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Abstract Microwave remote sensing of soil moisture has been an active area of research since the 1970s but has
yet found little use in operational applications. Given recent advances in retrieval algorithms and the approval of a
dedicated soil moisture satellite, it is time to re-assess the potential of various satellite systems to provide soil
moisture information for hydrologic applications in an operational fashion. This paper reviews recent progress
made with retrieving surface soil moisture from three types of microwave sensors — radiometers, Synthetic
Aperture Radars (SARs), and scatterometers. The discussion focuses on the operational readiness of the different
techniques, considering requirements that are typical for hydrological applications. It is concluded that operational
coarse-resolution (25-50 km) soil moisture products can be expected within the next few years from radiometer
and scatterometer systems, while scientific and technological breakthroughs are still needed for operational soil
moisture retrieval at finer scales (< 1 km) from SAR. Also, further research on data assimilation methods is needed
to make best use of the coarse-resolution surface soil moisture data provided by radiometer and scatterometer
systems in a hydrologic context and to fully assess the value of these data for hydrological predictions.
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AMSR-E  Advanced Microwave Scanning Radiometer
ASCAT Advanced Scatterometer
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SMMR Scanning Multichannel Microwave Radiometer
SMOS Soil Moisture and Ocean Salinity Mission

SSM/1 Special Sensor Microwave Imager
SWI Soil Water Index

us United States (of America)
Introduction

Soil moisture controls the partitioning of rainfall into runoff and infiltration and therefore has
an important effect on the runoff response of catchments. The effect depends on the runoff
mechanism but for most mechanisms, including saturation excess runoff, infiltration excess
runoff and subsurface storm flow, runoff strongly increases with antecedent soil moisture for
a given rainfall input. An example of the importance of antecedent soil moisture was the
2002 flood in Austria (Gutknecht ez al. 2002). In August 2002 intense rainfall hit the northern
parts of Austria from 7-9 August, and, again, from 11-13 August. These two distinct
rainfall periods resulted in two consecutive flood events. Even though the rainfall depth of
the second event was smaller, the flood peak of the second event was larger in many
catchments as a result of the increase in soil moisture during the first event. Soil moisture is
hence a key variable for many hydrological applications.

Operational hydrological applications include flood forecasting and drought monitoring. In
both cases, one is interested in the root zone soil moisture at the catchment or finer scales as its
knowledge can significantly improve flood and drought estimates. Catchment soil moisture
can be estimated from climate input by soil moisture accounting schemes (Bléschl 2005) and
land-surface schemes (Overgaard ez al. 2005). Alternatively, soil moisture can be measured by
various methods. The most direct methods are in situ measurements, either by gravimetric
samples or time domain reflectometry. They are usually reasonably accurate and can provide
estimates over the entire root zone, but they are point measurements. It is very difficult to
estimate catchment average soil moisture from such point estimates because of the immense
spatial soil moisture variability at small scales (Western et al. 2002). Also, because of logistic
constraints, the spatial coverage of in situ measurements is usually rather limited.

The main appeal of remote sensing methods is that they provide average estimates over
areas (or footprints) that may range from a few square meters to thousands of square
kilometers, depending on the method. There is hence no need to infer areal averages from
point data as the remotely sensed data directly come as areal averages. These traits have
motivated much research in the field of remote sensing to retrieve soil moisture, particularly
in the microwave domain of the electromagnetic spectrum (Engman and Chauhan 1995).
Microwave sensors offer a relatively direct means of assessing soil moisture since they
exploit, like many in situ observation techniques, the strong relationship between the
moisture content and dielectric constant of the soil. They can acquire imagery unimpeded by
cloud cover during day and night but cannot provide soil moisture information when the soil
is frozen or snow covered. Also, sensors operating in the visible and infrared parts of the
electromagnetic spectrum have been used to infer soil moisture indirectly through
monitoring surface temperature and other surface state variables (Verstracten ef al. 2000).
These methods are not treated here because of space limitations.

There are three main types of remote sensing platforms — towers, aircrafts and spaceborne
(satellite) platforms. There has been substantial progress in microwave based soil moisture
retrieval from all three platforms in the past years (Jackson 2005). For operational purposes,
space platforms are the prime choice, both because of their global coverage and the regular
nature of satellite overpasses. This paper hence focuses on spaceborne microwave sensors.

The first remotely sensed soil moisture data sets have recently become available and a
dedicated soil moisture satellite is foreseen to be launched in the near future. It is therefore



timely to review the current state of the art in microwave remote sensing science (see the
next section). In order to identify satellite systems which may potentially provide soil
moisture information for hydrologic applications in real time and continuously over longer
time periods in the foreseeable future, the performance of the different microwave systems
with respect to data continuity, retrieval accuracy, sampling characteristics, and operational
readiness are discussed later. Then, data assimilation techniques are discussed because these
are essential for the use of remotely sensed surface soil moisture data in hydrologic
applications. Our conclusions are presented in the last section.

Microwave remote sensing methods

Microwave remote sensing measurements of bare soil surfaces are very sensitive to the water
content in the surface layer due to the pronounced increase in the soil dielectric constant with
increasing water content (Ulaby et al. 1982). This is the fundamental reason why any
microwave technique, particularly in the low-frequency microwave region from 1-10 GHz,
offers the opportunity to measure soil moisture in a relatively direct manner, The microwave
spectrum is divided into a number of frequency bands, which are designated by letters. For
soil moisture retrieval studies, the most important bands are: L-band (frequency f= 1-
2 GHz, wavelength A = 30—15cm), C-band (f = 4-8 GHz, A = 7.5-3.8 cm), and X-band
(f=8-12GHz, A = 3.8-2.5cm).

