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[1] This paper proposes a geostatistical method for estimating runoff time series in
ungauged catchments. The method conceptualizes catchments as space-time filters and
exploits the space-time correlations of runoff along the stream network topology. We
hence term the method topological kriging or top kriging. It accounts for hydrodynamic
and geomorphologic dispersion as well as routing and estimates runoff as a weighted
average of the observed runoff in neighboring catchments. Top kriging is tested by cross
validation on 10 years of hourly runoff data from 376 catchments in Austria and separately
for a subset of these data, the Innviertel region. The median Nash-Sutcliffe efficiency
of hourly runoff in the Innviertel region is 0.87 but decreases to 0.75 for the entire data
set. For a subset of 208 catchments, the median efficiency of daily runoff estimated by
top kriging is 0.87 as compared to 0.67 for estimates of a deterministic runoff model that
uses regionalized model parameters. The much better performance of top kriging is
because it avoids rainfall data errors and avoids the parameter identifiability issues of
traditional runoff models. The analyses indicate that the kriging variance can be used for
identifying catchments with potentially poor estimates. The Innviertel region is used to
examine the kriging weights for nested and nonnested catchments and to compare various
variants of top kriging. The spatial kriging variant generally performs better than the more
complex spatiotemporal kriging and spatiotemporal cokriging variants. It is argued
that top kriging may be preferable to deterministic runoff models for estimating runoff
time series in ungauged catchments, provided stream gauge density is high and there is no
need to account for causal rainfall-runoff processes. Potential applications include the
estimation of flow duration curves in a region and near–real time mapping of runoff.
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1. Introduction

[2] The estimation of runoff related variables at locations
where no measurements are available is a key problem in
hydrology which is generally termed predictions in unga-
uged basins (PUB) [Sivapalan et al., 2003]. A range of
methods addressing this problem have been proposed in the
literature [Blöschl, 2005]. The traditional approach is to use
a deterministic rainfall-runoff model with parameters
inferred from neighboring, gauged catchments. The advan-
tage of this method is that it explicitly represents causal
processes such as precipitation and runoff generation. How-
ever, as Blöschl [2005] noted, there is significant uncertainty
in the estimates, mainly due to a lack of representativeness of
catchment data, rainfall data as well as identifiability prob-
lems of the runoff model parameters [Montanari, 2005b].
For some applications it may not be necessary to invoke
causal relationships directly. For example, when assessing

the hydropower potential one is interested in the flow
duration curves of ungauged sites [e.g., Castellarin et al.,
2004] and there is usually no need to vary rainfall character-
istics. Another application is environmental flows where
one is interested in the runoff dynamics and seasonality at
ungauged sites without the need to examine scenarios
[Gippel, 2005]. For these applications, an alternative to
the traditional rainfall-runoff modeling approach may be
to directly estimate the runoff time series from observed
time series of neighboring catchments without recourse to
rainfall data. This would be of particular interest in those
countries where a rather dense stream gauge network
exists.
[3] An obvious choice for estimating runoff time series

directly from observed runoff of neighboring catchments are
geostatistical methods. These methods assume that the
estimates at locations without observations can be found
as weighted averages of the neighboring observations, and
consist of finding suitable weights from the spatial correla-
tions. Although geostatistical methods such as kriging are
best linear unbiased estimators (BLUE) [Journel and
Huijbregts, 1978, p. 304] they have not been used much
in catchment hydrology. This is because geostatistical
methods have evolved in the mining industry where a
typical objective is to estimate the expected ore grade of a
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cuboid block from point samples. Similar methods have
been developed in meteorology [Gandin, 1963] where a
typical objective is to estimate meteorological variables on a
square grid. The geostatistical estimation procedures make
use of the variogram, which is the spatial correlation of pairs
of points of the variable of interest plotted against their
Euclidian distance. The problem in catchment hydrology is
quite different in that, unlike mining blocks, catchments
are organized into subcatchments and the organization is
defined by the stream network. Upstream and downstream
catchments would have to be treated differently from
neighboring catchments that do not share a subcatchment.
The Euclidian distance is hence not the natural way of
measuring the spatial distance of catchments. Rather a
topology needs to be used that is based on the stream
network.
[4] Gottschalk [1993] was probably the first to develop a

