higher will be the degree of water repellency. A
recent bibliography on water repellency [Dekker et al.,
20057 highlights the global occurrence of this phenomenon.
Although its effects on runoff generation have been studied
globally since the 1960s [e.g., Krammes and DeBano, 1965;
Burch et al., 1989; Keizer et al., 2005], the role of
antecedent soil moisture over a range of scales has received
much less attention [e.g., Doerr and Thomas, 2000; Doerr

et al., 2003].
2.1.2. Sprinkling Experiments in the Southern Swiss
Alps

[12] To shed light on the control of antecedent soil
moisture on surface runoff generation in a landscape with
hydrophobic soils, we performed sprinkling experiments in
a landscape prone to occasional droughts and wildfires. The
research area is located in southern Switzerland at 46°30'N,
9°01'E at an elevation of about 720 m. Aspects range from
S to SW and slopes range from 20° and 37°. The area is
covered by mixed deciduous forest (Castanea sativa, Fagus
silvatica, Quercus sp.). The dominant soil type is Dystric
Cambisol [International Society of Soil Sciences/Interna-
tional Soil Reference and Information Centre/Food and
Agriculture Organization (ISSS-ISRIC-FAO), 1998]. Mean
annual precipitation is 1800 mm, with a pronounced dry
season between December and March.
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Figure 1.

[13] Fifty-three sprinkling experiments were performed
using an automated sprinkling device [Ritschard, 2000]. We
applied artificial rainfall with an intensity of 50 mm/h,
which occurs with a return interval of 5 years. Each of
the 53 test plots was 1 m? in size. Figure 1 shows a typical
field plot. To study the effect of dry periods, we covered the
plots for a period ranging from 10 to 100 days. Runoff from
the plots was measured manually, and initial soil moisture
was measured at two points in each plot using time domain
reflectometry. Water repellency was estimated before each
sprinkling experiment by determining the water drop pen-
etration time and by performing the molarity-of-ethanol-
droplet test on air-dried soil samples [Letey et al., 2000].
According to King’s [1981] classification, all plots with the
exception of one were extremely hydrophobic at the onset
of the sprinkling experiments. Figure 2 shows examples of
observed runoff at the field plot shown in Figure 1 for wet
and drBy antecedent soil moisture conditions (0.30 and
0.07 m®> m ™, respectively). Because of the high saturated
hydraulic conductivities of about 5 x 10~> m/s, a large part
of the water infiltrates when the soil is wet. In contrast,
when the soil is dry, surface runoff triples as a result of
water repellency.

2.2. Plot Scale Tracer Transport in Macroporous
Heterogeneous Soils

2.2.1. Preferential Flow and Solute Transport

[14] The second process we examined is plot scale
transport in heterogeneous soils. When dealing with con-
tamination of shallow groundwater, preferential flow often
is a key process [Stamm et al., 1998; Flury, 1996; Zehe and
Fliihler, 2001a]. Typical transport distances of preferential
flow events in macroporous soils are on the order of 50—
100 cm [Flury, 1996]. The main control on the occurrence
of preferential flow in macropores is the presence of
interconnected preferential pathways that link the soil
surface and the subsoil [Vogel et al., 2005; Zehe and
Fliihler, 2001b]. Other important controls are soil moisture
and rainfall magnitude as found, for example, by the dye
tracer experiments in the Weiherbach catchment [Zehe and
Fliihler, 2001b].
2.2.2. Simulated Replicates of Plot Scale Transport
Experiments in a Macroporous Soil

[15] In this example, we use results from Monte Carlo
simulations that are based on plot scale tracer experiments
on a 1-m® field site in a highly macroporous Colluvisol

Sprinkling setup in the southern Swiss Alps.