In microwave remote sensing, one distinguishes active and passive techniques. Active
microwave sensors transmit an electromagnetic pulse and measure the energy scattered back
from the Earth’s surface. For passive sensors (radiometers), the energy source is the target
itself, and the sensor is merely a passive receiver (Ulaby er al. 1982). Radiometers measure
the intensity of emission of the Earth’s surface that is related to the physical temperature of
the emitting layer and the emissivity of the surface. Despite the different measurement
processes, active and passive methods are closely linked through Kirchhoff’s law which,
applied to the problem of remote sensing of the Earth’s surface, states that the emissivity is
one minus the hemisphere integrated reflectivity (Schanda 1986). Therefore, both active and
passive techniques deal in principle with the same physical phenomena, though the
importance of different parameters on the measured signal may vary, depending on the
sensor characteristics. In this section we review the state of the art in soil moisture retrieval
from microwave radiometers and two active systems, namely Synthetic Aperture Radars
(SARs) and scatterometers.

Radiometry
Microwave radiometers have been flown on US satellites since 1978. From 1978 to 1987 the
Scanning Multichannel Microwave Radiometer (SMMR) provided measurements of both
horizontally and vertically polarized radiation at five frequencies: 6.6, 10.7, 18.0, 21.0 and
37.0 GHz. The spatial resolution varied between 148 km for the 6.6 GHz channel to 27 km
for the 37.0 GHz channel. Since 1987 the Special Sensor Microwave Imager (SSM/I) has
been providing an uninterrupted flow of passive data over land and oceans. Unfortunately,
from the viewpoint of soil moisture retrieval, the lowest frequency of SSM/I is 19.4 GHz.
Amongst the latest generation of radiometers is the Advanced Microwave Scanning
Radiometer (AMSR-E) which was launched in 2002. This instrument receives at roughly the
same frequencies as the SMMR (plus at 89 GHz), but at much improved spatial resolution.
At 6.9 GHz the spatial resolution of AMSR-E is about 56 km and at 10.7 GHz it is 38 km.
Microwave radiometers measure the emitted microwave radiation, expressed in terms of
brightness temperature, for vertical or horizontal polarization. When the temperature of the
emitting layer is known then the emissivity and the reflectivity can be calculated. Over a bare
soil surface, the soil dielectric constant can be derived from the reflectivity after correcting
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for soil roughness effects (Wegmiiller and Métzler 1999; Wigneron et al. 2006). Finally, soil
moisture can be estimated from the soil dielectric constant using dielectric mixing models
that account for the soil characteristics (texture, structure, density).

The thickness of the soil layer directly accessible to microwaves generally decreases with
increasing frequency and soil moisture content. According to models, it is of the order of a few
tenths of a wavelength. As a consequence, microwave sensors operating at longer wavelengths
are the most suitable for collecting soil moisture information. Although some results have
suggested that decimeter microwaves can detect soil moisture down to a depth of about 30 cm
(Shutko 1982), most researchers have come to the conclusion that, at L-band, the sampling
layer is about 5—10 cm deep (Schmugge 1985). Recent ground based radiometer measurements
with high temporal resolution carried out by Schneeberger et al. (2004) suggested that the soil
layers dominating the radiometric signal for L-band may be less than 2 cm.

Over vegetation covered surfaces, the canopy attenuates the soil emission and adds its
own contribution to the total surface emission (Kirdiashev et al. 1979). The masking effect of
vegetation increases with frequency, and it is generally considered that soil moisture can be
monitored for levels of vegetation water content lower than about 3—5 kg;’m2 at L-band and
1.5kg/m* at C-band (Njoku and Li 1999).

Despite these advantages of long wavelengths, several studies have investigated soil
moisture retrievals from radiometer measurements in the high frequency range
(f> 10GHz), chiefly because of the availability of operational sensors. Interesting
examples of possible retrieval methods using SSM/I observations have been developed
considering a vegetation index to parameterize the vegetation effects (Teng et al. 1993) or
considering the temporal variations in the measured difference between vertical and
horizontal polarization (De Ridder 2000). The sensitivity of the polarization index to
vegetation biomass, as for example pointed out in Pampaloni and Paloscia (1985), was used
by Paloscia et al. (2001) to separate three levels of vegetation cover and estimate soil
moisture over wide areas from SMMR and SMM/I data.

A larger number of studies have investigated the use of C-band (6.6 GHz) observations
from SMMR. The basic principle of many studies was to parameterize vegetation effects using
avegetation index derived from AVHRR observations (Ahmed 1995). Four to six levels of soil
moisture could be distinguished over agricultural areas. Long term soil moisture series were
retrieved in several studies over agricultural areas based on polarization difference indices at
6.6-37 GHz (Vinnikov et al. 1999) or at 6.6 GHz (Owe et al. 2001). By comparing retrievals
with in situ observations in the state of Illinois for the period 1982—1987, Vinnikov et al.
(1999) concluded that the polarization difference (f= 18 GHz) and the low frequency
(6.6 GHz) horizontal polarization emissivity have real utility for use as a soil moisture
information source in regions with grass and crops where the vegetation is not too dense.

At L-band there is currently no sensor in space. The large capability of L-band radiometry
in soil moisture mapping studies has been shown in a series of large scale field experiments
carried out since the mid-1980s (Wang et al. 1990; Schmugge and Jackson 1994; Chanzy
et al. 1997; Guha et al. 2003; Macelloni et al. 2004). In all these campaigns extensive efforts
were undertaken to collect soil moisture, vegetation and other reference data in the field,
coincident with the airborne radiometer acquisitions. This allowed testing of retrieval
methods for different climatic and vegetation conditions.