method for calculating covariance along a stream network.
This method was extended by Sauquet et al. [2000] to map
annual runoff along the stream network using water balance
constraints in the estimation procedure and by Gottschalk et
al. [2006] to map the coefficient of variation of runoff along
the stream network. Skøien et al. [2006] extended their
method and estimated the 100 year floods at ungauged
locations as well as their uncertainty. Their method is based
on the concept of Woods and Sivapalan [1999] that assumes
that local runoff generation or rainfall excess can be defined
at each point in space and can be integrated over a
catchment to form catchment runoff. Skøien et al. [2006]
termed their method topological kriging or top kriging as it
exploits the topology of nested catchments in addition to the
spatial correlation of runoff. This paper is concerned with
estimating time series of runoff for ungauged locations
rather than with estimating a single quantity as was the
case with Sauquet et al. [2000] and Skøien et al. [2006]. It is
hence necessary to extend the spatial estimation procedure
of the earlier work to a space-time estimation procedure,
taking into account both spatial and temporal correlations of
runoff.
[5] Spatiotemporal geostatistical models have been used

in a number of disciplines [e.g., Snepvangers et al., 2003;
Jost et al., 2005]. In a review of spatiotemporal methods,
Kyriakidis and Journel [1999] note that there are three
options of representing the random variable-full space-time
models, simplified representations as vectors of temporally
correlated spatial random fields, and simplified representa-
tions as vectors of spatially correlated time series. The latter
reduces to a spatial estimation problem and is of interest for
variables with observations that are rich in time but poor in
space as is the case of runoff [Rouhani and Wackernagel,
1990]. Full spatiotemporal kriging is more complicated than
the two simplifications as the kriging system needs to be
solved simultaneously for both spatial and temporal kriging
weights [Kyriakidis and Journel, 1999]. As still another
alternative, spatiotemporal cokriging has been suggested
[Rouhani and Wackernagel, 1990], where information from
different time steps are treated as covariates. Spatiotemporal
cokriging includes more unbiasedness conditions, while
spatiotemporal kriging is strictly only valid when the mean
does not change with time [Bogaert, 1996].
[6] The objective of this paper is to propose a method of

spatiotemporal top kriging that is able to estimate runoff

time series at ungauged locations. The paper goes beyond
the work of Sauquet et al. [2000] and Skøien et al. [2006]
by accounting for space-time correlations rather than spatial
correlations and by including routing effects. The new
method is tested by cross validation to assess its accuracy
for the case of ungauged locations on the basis of an Austria
data set. The characteristics of the method in terms of
representing the dynamics of the hydrograph are examined
and its predictive power is compared to that of traditional
regionalization on the basis of deterministic rainfall-runoff
models.

2. Data

[7] The data used in this paper stem from a comprehensive
hydrographic data set of Austria. Austria has a varied climate
with mean annual precipitation ranging from 500 mm in the
eastern lowland region up to about 3000 mm in the western
alpine region. Runoff depths range from less than 50 mm
per year in the eastern part of the country to about 2000 mm
per year in the Alps. Potential evapotranspiration is on
the order of 600–900 mm per year. Austria has a dense
stream gauge network. Hourly runoff data over the period
1 August 1990 to 31 July 2000 are used in this paper. The
raw runoff data were screened to exclude catchments with
significant anthropogenic effects, karst and strong lake
effects. The remaining data set consisted of 376 stream
gauges with catchment areas ranging from 10 to 10,000 km2

(Figure 1).
[8] To analyze the dynamic characteristics of the estima-

tion method, the Innviertel region in northwestern Austria is
examined in more detail (Figure 2). The region covers an
area of approximately 1500 km2 and contains 19 stream
gauges. Mean annual runoff is rather uniform in the region,
ranging from 350 to 510 mm/year. However, there are
differences in the runoff dynamics (Table 1). This is because
of a rather complex hydrogeology consisting of a mixture of
moraine, clay and marl with local gravel fillings of the
valleys [Schubert et al., 2003]. The temporal variance of
runoff in the most dynamic catchment (Osternach) is more
than ten times that of the slowest responding catchment
(Weghof). The latter contains significant gravel deposits in
the valleys while the former does not.