[ZSSS-ISRIC-FAO, 1998]. The study site is located in the
rural Weiherbach valley at 49°01'N, 9°00'E which is a
typical catchment for this landscape named “Kraichgau.”
Preferential flow events at this study site were observed
several times: Tracer transport depths observed during plot
scale tracer experiments (Figure 3) were much larger than
predicted when assuming that matrix flow was the only
relevant process [Zehe and Bloschl, 2004]. Furthermore,
observed tracer breakthrough into tile drains located at 1.2 m
below surface was faster by 2 to 3 orders of magnitude than
simulations based on matrix flow and transport assumptions
[Zehe and Fliihler, 2001a].

[16] Geologically, the Weiherbach valley consists of
Keuper and Loess layers of up to 15-m thickness. The
climate in the Weiherbach valley is humid with an average
annual precipitation of 750—800 mm, average annual runoff
of 150 mm, and annual potential evapotranspiration of
775 mm. Most of the Weiherbach hillslopes exhibit a typical
loess catena with the moist but drained Colluvisols at the
hill foot and drier Calcaric Regosols [ISSS-ISRIC-FAO,
1998] at the top and midslope sector. Interconnected prefe-
rential pathways are apparent in the Colluvisol and are a
result of earthworm activities (anecic earthworms such as
Lumbricus terrestris).

[17] Zehe and Bléschl [2004] simulated repeated trials of
the transport experiments by the physically based CAT-
FLOW model. The model was extensively tested against
field data of that site. On the basis of the findings of Zehe

45 - —a—\lay 7, 30% Vol.
40 - July 7, 7% Vol.

0:30 0:40 0:50 1:00

time [h]

0:20

0:10

Figure 2. Surface runoff in response to irrigation of the
plot shown in Figure 1 with wet (7 May) and dry (7 July)
antecedent soil moisture conditions.
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Figure 3. Dye flow patterns observed at the Weiherbach irrigation site and view of the Weiherbach
catchment.

and Fliihler [2001a, 2001b], they represented preferential
flow and transport in the macropore system as a threshold
process that starts when soil water saturation exceeds field
capacity. This is plausible as free gravity water is present in
this case that may percolate into coarse pores and macro-
pores. In a first step, they statistically generated a macro-
porous medium with the properties observed in the field
based on the results of a detailed macropore and soil
mapping (details are explained in the work of Zehe and
Fliihler [2001a]). They defined the initial soil moisture
macrostate by the first two moments of soil moisture
obtained from two sets of 25-point measurements collected
at two nearby plots of 4 m?. Soil moisture was measured
using a portable two-rod TDR sensor that integrated over
the upper 15 cm of the soil. They then generated 40
realizations of soil moisture patterns, each pattern represent-
ing one possible microstate that was consistent with the
observed macrostate. Using these soil moisture patterns as
initial conditions, they simulated events of two-dimensional
transport of a conservative tracer. The plot scale simulations
of Zehe and Bloschl [2004] are used here to analyze the
threshold dynamics in the context of the other field studies.

2.3. Catchment Scale Runoff Generation in a Soilscape
With Cracking Soils

2.3.1. Cracking Soils and Runoff Generation

[18] The third process is runoff generation on cracking
soils at the small catchment scale. Shrinkage and swelling of
clay soils can lead to significant changes in the infiltrability
and the soil volume and is usually a result of changes in soil
moisture. Internal shrinkage and swelling of clay minerals
such as smectites or vermiculites may influence shrinkage
characteristics of soils or clay pastes [Kariuki and van der
Meer, 2004]. Especially the size and structure of the clay
minerals determine the soil porosity [Chertkov, 2000]. The
shrinkage characteristic curve represents the volume change
of soils in relation to soil moisture [McGarry and Malafant,
1987]. Four zones of volume change are usually distin-
guished: zero, residual, normal, and structural shrinkage
[Braudeau et al., 1999]. The “normal” shrinkage zone,
generally, is the most important one in terms of the volume
change in soils [Peng and Horn, 2005], as volume loss is
approximately proportional to the water loss. In this zone, a
deformation of pores occurs instead of a penetration or
displacement of air in the pores [Bronswijk, 1988; Chertkov,
2000]. Because of this, the volume change of the pores may
influence the hydraulic characteristics of the matrix in