All these studies demonstrated the large potential of passive microwave observations for soil
moisture mapping. They also demonstrated that best retrievals could be made at L-band and
from multi-configuration observations, particularly in terms of polarization and view angles
(Wigneron et al. 2003). Therefore, recent system designs for dedicated soil moisture missions
have relied on passive microwave concepts in L-band. In 1999, ESA selected the Soil Moisture
and Ocean Salinity Mission (SMOS) as the second Earth Explorer Opportunity Mission.



The launch is currently foreseen for 2007. SMOS is a microwave radiometer operating at L-band
(1.4GHz, 21 cm), which will employ a two-dimensional interferometer technique to achieve a
ground resolution of 30—50 km, depending on the incidence angle (Kerr ef al. 2001). In the US
an experimental L-band mission dedicated to measuring soil moisture has been proposed that
combines a passive and an active approach (Entekhabi ef al. 2004). Unfortunately, the mission
development was discontinued in 2005 after a change in US space policy.

Currently, major international efforts are undertaken to prepare for the launch of SMOS
and to better exploit the existing capabilities of AMSR-E and future operational radiometer
systems such as the Conical-scanning Microwave Imager/Sounder (CMIS). In preparation
for SMOS, different retrieval models were tested on a global scale based on synthetic
(simulated) brightness temperature for two years (1987 and 1988). For example, in Pellarin
et al. (2003) a forward model inversion technique was used, assuming that the surface
temperature is known with an uncertainty of 2 K, but using no a priori information about the
surface characteristics. The soil moisture retrieval accuracy was better than 0.04 m*m ™
over about 40% of the continental areas.

Also, for AMSR-E different retrieval approaches have been considered (Njoku et al.
2003). Since 2003 the US National Snow and Ite Data Center (NSIDC) has been distributing
AMSR-E soil moisture products via http://nsidc.org/. A global view of seasonal soil moisture
patterns as depicted by the AMSR-E soil moisture product is presented in Figure 1. One can
see that the AMSR-E global soil moisture fields depict climatic patterns reasonably well.
Initial validation results are reported, e.g. by McCabe et al. (2005) who found the retrieval
error to be of the order of 0.03m* m *
purposes extensive field campaigns were and will be carried out (Jackson et al. 2005).

A worrying problem for microwave radiometry is that Radio Frequency Interference
(RFI) effects become more and more important over land surfaces. These spurious effects
degrade brightness observations, particularly over densely populated areas and may
significantly impair the retrieval of soil moisture, if not make it completely impossible. For
example, the AMSR-E 6.9 GHz is shared with mobile communication services. Therefore,
the NSDIC AMSR-E soil moisture algorithm uses only the 10.7 GHz channel. While RFI
effects in C- and X-band have been known for some time, there is now evidence that L-band
data may also be affected over some areas, even though the band 1400-1427 MHz is
protected from all radio emissions and is reserved for passive services only (Kunkee 2005).

over a watershed in Iowa, US. For further validation

Synthetic aperture radar

Investigations into the potential of radars for soil moisture retrieval began already in the
1960s and gained momentum in the 1990s due to the launch of several satellites that carried a
Synthetic Aperture Radar (SAR) on board. A SAR is an imaging radar which is designed for
achieving a fine spatial resolution (<30 m) over regions of, typically, 100 X 100 km?. For
covering larger areas the so-called ScanSAR technique can be employed for imaging swaths
of 300-500km width. However, this comes at the cost of a degraded spatial resolution
(>100m). Most spaceborne SAR satellites have operated at C-band, such as the European
satellites ERS-1/2 and ENVISAT, but also L-band SAR have been available, e.g. on the
Japanese satellite JERS-1. Currently, several countries (Canada, Germany, Japan,
Argentina) are preparing for launching the next generation of SAR satellites. Compared to
their predecessors, these SAR systems will be more advanced in terms of their capability to
measure different polarizations in different imaging modes. However, these satellite systems
are still much simpler than experimental SAR systems that have been flown on airborne
platforms and NASA’s Space Shuttle. Therefore, the combination of different frequencies,
polarizations, and incidence angles, which has been shown to be an important asset in soil
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Figure 1 Global mean surface soil moisture maps derived from ERS-1/2 scatterometer data from 1996 (left)
and AMSR-E data from 2003 (right). The images from top to bottom represent the periods from January to March
(JFM), April to June (AMJ), July to September (JAS), and October to December (OND). AMSR-E data were
obtained from http://nsidc.org/ (updated daily. AMSR-E/Aqua daily L3 surface soil moisture, interpretive parms,
and QC EASE-Grids, March to June 2004. National Snow and lce Data Center, Boulder, CO, USA. Digital
media) and ERS-1/2 scatterometer data from http://www.ipf.tuwien.ac.at/radar/

moisture retrieval (Baronti ef al. 1995; Ferrazzoli ef al. 1997; Hajnsek et al. 2003), is not yet
applicable to satellite systems.

The radar signal is not only sensitive to the soil dielectric constant but also to the
geometric structure of the soil surface. Experimental relationships between radar backscatter
and soil moisture have been presented by several authors (Oh et al. 1992; Dubois et al. 1995;
Deroin et al. 1997). Unfortunately, these empirical models have been found to be
site-dependent and the lack of full understanding of the phenomena has prevented the
development of more widely applicable models. In spite of their complexity, only theoretical
models can yield an understanding of the interaction between the electromagnetic wave and
the Earth’s surface (Fung 1994; Macelloni ef al. 2000). These theoretical models, such as the
Integral Equation Model, generally require specifying the surface characteristics with one or
more roughness parameter(s). The problem of defining optimal parameters for describing



surface roughness has been investigated in many studies (Dong ef al. 1994). The surface
roughness is generally characterized by the standard deviation of surface heights and by an
autocorrelation function, but also fractal models have been considered (Church 1988).
Unfortunately, these models have failed to accurately account for the complex geometry of
natural soil surfaces. Also, they neglect volume scattering in the remotely sensed soil layer
that may strongly affect the SAR observations, especially at low frequencies and dry soil
conditions. For these reasons, no accurate method is currently available to explicitly account
for roughness effects at field scales for operational SAR applications.