nonrigid soils [Kim et al., 1999; Peng and Horn, 2005;
Chertkov, 2004] and may even lead to the development of
cracks in dry soils which will then allow preferential
infiltration into lower soil horizons [Bronswijk, 1988; Wells
et al., 2003]. If the soil wets up above a certain threshold,
the cracks tend to close successively and surface runoff
generation will occur more often. This is, for example, the
case of the vertisols of northern Mexico [Ndvar et al.,
2002]. For temperate climates, the normal and structural
shrinkage zones are the most important ones, as they occur
within the typical ranges of soil moisture variability in these
climates.

2.3.2. Observed Rainfall-Runoff Response at the
Tannhausen Catchment

[19] This example uses runoff data from the 2.3-km?
Tannhausen catchment that has cracking clay soils (Figure 4).
It is located in the headwaters of the Danube River (49°10'N,
10°01'E) and is typical for this landscape named “Hohenloher
Ebene.” Mean annual precipitation is 660 mm. The geology
consists of clayey and marly sediments of Lower Jurassic age
from which Luvisols, stagnic Gleysols, and Regosols [/SSS-
ISRIC-FAO, 1998] have developed. Hydraulic conductivities
range from 1.5 x 107 to 2 x 10~ m/s for the upper soil
horizons (0—40 cm) to 2 x 10~ to 2 x 10~* m/s in the lower
soil horizons (>40 cm). Because of their high clay content
of 50—75%, the Regosol soils show characteristic shrinking
and crack patterns during the dry periods as well as swelling
and vanishing of the cracks during wet periods. Opening and
closing of the cracks as a result of soil moisture changes
modifies the infiltrability of the soils which in turn leads to a
strong seasonality in runoff response [Lindenmaier et al.,
2006].

[20] In the present study, we determined the runoff
coefficients for a total of 260 rainfall-runoff events observed
in the period from 1994 to 2004. Figure 5 shows the
rainfall-runoff response observed in the Tannhausen catch-
ment (2.3 km?) for a summer and a winter event. Although
event precipitation and antecedent precipitation [Mosley,
1979] within the last 10 days were very similar for these
two events, runoff response was vastly different. In summer,
almost all the precipitation infiltrated because of the open
cracks (see Figure 4, right panel). During the winter season,
the cracks closed and the catchment responded with signif-
icant surface runoff production. As no soil moisture obser-
vations were available in this catchment, we used the
CATFLOW model [Zehe and Bloschl, 2004; Lindenmaier
et al., 2006] to estimate soil moisture in the upper 30 cm of
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Figure 4. Surface runoff in the Tannhausen catchment during a local flood event in April 2002 and

cracked soil at the same site in March 2003.

the soil. On the basis of a digital elevation model, soil
hydraulic functions for the soils, as well as observed
meteorological data, the water balance of the catchment
was simulated for the period of 1994—-2004. For each time
step, the simulated soil moisture field was averaged over the
catchment yielding a time series of catchment average soil
moisture as an estimator for the initial states.

3. A Seven-Parameter Statistical Model of
Threshold Behavior

[21] A simple statistical model of threshold behavior is
proposed here to help interpret how inherent macrostate
uncertainty translates into the scatter of the observed system
response. This model is then used to explore the asymptotic
pattern of predictability when increasing the number of
observations/simulations, which is normally not possible
in a field study.

[22] We assume that threshold behavior in a hydrological
system produces two stable dynamic regimes. These
regimes are defined by finite ranges of a control variable,
in the present case, the soil moisture macrostate 0,,,¢r0. In
each of the two regimes, system response can be repre-
sented by a stationary probability density function fie,
which we assume to be Gaussian. The response functions
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equation (1)]:

1 1 1 1
= N(mres’ Ures) for gmicro <6

I:CS zmacro (1)
. rﬁs = N(mfes" U?es) for gmicro > Hmacro

In the unstable range of the control variable (i.e., between
0 oo and 02 acro), the system switches between the two
response functions. This transition is conceptualized as an
error function that relates the expectation of the response
function to the control variable. The error function is
centered at the midpoint between ) o and 6%.c0. The
standard deviation of the error function, i.e., the width of the
transition, is chosen as one eighth of the difference 0L oro —
02 .er0, Which assures that the error function is close to zero
and unity at the range limits:
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Figure 5. Rainfall runoff response observed in the Tannhausen catchment (2.3 km?) for two events in
2002. Event precipitation and antecedent precipitation of the summer event (left) were 18.3 and 20.3 mm,
respectively; the corresponding figures of the winter event (right) were 14.1 and 23.3 mm. Although the
precipitation totals of the two events were similar, the runoff response was vastly different.
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Figure 6. Conceptual model of the response of a nonlinear hydrological system with threshold
dynamics. The sigmoid curves marks how the first moment of the response pdf depends on a control
variable, here the macrostate of initial soil saturation. The Gaussians mark the inherent uncertainty of the
observed macrostate of initial soil saturation (see also main text).

The transition of the standard deviation is represented by an
error function in a similar way:

?

macro

1 2 1

Ures(emacro) = Oes + (Ures - Ures) €xp

0! (3)

‘macro
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The model parameters are the mean and the standard
deviations of the system response functions in the stable
ranges, myes and ores (i = 1, 2), as well as the upper limit of
the first stable range 0} aero and the lower limit of the second
range 92macr0~

[23] In the examples of this paper, the control variable is
the average antecedent soil moisture of a field site or a
catchment. This is considered as a macrostate estimated
from a limited number of measurements and is hence
uncertain. In the proposed model, we assume that the
estimated spatial average soil moisture obeys a Gaussian
distribution, as suggested by the central limit theorem. The
standard deviation o, 18 Set to the standard deviations of
the distributed observations divided by the square root of
the sample size.

[24] If (1) the response functions in the different regimes
are known, for example, estimated from field observations,
(2) the width of the unstable range is known, and (3) the
uncertainty of the macrostate oacr0 1S known, the behavior
of the threshold system can be simulated for different initial
soil moisture macrostates. We did this in two steps. First, we
generated a normally distributed random number that rep-
resents a possible soil moisture microstate consistent with
the observed macrostate. Second, we drew a second random
number with a distribution according to f.s, which repre-
sents the system response to a rainfall input. By repeating

this procedure, we were able to examine the propagation of
the macrostate uncertainty through the hydrological system
as a function of average initial soil moisture (different soil
moisture macrostates). It is intuitively clear that the macro-
state uncertainty is not important in the stable ranges but
will affect system response (and therefore its predictability)
when the nonstationary range of the system response
function and the uncertainty of the initial soil moisture
macrostates overlap.

[25] To quantify hydrological predictability for a given
initial soil moisture macrostate, we used the scaled range
proposed by Zehe and Bloschl [2004]. The scaled range r is
defined as the difference of the maximum and the minimum
response divided by the average response for a given initial
soil moisture macrostate.

__ max(response) — min(response)

r= (4)

ave(response)

[26] In the case of a limited sample size, we consider this
measure as appropriate because it relates the extreme
deviations to the average systems response, which is an
intuitive concept. In the case of a very large sample size
(representing the limiting case as the sample size
approaches infinity), the range is not well defined. We
hence used the scaled range of the 97.5th and 2.5th
percentiles instead,

responsey; s — response;, s

r= (5)

ave(response)

which represents an uncertainty band. In both cases, r is a
measure of repeatability, i.e., of how precisely one can
observe the system response under apparently identical
conditions. The inverse of » is a measure of predictability;
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Figure 7. Event surface runoff depths observed during the plot scale sprinkling experiments in the
southern Swiss Alps plotted against average initial soil moisture macrostate, ism (upper left panel).
Scaled ranges of the observed runoff depths plotted against soil moisture macrostate, ism (upper right
panel). Lower panels show the corresponding graphs simulated by the statistical model.

for example, small values of the range r indicate large (or
favorable) predictability.