Also, modelling of scattering and absorption effects in vegetation is still an elusive
problem. The fundamental problem is that microwaves are longer, comparable or smaller
than plant constituents. Thus it is extremely difficult to identify suitable models that are
general enough to describe all important physical phenomena, yet simple enough to be
applied in practice. Most studies have used incoherent modelling approaches based on
radiative transfer theory. For example, Attema and Ulaby (1978) proposed a simple, yet
widely used, model which regards vegetation as a cloud of water droplets that, on the one
hand, attenuates the signal from the underlying soil surface and, on the other hand, enhances
the signal due to direct backscatter from the droplets. Of course, more complicated models
have been proposed ranging from simple extensions of the cloud model to multi-parameter
models which aim to describe the different elements (trunk, branches, leaves) of the
vegetation canopy separately (Ulaby et al. 1990).

There is general agreement that vegetation strongly affects the SAR data, particularly at
frequencies higher than about 5 GHz. Some studies have found that vegetation effects may
be so significant that, for example, Wigneron et al. (1999) used C-band radar data to monitor
vegetation growth. In another study of C-band ERS data Cognard er al. (1995) found that the
correlation between the radar signal and soil moisture was relatively poor on a field scale. At
the scale of the watershed, field-specific effects seemed to average out and a higher
correlation was found. A similar observation was made by Alvarez-Mozos et al. (2005) who
observed a high correlation between backscatter and soil moisture at catchment scale and a
decrease in correlation at more detailed scales.

In recognition of the problems posed by the adequate description of the roughness of
natural surfaces and vegetation cover, the use of change detection approaches has been
suggested. This method consists in subtracting each radar image by a reference image, as an
attempt to correct for the soil and vegetation effects specific to each pixel of the image. The
application of this technique requires long-term orbiting platforms (Engman 2000). Several
recent studies have applied change detection techniques to multi-temporal spaceborne SAR
acquisitions. For example, based on 32 ERS SAR images (C-band) acquired over the
Orgeval watershed in France, Quesney et al. (2000) developed a methodology for retrieving
soil moisture. The algorithm is based on a selection of “sensitive targets”, for which
vegetation and surface roughness effects can be easily estimated and removed if needed.
Their results suggested that, at the watershed scale, the mean effect induced by different
mixed roughness states is approximately constant during the year. Similar studies further
demonstrated that change detection approaches for retrieving soil moisture at regional scales
from C-band SAR time series can successfully account for surface roughness effects and, to
some extent, for low vegetation cover (Moran et al. 2000; Oldak et al. 2003).

In conclusion, it has not yet been demonstrated that currently available single-frequency
C- and L-band SAR systems can be used for operational soil moisture applications at the
field scale. Still, it appears feasible to implement change detection algorithms for monitoring
changes in soil moisture conditions at regional scales. However, the implementation of such
change detection approaches requires significant efforts to build up long SAR backscatter
time series and in situ soil moisture series for region-dependent model calibration.
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Repetitive, continuous SAR coverage using the same imaging mode is a prerequisite of such
an approach. The problem is that satellite SAR systems, when operated in a high resolution
imaging mode, can normally only acquire images of comparably small size during a small
fraction of time each orbit due to power limitations. For example, in the case of ENVISAT,
high resolution SAR modes can only be operated for about 30% of the time of each orbit.
ScanSAR modes, such as the Wide Swath and Global Monitoring modes of ENVISAT, can
achieve a much improved temporal coverage and are as such an attractive source of data for
change detection applications (Wagner er al. 2005). However, much more research is needed
to understand the potential of ScanSAR systems for soil moisture retrieval. Also, the large
number of modes of novel SAR satellites limits the availability of data for any given mode,
including the ScanSAR modes. These restrictions have to be kept in mind when considering
change detection approaches for regional-scale soil moisture monitoring activities using
current SAR satellites.

Scatterometry

Spaceborne scatterometers are used operationally for wind retrieval over the oceans and have
been flown on a series of European and US satellites. While all US scatterometers have been
operated in Ku-band (around 14 GHz), Europe relies on C-band scatterometers. Since
scatterometers have initially not been foreseen for land applications, it took some time before
the first studies showed that these instruments may be useful for soil moisture monitoring
over land. Because of their longer wavelength European scatterometers are better suited for
soil moisture retrieval than the US scatterometers. Therefore, this discussion focuses on
results obtained with the scatterometer on board the European Remote Sensing satellites
ERS-1 and ERS-2. Its successor will be the Advanced Scatterometer (ASCAT) which will be
flown on a series of Meteorological Operational (METOP) satellites from 2006 onwards. The
technical characteristics of ASCAT are very similar to those of the ERS Scatterometer, but at
improved spatial (25 km) and temporal resolutions (1-2d).

The ERS scatterometer is a C-band radar (5.3 GHz) which has acquired data with a spatial
resolution of 50 km at vertical polarization (VV). Like for SARs, semi-empirical backscatter
models have been used to retrieve vegetation and soil parameters from ERS scatterometer
data (Pulliainen er al. 1998; Magagi and Kerr 2001; Jarlan er al. 2002). Typically, these
models use simple bare soil backscattering models such as the one proposed by Oh et al.
(1992) and use vegetation models similar in structure to the Cloud Model (Attema and Ulaby
1978). Grippa and Woodhouse (2002) developed a semi-empirical model that is capable of
simultaneously retrieving surface roughness, soil dielectric constant, and the single
scattering albedo and optical depth of vegetation. The model was applied to three study sites
situated in different climatic regions (boreal forest, wet—dry tropical, wet equatorial).
Although the results were consistent with expectations, Grippa and Woodhouse (2002) note
the difficulty of physically modelling the measurement process and point out that scaling
issues need to be further investigated.