4. Results

4.1. Plot Scale Runoff Generation in a Water-Repellent
Soilscape

[27] Figure 7 (upper left panel) presents the total runoff
volumes (expressed as runoff depths) observed at the 53
field sites in the southern Swiss Alps plotted against average
initial soil moisture. Two stable regimes are apparent: runoff
response with an average of 45 mm for initial soil moisture
less than 0.11 m®> m >, and a much weaker runoff response
in average of 9.5 mm for soil moisture greater than 0.21 m’
m . The difference between the average runoff values
observed in the two regimes is significant at a level of
95%. In the unstable range between 0.11 and 0.21 m* m—>
initial soil moisture, the runoff response exhibits a much
larger variability than in each of the stable ranges. From
these data, we calculated the scaled range as a function of
average initial soil moisture [equation (4)]. After several
tests, we chose a width of 0.05 m m~> for the soil moisture
classes, which is sufficiently fine to detect the uncertainty
peak and sufficiently coarse to give robust estimates of the
range for this data set. The resulting scaled ranges peak in
the class centered at 0.225 m® m > initial soil moisture
(Figure 7, upper right panel). A peak value of 1.5 means
that the total range of the runoff depths in this class is 150%

of the average response. Clearly, this would be considered
poor repeatability and therefore poor predictability.

[28] In a second step, we obtained the parameters of the
statistical model by estimating the mean and standard
deviations of the observed runoff depths in the two stable
ranges (Table 1). The uncertainty of the initial soil moisture
macrostate was set to the measurement error of the time
domain reflectometry device with a standard deviation of
Omacro = 0.02 m> m>. We then used the statistical model to
simulate runoff response of the sprinkling experiments and
varied the macrostate of average initial soil moisture. The
number of simulated experiments in each soil moisture class
was equal to the number of sprinkling experiments in that
class. As can be seen from Figure 7 (left panels), the
simulated pattern of the runoff volumes is very similar to
the observed pattern. Also, the patterns of the scaled ranges
of the simulations are quite similar to those of the observa-
tions, although the peaks do not exactly coincide (Figure 7,
right panels). For this relatively low number of trials at each
macrostate, the pattern of the scaled range does not fully
reflect the patterns of the underlying statistical model.

4.2. Plot Scale Tracer Transport in Macroporous
Heterogeneous Soils

[29] Figure 8 shows the simulated transport depths one
day after tracer application plotted against the average
initial soil moisture (upper left panel). There are, again,
two stable regimes for initial soil moisture, either smaller
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Table 1. Parameters of the Statistical Model for the Three Process Examples: Average Response Values and Standard Deviations of the
Two Regimes [m}s and oy (i = 1.2)], and Lower and Upper Limit of the Transition Region (0} cros02acr )

Example Mics Oles Mires Ores Ofnacror M m > Ofmacro, m> m > Omacros M M
S Alps 44.5 mm 9.6 mm 13.7 mm 4.6 mm 0.11 0.21 0.02
Weiherbach 0.04 m 0.12 m 0.01 m 0.01 m 0.15 0.25 0.02
Tannhausen 0.06 0.66 0.02 0.20 0.29 0.35 0.02

“The macrostate uncertainty in terms of its standard deviation o .0 is also shown. System response for the southern Swiss Alps example is observed
event runoff depth; for the Weiherbach example, it is average simulated tracer transport depth, and for the Tannhausen example, it is the observed event

runoff coefficient.

than 0.15 m® m ™ or larger than 0.25 m®> m>. In these two
ranges, the macrostate uncertainty translates into a small
scatter of the average tracer transport depths. Transport
dynamics is stable with an expected transport depth of 0.04
and 0.12 m, respectively, for the two regimes. In the
unstable range between 0.15 and 0.25 m® m >, macrostate
uncertainty is amplified and the average transport depths
fill the entire range between the two stable regimes. The
scaled ranges (Figure 8, upper right panel) peak at an
average initial soil moisture of 0.18 m®> m > with a value of
1.2. The maximum uncertainty of the transport depth is
hence 120% of the average value.