Many of the initial ERS scatterometer studies focused on the retrieval of vegetation
parameters since a substantial agreement between backscatter and global vegetation index
maps has been observed (Frison and Mougin 1996). However, more recent studies have
shown that the sensitivity of the ERS scatterometer to soil moisture is higher than initially
thought. For example, Woodhouse and Hoekman (2000) applied a semi-empirical model,
previously tested over Western Africa, over a Mediterranean region (Spain). They did not
satisfactorily retrieve the seasonal vegetation signal, but provided soil surface reflectivity
values in agreement with monthly precipitation records. In another study over the Iberian
Peninsula, Wagner et al. (1999a) found that, regarded from a time series perspective, the
ERS scatterometer is more sensitive to soil moisture changes than to vegetation dynamics.



They proposed a change detection approach that relies upon the multi-incidence observation
capabilities of the ERS scatterometer to model the effects of vegetation phenology. Wen and
Su (2003) used AVHRR data to correct for vegetation effects and found a high correlation
(R? = 0.81) between scatterometer derived relative surface soil moisture time series and
0—4 cm topsoil moisture measured over Tibet.

The first multi-year, global soil moisture data set derived from ERS scatterometer data from
the period 1992-2000 was presented by Wagner et al. (2003). This data set is available at
http://www.ipf.tuwien.ac.at/radar and comprises the retrieved surface soil moisture data and a
so-called Soil Water Index (SWI) that is a measure of the profile soil moisture content obtained
by filtering the surface soil moisture time series with an exponential function (Wagner et al.
1999b). This data set is compared to the AMSR-E surface soil moisture data in Figure 1. So far,
few studies have checked the accuracy of the surface soil moisture data. One study was
conduced by Drusch et al. (2004) who compared the ERS derived surface soil moisture data to
in situ volumetric soil moisture data at 10 cm depth collected during the Southern Great Plains
Hydrology Experiment (SGP99) and obtained a coefficient of determination of R > = 0.43.
The accuracy of the SWI is better known. For example, Ceballos ef al. (2005) compared the
SWI to 0— 100 ¢m soil moisture data and obtained a coefficient of determination of R 2 = 0.75
and a root mean square error of 0.022 m m >, Dirmeyer et al. (2004) have compared the SWI
with seven other global wetness products, three produced by land surface model calculations,
three from coupled land atmosphere reanalysis, and the so-called Soil Wetness Index data set
derived from SSM/I data (Basist et al. 1998). They found that, while the SSM/I data clearly
have a different character from all the other data sets, the ERS scatterometer data revealed
many similarities with the modelled wetness products.

Satellite systems with operational potential

Operational hydrology puts stringent requirements on the availability, timeliness, and
reliability of the remote sensing products. With this in view, the question must be raised if
there are satellite systems which may provide soil moisture information in real time and
continuously over at least the next decade. Of course, other requirements including accuracy,
sampling characteristics, and heritage are also of great importance. In a recent study Walker
and Houser (2004) assessed the requirements of a soil moisture satellite mission in terms of
accuracy, repeat time, and spatial resolution through a numerical twin data assimilation
study. They found that near-surface soil moisture observations must have an accuracy better
than 0.05m>m * to positively impact soil moisture forecasts. In terms of sampling
characteristics they found that daily near-surface soil moisture observations achieved the
best soil moisture forecasts, with 1-5d repeat times having the greatest impact.
Observations with a spatial resolution finer than the land surface model resolution produced
the best results, with spatial resolutions coarser than the model resolution yielding only a
slight degradation. Moreover, they found that satisfying the spatial resolution and accuracy
requirements was more important than repeat time. Against the background of these results
and more general considerations we will discuss the characteristics of individual retrieval
systems below in terms of their potential for operational hydrological applications.

Data continuity

Long-term availability and continuity of satellite systems is often a concern in Earth
Observation. Fortunately, there are operational sensor systems that have the potential for
delivering soil moisture information in quasi-real time. The first group of sensors are the
European scatterometers operated in C-band (5.3 GHz) flown on board ERS-1 (1991 -1996),
ERS-2 (1995—present) and, from 2006 onwards, on a series of three METOP satellites. The
second group of sensors are US microwave radiometers which have channels in the C- and
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X-bands. The first such instrument, SMMR, was operated between 1978 and 1987. Since
2002 AMSR-E has been in orbit. The Conical Microwave Imager/Sounder (CMIS) is
planned for launch in 2009 on a constellation of satellites of the US National Polar-orbiting
Operational Environmental Satellite System (NPOESS). Figure 2 shows how, from about
2010 onwards, the planned constellation of three NPOESS satellites and one METOP
satellite will provide coverage several times per day.

The future availability is less certain in the case of many SAR systems and the dedicated
soil moisture mission SMOS. With respect to SAR, several countries have launched and
further developed SAR satellites since the 1990s. Still, it is difficult to foresee which of these
SAR systems will provide data continuity and reliable data access. With respect to SMOS,
this mission is developed within the framework of ESA’s exploratory earth observation
programme. An operational follow-on programme for SMOS has already been proposed and
is currently under study.

Accuracy
The accuracy of remotely sensed soil moisture products is determined by the sensor

characteristics and the retrieval algorithms. There is no sensor that would perfectly fulfil all
requirements, nor is there an ideal retrieval algorithm. Rather, the combination of
sensor/algorithm has to be optimised in order to derive accurate soil moisture data. With
respect to the sensor capabilities it is well established that low microwave frequencies are
beneficial for soil moisture retrieval. This is because longer wavelengths are better able to
penetrate vegetation and soil (Figure 3). In addition, the contrast between the dielectric
constant of dry to wet soil is highest at frequencies below 10 GHz. This has motivated the

METOP
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Figure 2 Planned constellation of three NPOESS satellites and one METOP satellite. These satellites have
microwave instruments on board (CMIS and ASCAT) which could provide coarse-resolution soil moisture in
near-real-time. The equatorial crossing times of ascending (1) and descending () tracks are indicated
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Figure 3 Suitability of different microwave sensors for soil moisture retrieval. Low frequency microwave
measurements are known to be beneficial for soil moisture retrieval due to their capability to better penetrate
vegetation (top) and the high sensitivity to the dielectric constant of the soil (second from top). Synthetic
Aperture Radars (SARs) are typically operated at frequencies lower than 10 GHz (third from top) and
scatterometers in C- and Ku-bands (fourth from top). Radiometers generally have channels aver the entire
microwave range. In the bottom figure only the lowest frequency channel is indicated

selection of L-band for SMOS. The accuracy goal of SMOS is 0.04m*m™> and should
exceed what is already possible with operational C- and X-band radiometer and
scatterometer systems.

Recently, global soil moisture products from the ERS-1/2 scatterometer (Wagner et al.
2003), AMSR-E (Njoku et al. 2003) and SMMR (De Jeu 2003) have become available and
have been openly shared with the international community. This has been an important step
because, previously, validation of remotely sensed soil moisture data has normally been done
at local to regional scales by the research groups themselves. The first independent validation
studies have started to appear in the literature, e.g. by Drusch et al. (2004) for the ERS-1/2
scatterometer data, by Reichle et al. (2004) for SMMR, and by McCabe et al. (2005) for
AMSR-E. Methods and reference data for validation have varied drastically between the
different studies. Because of this it is difficult to assess the relative accuracy of the different
sensors/algorithms and to provide reliable accuracy estimates. This shows the urgent need to
introduce standards and common data sets for the validation of remotely sensed soil moisture
data in order to compare the accuracy of different soil moisture products for different
vegetation zones and climatic conditions.

In the case of SAR, L-band data have already been available from JERS-1. Interestingly,
few studies found JERS-1 SAR to be superior to C-band ERS SAR. Overall, the accuracy of
algorithms used to derive soil moisture patterns from single-date SAR images is not
sufficient. On the other hand, pilot studies that employed change detection to retrieve
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regional soil moisture information from ERS SAR time series have reported good
accuracies, sometimes even better than 0.04 m” m >, However, many of these studies have
been confined to one particular region. Possibly, in many cases it will be difficult to transfer
the developed algorithms to other regions without collecting extensive in situ data for model
calibration. Other factors that complicate the application of change detection approaches are
the limited recording time of high-resolution SAR modes per orbit (i.e. the duty cycle) and
changes in the sensor configurations from satellite to satellite (e.g. changing SAR imaging
modes and frequencies). Overall, changes in the sensor configuration pose enormous
challenges for algorithm developers and software engineers.

Sampling characteristics and timeliness

The sampling characteristics of the different microwave sensors are illustrated in Figure 4.
Considering the large differences in footprint size and temporal sampling it becomes evident
that the different microwave sensors provide very different information. While radiometers
and scatterometers allow regular monitoring of the large-scale atmosphere-related soil
moisture component, SARs allow assessing smaller-scale land-surface related patterns,
albeit very infrequently (Entin ef al. 2000). ScanSAR modes have spatial and temporal
sampling characteristics in between the other sensor configurations and hence may provide
valuable complementary information about the soil moisture field. However, the capability
of ScanSAR for soil moisture retrieval is not yet sufficiently understood.

Satellite orbit, swath width, duty cycle and other technical characteristics such as beam
steering capabilities determine the temporal sampling characteristics and consequently the
time needed to obtain data. This time lag is of crucial importance in determining the value of
the information for operational hydrological applications. Scatterometers and radiometers
record continuously and, due to the low-bit transmission rate, the processing load is
moderate. In the future NPOESS/METOP constellation (Figure 2) the on-board coarse-
resolution microwave sensors could deliver an update of the status of the regional soil
moisture conditions several times a day within a few hours after data reception. For SARs a
dedicated effort is needed to ensure that images are acquired within an acceptable time
frame. Also, since the data processing load is relatively high one probably has to allow
several hours for SAR data processing (even with highly automated processing capabilities).

Operational readiness
The step from scientific pilot studies to operational applications is often accompanied by
unforeseen difficulties including problems with the space segment (satellite, sensor) and
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Figure 4 Spatial and temporal resolution of active and passive microwave systems



algorithms that turn out to be less accurate or robust than anticipated. In order to minimize
the risk of failure it is, obviously, prudent to use proven technology. In microwave remote
sensing of soil moisture, radiometry and SAR have received most attention by the research
community. In particular, radiometry in C- and X-bands has a long technical heritage and,
provided that RFI effects do not interfere with the observations too strongly, is able to
provide high-quality brightness data. Also, the availability of historic data from SMMR
(1978-1987) and AMSR-E (2002—present) has allowed testing of different retrieval
algorithms. These algorithms should be directly applicable to CMIS data. For L-band, which
is the optimal frequency for monitoring soil moisture, the situation is different because no
such instruments have yet been flown in space. Consequently, in preparation for SMOS,
retrieval algorithms were tested based on synthetic brightness temperature data and field
experiments (Wigneron et al. 2000; Pellarin er al. 2003). Also, from a technological
perspective L-band technology is very challenging, requiring large antennas (4—6m) and
complex processing to obtain well-calibrated L-band brightness temperature data.