[30] The statistical model was, again, used to mimic the
behavior of the threshold system. The parameters were
estimated from the simulated output with the full dynamic
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model and are given in Table 1. The uncertainty of the soil
moisture macrostate was estimated from the field data as
0.02 m® m . By generating 40 realizations for a given
average initial soil moisture, we obtained the scatterplot of
average transport depths and the scaled ranges (Figure 8,
bottom panels). They are very similar to those of the full
dynamic model, although the statistical model is much
simpler. The similarity in the patterns suggests that the
statistical model can indeed be used to help interpret the
scatter in hydrological response measurements in case of
threshold behavior.

4.3. Catchment Scale Runoff Generation in a Soilscape
With Cracking Soils

[31] Figure 9 (upper left panel) presents the runoff
coefficients observed in the Tannhausen catchment plotted

1.5f

scaled range of transport depth [-]
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¥
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scaled range of transport depth [-]

e/ i i i 0 — -

8.1 0.15 0.2 0.25 0.3
ism [-]

035

Figure 8. Transport depths of the tracer center of mass of the simulated replicates at the Weiherbach site
plotted against average initial soil moisture macrostate, ism (upper left panel, circles). For comparison,
the crosses show the transport depths for a similar soil but without macropores. Scaled ranges of the
transport depths plotted against soil moisture macrostate, ism (upper right panel). Lower panels show the
corresponding graphs simulated by the statistical model.
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Figure 9. Event runoff coefficients observed in the Tannhausen catchment (2.3 km?) plotted against
average initial soil moisture macrostate, ism (upper left panel). Scaled ranges of the observed runoff
coefficients plotted against soil moisture macrostate, ism (upper right panel). Lower panels show the
corresponding graphs simulated by the statistical model.

against the average initial soil moisture. Similar to the
other process examples, there are two stable ranges of
system response: weak runoff response with an average
runoff coefficient of 0.06 for soil moisture less than
0.29 m®> m~>, and significant runoff response with an
average runoff coefficient of 0.66 for average monthly soil
moisture of more than 0.35 m®> m . Clearly, in the drier
regime, the soil cracks are open, so most of the water
infiltrates and does not produce surface runoff. In contrast,
in the wet regime, the cracks are closed, so the contribution
of rainfall to runoff is much larger. In the unstable range
between 0.29 and 0.35 m® m >, the scatter is large. The
scaled range of the observed runoff coefficients peaks at
0.32 m®> m* average soil moisture with a maximum of
almost 4. This means that total uncertainty in the runoff
coefficient is almost 400% of its average.

[32] The parameters of the statistical model were obtained
in a similar way as in the other examples. The macrostate
uncertainty was estimated as 0.02 m®> m > (Table 1) using
the standard deviation within the model grid according to
Zehe and Bloschl [2004]. The simulation results are shown
in the bottom panels of Figure 9. Again, the patterns are
very similar to those obtained from the measurements,
although the model yields a lower peak for the scaled range
and therefore a better repeatability than that suggested by
the data.

[33] It is interesting that the patterns of runoff generation
on water-repellent soils (Figure 7) are similar to those of
plot scale transport in macroporous soils (Figure 8) and
similar to the response patterns of the cracking soils
(Figure 9). More specifically, in all cases, the repeatability

of the observations is poorest in the vicinity of the threshold,
which points to a more generic pattern of predictability of
hydrologic response in the presence of threshold processes.

4.4. Asymptotic Simulations of the Statistical Model

[34] As the conceptual model of threshold behavior is of a
statistical nature, it is clear that, for a small number of trials,
the simulated system response and the scaled ranges will
strongly depend on the realization and exhibit a certain
amount of randomness. This resembles the situation with
field data that are inherently difficult to interpret, as the
number of trials will always be limited. The statistical
model proposed here can be used to shed light on the role
of the number of trials in observed system response.
Specifically, we used the model to examine the asymptotic
behavior, i.e., the hypothetical case of having an infinite
number of trials available for the same site. The model was
used to simulate system response with the parameters listed
in Table 1, but the number of realizations was set to 10,000
for each initial soil moisture state to obtain the results for the
asymptotic behavior.