With respect to SAR, the number of studies that have been concerned with soil moisture
retrieval is overwhelming and for a single researcher it is difficult to obtain a reasonable
overview over this field. Seen from a positive side this shows that there is a large,
knowledgeable community which could easily adapt successful algorithms. The downside is
that, despite so much effort, no such algorithm has yet been found. In contrast, there have been
few scatterometer studies that have not gained much visibility in the research arena so far.
Nevertheless, the first global, multi-year remotely sensed soil moisture data set has been
derived from ERS scatterometer data (Wagner e al. 2003). Currently, efforts are underway to
develop an operational, near-real-time soil moisture processor for METOP ASCAT. This
processor can be based upon the retrieval algorithms developed for the ERS scatterometer
because of the very similar technical characteristics of both instruments (Bartalis et al. 2005).

Data assimilation in hydrology

For operational hydrological applications the variables of interest are usually not surface soil
moisture per se but variables related to it, such as root zone soil moisture or flood and
drought predictions. Therefore there is the need to combine the surface soil moisture data
with hydrological models and other input data as well. There has indeed been a substantial
body of work in recent years geared towards combining atmospheric models and, to a lesser
extent, hydrologic models with spaceborne data. These methods of integrating satellite data
in a consistent manner with model predictions are usually referred to as data assimilation
procedures.

Data assimilation methods are quantitative, objective methods to infer the state of a
hydrologic system from irregularly distributed and intermittent data sets with differing
accuracies, providing at the same time more reliable information about the predictive
uncertainty in model forecasts (McLaughlin1995). Existing data assimilation schemes were
developed mainly for numerical weather prediction, where the most commonly used
techniques are optimal interpolation and variational minimisation (Daley 1991). Spurred by
the success of data assimilation in other fields and by a few early hydrological investigations
(Milly 1986) data assimilation has attracted a lot of attention in hydrology in recent years
(Hoeben and Troch 2000; Boni er al. 2001; Walker et al. 2001). These papers have mostly
focused on the assimilation of surface soil moisture data into land surface models in a real
time mode. Another important application is the simulation mode where the soil moisture
data are used in the calibration of land surface models together with other data sources.

The main challenge in root zone soil moisture retrieval is the shallow penetration depth of
spaceborne data, which is of the order of a few centimeters, and as such much shallower than the
root depth represented in many hydrologic models. Some assumptions hence need to be made
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on the vertical distribution of soil moisture in the soil profile to retrieve root zone soil moisture
from surface soil moisture. A number of studies have applied representations of the one-
dimensional Richards equation. Prevot et al. (1984) and Bruckler and Witono (1989) used fixed
head boundary conditions in the one-dimensional Richards equation, and Entekhabi er al.
(1994) updated the 1D state variables in the Richards equation using a Kalman filter. The
difficulty with the Richards equation approach is that the soil physical characteristics need to be
known in great detail which is usually not possible at the field scale, and even more difficult to
achieve at larger scales. Because of this, simplifications of the Richards equation based on
multi-layer models have been proposed. In two-layer models, the layers represent the surface
and the root zone; in three-layer models, the third layer represents the groundwater zone. Two-
layer models have been proposed by Jackson et al. (1981) and Ottlé and Vidal-Madjar (1994)
which they combined with the direct insertion updating approach. Georgakakos and Baumer
(1996) proposed a two-layer model based on basin average soil moisture. They used the Kalman
filter approach in the assimilation procedure. A three-layer model has been proposed by Koster
et al. (2000) that has been used in a range of data assimilations exercises (Walker and Houser
2001; Reichle and Koster 2005) using variants of the Kalman Filter method. Walker and Houser
(2005) provide a review of data assimilation methods used in land surface hydrology.

Two-layer and three-layer models often use empirical moisture transfer functions to relate
surface soil moisture to root zone soil moisture. The transfer functions have unit time as they
can be thought of as a relaxation timescale. In the simplest case this transfer function is a
time constant and can be thought of as a pseudo-diffusivity. The two-layer model of Wagner
et al. (1999b) makes use of such an approach. The parameters of the transfer functions can be
estimated by calibration against land surface data, from in situ soil moisture data, from soil
type and other soil information, or a combination of these sources (Entin et al. 2000;
Ceballos et al. 2005). In operational applications there rarely is detailed local information
available. Because of this more parsimonious approaches are more appealing than the more
sophisticated ones in an operational context. The minimum requirements of what needs to be
known for retrieving root zone soil moisture are, most importantly, a transfer parameter that
represents how fast soil water infiltrates into the subsurface and some estimate on the lower
boundary condition, including a representative soil depth.

The other challenge of hydrological data assimilation of surface soil moisture relates to
the large pixel sizes of the spaceborne data relative to the spatial resolution of most
hydrologic models, particularly if one uses low spatial resolution spaceborne sensors
(radiometers or scatterometers). The most common approach to addressing this issue in the
literature is to represent the spatial distribution of soil moisture by a statistical distribution
function, both in the hydrologic model and within the pixels of the remotely sensed data. One
example is the VIC model (Wood er al. 1992) that was particularly developed with a view to
capturing the large scale soil moisture variability. Methods for matching distribution
functions of soil moisture over different areas exist. Some of these methods take into account
the spatial correlations of soil moisture in a geostatistical framework (Western er al. 2004).
A variant of the distribution function approach defines the shape of the distribution function
on the basis of terrain topography. For example, Koster er al. (2000) applied topmodel
(Beven and Kirkby 1979) concepts to define the distribution function of soil moisture. For
humid environments where the spatial pattern of soil water is controlled by terrain this seems
to be an obvious choice but, in some climates, other controls such as soil characteristics and
vegetation are more important than terrain (Western ef al. 1999), so alternative schemes may
be needed. It appears that, while a lot of insight on bridging the grid size and penetration
depth incompatibilities has been gained in recent years, there is still much that needs to be
done on refining methods for retrieving profile or root zone soil moisture from surface data.