[35] Figure 10 shows the results of this exercise. The
upper panels present the results for plot scale runoff
generation on the water-repellent soils in the southern Swiss
Alps, the center panels those for plot scale tracer transport in
the macroporous soils at the Weiherbach site, and the lower
panels those for runoff generation on the cracking soils in
the Tannhausen catchment. The corresponding scaled 95%
uncertainty range and the coefficients of variation are shown
in the right panels. The scaled ranges indicate that the
overall pattern of predictability in the three case studies is
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Figure 10. Asymptotic system response simulated by the statistical model. Left panels show average
systems response (solid lines) and 95% confidence limits (dashed lines). Right panels show the scaled
95% uncertainty range [equation (5), solid lines] and the coefficient of variation (dashed lines). The
results are for plot scale surface runoff on the water-repellent soils in the southern Swiss Alps (upper
panels), plot scale tracer transport in the macroporous soils at the Weiherbach site (center panels), and
runoff generation on cracking soils in the Tannhausen catchment, 2.3 km? (lower panels). ism is the initial

soil moisture macrostate.

remarkably similar, although the physical and chemical
mechanisms of the processes are different. There appears
to exist inherent uncertainty in the measurements that is not
measurement error but related to the observability of the
initial conditions.

[36] Figure 10 also indicates that the uncertainty ranges in
the asymptotic case differ from those apparent in the
observations of plot scale experiments (Figures 7 and 9)
and the process model simulations (Figure 8). The maxi-
mum scaled 95% uncertainty range in Figure 10 are 3.5, 1.8,
and 2.5 as compared to about 1.6, 1.2, and 4, respectively, in
Figures 7—9. From a hydrological perspective, this means
that, as the number of trials increases, the maximum range
of the scatter will also increase. However, the distribution of
the response, for a given macrostate initial soil moisture,
can be estimated much more robustly as the number of trials
increases.

5. Discussion and Conclusions

[37] The analyses of the response data of the three sites
suggest that threshold mechanisms are operative in each of
the three cases. In the observations of plot scale surface
runoff generation in the southern Swiss Alps, threshold
behavior stems from the switch between hydrophobic and
hydrophilic conditions, the latter resulting in substantially
reduced runoff production. Although hydrophobicity is a
result of soil chemical processes [DeJonge et al., 1999;

Doerr and Thomas, 2000; Letey et al., 2000], antecedent
soil moisture is clearly the main control at the macroscopic
level. Soil moisture could hence be used as a predictor of
soil hydrophobicity and runoff response characteristics in
the stable ranges. In the unstable range, there is small-scale
variability of soil moisture as well as other processes not
captured that translate into significant scatter in runoff
response for antecedent soil moisture macrostates that are
apparently identical.

[38] In the case of tracer transport simulated by a process
model at the Weiherbach site, soil moisture controls the
onset of macropore flow. However, the macrostates of initial
soil moisture do not account for the details of the microstate.
One of the important pieces of information that is lost in the
macrostate description is the correlation between local soil
saturation and local macroporosity at the plot. Zehe and
Bloschl [2004] showed that if the soil was prone to switch-
ing from matrix to macropore flow, the soil moisture
patterns (i.e., the microstates) were positively correlated
with the local macroporosity on the plot that caused fast
infiltration and transport associated with preferential flow.
If, in contrast, soil moisture and flow patterns were nega-
tively correlated, slow matrix flow and transport dominated.
Information about this type of correlation is critically
important for tracer transport but is rarely observable in
the field. It is interesting that similar correlations between
forcing and states are present in other parts of the hydro-
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logical cycle and at larger scales. For example, Woods and
Sivapalan [1999] noted that the spatial correlations of storm
rainfall and soil saturation might substantially increase
storm runoff from a catchment. Clearly, there is an interplay
of mechanisms that may or may not be observable at the
scale of interest.

[39] In the case of rainfall-runoff response observed in the
Tannhausen catchment, the dynamics of the soil cracks are
the main mechanism of threshold behavior which cause a
marked seasonality in the runoff response [Lindenmaier
et al., 2006] that has also been observed at other sites
[e.g., Navar et al., 2002]. As suggested by Figure 9 (upper
left panel), the transition range of the system is narrow. The
catchment switches from a fully developed crack system to
almost no cracks in the range of 0.25-0.35 m® m > average
catchment scale soil moisture. The catchment scale soil
moisture in the top 30 cm of the soil (simulated with a
physically based catchment model) is a useful predictor of
the average rainfall-runoff response in the Tannhausen
catchment within the stable ranges.

[40] These three examples illustrate that threshold
dynamics can indeed have a very significant effect on
runoff response and tracer transport. There are, of course,
numerous other threshold systems in hydrology that are
likely to show a similar behavior. One example is the
switch between vertical and lateral flow processes as a
function of soil moisture observed in a small Australian
catchment [Grayson et al., 1997], and other examples are
given in the works of McGrath et al. [2006], Rundle et al.
[2006], and Pitman and Stouffer [2006].

[41] Part of the observed scatter, one could argue, may be
due to the limited number of experimental trials for the three
examples. A statistical model was hence used to explore the
system response one would obtain if a much larger number
of experimental trials for each soil moisture macrostate were
available. In other words, the model was used to analyze the
asymptotic pattern of repeatability and predictability when
increasing the number of observations, which is normally
not possible in a field study. The model results suggest that,
in all three cases, the inherent uncertainty in initial soil
moisture combined with the threshold dynamics of the
system results in predictability patterns similar to those
observed.

[42] Although the physical and chemical mechanisms of
the processes at the three sites are different, the predictabil-
ity patterns are remarkably similar. In all three cases, the
scatter is largest and hence the predictability is smallest
when the system state is close to the threshold. As the
system state moves away from it, the scatter gets smaller
and the predictability increases. In all three cases, the
changes in predictability are related to the interplay between
the inherently uncertain initial state of the system and the
threshold dynamics. Hence there is inherent uncertainty in
the response data that is not measurement error but is related
to the observability of the initial conditions. To some
degree, it may be possible to increase the predictability by
obtaining more accurate soil moisture estimates, but there is
a limit to what can be obtained in the field. The macrostate
descriptions chosen here were simple but typical of the
amount of information available at experimental field sites.
In a related study, Zehe and Bloschl [2004] used CAT-
FLOW to simulate repeated trials of runoff observations in
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the 3.6-km® Weiherbach catchment for apparently identical
initial soil moisture conditions based on data from 61 TDR
stations. They found similar patterns of scaled ranges of
peak discharges indicating that this type of unstable behav-
ior may exist over a wide range of spatial scales.

[43] It is also interesting that the simple statistical model
captures the predictability patterns well, although it has
been formulated at a much more general level of concep-
tualization than the process model of, say, the Weiherbach
site. The model could be used to explore the inherent
uncertainty in observed system response to assess the limits
of predictability of distributed hydrological models. It is
straightforward to extend the statistical model, for example,
by incorporating skewed probability distribution functions
if needed. Whatever distribution is used, it is clear that
predictive uncertainty may not only result from less than
perfect model structures and model parameters but may be
an inherent characteristic of the system under study. The
range of system states for model calibration and validation
hence needs to be carefully chosen both to allow for
inherent uncertainty in any unstable range and to capture
different regimes of the hydrological system by the model.
In a similar vein, the statistical model could be used to trace
the limits of confidence for planned field experiments to
better understand the sources of observed scatter. A small
number of trials may suffice to find the parameters of the
model that could then be used to mimic the measurement
process. Clearly, careful planning of field campaigns and
judicious interpretation of the data are necessary if the
response function strongly depends on the system state, as
in the cases shown in this paper.
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