There have been a number of initial attempts at assessing the merits of surface soil
moisture retrieved from spaceborne sensors for operational hydrological applications. The
general finding of these studies is that assimilating surface soil moisture products into
hydrological models will, in many instances, improve the combined soil moisture estimates.
This has been demonstrated, among others, by Reichle and Koster (2005) who assimilated
SMMR data into a land surface model at the global scale and tested the combined product
against in situ data. More specifically, the numerical twin data assimilation study of Walker
and Houser (2004) suggests that surface soil moisture observation error must be less than the
model forecast error required for a specific application, else a slight degradation in forecast
soil moisture may result. Because of the value of surface soil moisture data in improving soil
moisture estimates one would also expect that hydrological runoff forecasts would be
improved by assimilating surface soil moisture.

Most studies that examined the potential of soil moisture data for runoff forecasts actually
used in situ soil moisture data and found that detailed soil moisture data will indeed improve
runoff forecasts over procedures that only use climate inputs (e.g. Aubert et al. 2003). For the
case of assimilating spaceborne surface soil moisture, the merits are less well understood. In
a regional assimilation study, Parajka et al. (2006) examined the value of assimilating ERS
scatterometer data into hydrological simulations. They found that in some catchments
assimilating the scatterometer data did improve the runoff simulations but in others they
actually degraded the runoff simulations. The value of the scatterometer data significantly
depended on the catchment characteristics with low relief, low vegetation catchments
exhibiting the largest improvements in runoff simulations. Clearly, climate type and
hydrological characteristics will determine the value of surface soil moisture data for
operational hydrology. If the main interest is in soil moisture and catchment drought
assessment there is clear value in many instances. If the main interest is flood forecasting or,
more generally runoff forecasting, the merits are less obvious. More research is needed to
fully assess the value of surface soil moisture data for hydrological runoff forecasts.

Discussion and conclusions
In an operational hydrologic context satellite remote sensing of soil moisture has numerous
advantages over ground-based measurements, including global coverage, the availability of
areal averages and logistics. However, the system-wise advantages of satellites are still often
counter-balanced by limits of accuracy, spatial and temporal sampling characteristics, and
applicability that require further effort in both technological development and physical
process understanding. Also, substantial efforts are still needed to advance data assimilation
methods for ingesting remotely sensed soil moisture data into hydrological models.

Microwave data are closely correlated to soil moisture. Since they are also affected by
vegetation, the applicability grows with increasing wavelength. L-band (typically 20cm)
penetrates vegetation better than C-band (typically 5cm) and X-band (typically 3 cm).
Therefore, whilst L-band is widely applicable except over dense forests, the usefulness of
higher frequencies, though still in principle sensitive to soil moisture up to some tens of GHz,
progressively becomes limited to low vegetation and bare soil. Therefore L-band has been
chosen for SMOS, which is the first satellite radiometer dedicated to measuring soil moisture
over land. In order to achieve a useful spatial resolution (<< 50 km), L-band radiometers must
deploy very large antennas (4—6 m). In the case of SMOS, a large “virtual” antenna is created
by using a Y-shaped antenna and a passive interferometric measurement principle, known
from radio astronomy. SMOS will be launched in 2007 and will enable us to evaluate the
current limits of satellite technology for soil moisture sensing.

Operational coarse-resolution soil moisture data (25—50 km) will become available from a
constellation of NPOESS and METOP satellites within the next few years (Figure 2).
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The NPOESS satellites will carry CMIS, a radiometer which, besides higher frequency bands,
measures vertical and horizontal polarisation in C- and X-bands. METOP will carry the ASCAT
which is a C-band scatterometer. These instruments have a long technical heritage and, recently,
first global soil moisture data sets have been retrieved from long-term databases of their
predecessor instruments and openly shared with the international community (Figure 1). Even

~ though the number of independent validation studies has been growing rapidly, with encouraging

results, the quality of these data sets is not yet very well understood and reliable accuracy estimates
for different sensor/algorithm combinations are not yet available. The problem is that there is
currently no standard methodology for validation nor a unified, global in sifu soil moisture
database suitable for assessing the accuracy of the coarse-resolution, surface soil moisture data,
although initial attempts of compiling such a data set exist (Robock et al. 2000).

Synthetic Aperture Radars allow mapping of small-scale soil moisture patterns due to
their high spatial resolution. However, the spatial variability of surface roughness and
vegetation cover poses major problems for soil moisture retrieval. Process understanding and
algorithms have not advanced to a point to retrieve soil moisture from single SAR images at
accuracies that would be useful for typical hydrological applications. Some promising results
have been achieved when SAR image time series were used to monitor changes in soil
moisture conditions at a regional scale. However, an operational application of such an
approach does not seem to be feasible at the moment due to the lack of consolidated long-
term plans for operational SAR systems. This problem is aggravated by long revisit periods
that can approach a few days only if a constellation of several satellites is used and priority is
given to soil moisture in the operations planning.

In conclusion, operational soil moisture data at 25-50km spatial resolution can be
expected from a constellation of NPOESS and METOP satellites within the next few years.
Research efforts are still needed to improve both the accuracy of the remotely sensed soil
moisture data and their assimilation into hydrological models. There is also an urgent need
for compiling a unified, benchmark data base of in situ soil moisture observations at the
global scale and for agreed standards to validate the coarse-resolution satellite products. Due
to the likely concurrent availability of SMOS, ASCAT and AMSR_E/CMIS in the years
after 2007 the achievable accuracies in L-band, C-band, and X-band can be established
relative to the hydrologic requirements. This is an essential step for designing the next
generation of dedicated soil moisture satellites.
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