3. Method

3.1. Concepts of Top Kriging

[9] There are two main groups of variables that control
streamflow (Figure 3). The first group consists of variables
that are continuous in space, which are related to local
runoff generation. These variables include rainfall, evapo-
transpiration and soil characteristics. In this context, local
runoff generation is conceptualized as a point process; that
is, locally generated runoff is assumed to exist at any point
in the landscape. This concept is discussed by Woods and
Sivapalan [1999]. In a similar way, other streamflow-related
variables can be conceptualized as continuous point pro-
cesses on the local scale. For characterizing these variables,
Euclidian distances are appropriate. The spatial statistical
characteristics of the point variables can be represented by
the variogram [Skøien et al., 2003].
[10] The second group of variables is related to routing in

the stream network. These variables are affected by the
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catchment organization of nested catchments where runoff
accumulates along the stream network. Variables of this
type include stream flow, streamflow statistics, concentra-
tions, turbidity and stream temperature. These variables are
only defined for points on the stream network. Correlations
between observations cannot be represented by Euclidian
distances, as in ordinary kriging. Rather they need to be
represented by methods that reflect the tree structure of the
stream network.
[11] The method top kriging, presented by Skøien et al.

[2006], combines these two groups of variables in a
geostatistical framework. The continuous process in space
defined for point variables is represented by a variogram.
The channel network structure and the similarity between
upstream and downstream neighbors are represented by
the catchment area that drains to a particular location on
the stream network. The catchment areas are defined by
their boundaries in space. Extensions to the top kriging
method for instantaneous runoff measurements are given
below.

3.2. Spatiotemporal Estimation of Time Series

[12] We assume that specific runoff q(xi, tw) at location xi
on the stream network and time tw can be represented as a
spatiotemporal random field that is related to runoff Q by

q xi; twð Þ ¼ Q xi; twð Þ=Ai ð1Þ

where Ai is the catchment area. Further arguments for this
assumption is given in section 3.3. In this paper we propose
three variants of top kriging which we term, for simplicity in
terminology, spatial kriging, spatiotemporal kriging and
spatiotemporal cokriging.
3.2.1. Spatial Kriging
[13] In the first variant we note that runoff time series

represent spatiotemporal runoff with a much higher res-
olution in time than in space. As a simplification we

hence consider runoff to consist of a set of spatially
correlated time series [Kyriakidis and Journel, 1999]. For
each time step tw, specific runoff q̂(xi, tw) of an ungauged
target catchment defined by location xi is estimated from
observed specific runoff q(xj, ta) at the same point in time
ta = tw of neighboring gauged catchments located at xj as

q̂ xi; twð Þ ¼
Xn
j¼1

ljq xj; ta
� �

ð2Þ

where lj is the weight given to the runoff from each
gauged catchment and n is the total number of stream
gauges used. This means that each time step is treated

Figure 1. Stream gauges (circles) in Austria used in this paper. The square represents the Innviertel
region.

Figure 2. Innviertel region with stream gauges (triangles).
The triangles are scaled according to catchment area. The
catchments are listed in Table 1.
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independently in the estimation procedure. The weights lj
are found by solving the kriging system:

Xn
k¼1

lkgjk � ljs2
j þ m ¼ gij j ¼ 1; . . . ; n

Xn
j¼1

lj ¼ 1 ð3Þ

where the gamma values gij and gik are the expected
semivariances (or variogram values) between the target
catchment i and the neighbors j used for estimation, and
between two neighbors j and k, respectively. The gamma
values are obtained by regularizing a theoretical point
variogram (see section 3.3). The term sj

2 represents the
local uncertainty of runoff which may be due to measure-
ment error and small-scale variability. The use of local
uncertainty in the kriging equations is termed kriging with
uncertain data (KUD) [de Marsily, 1986, p. 300; Merz and
Blöschl, 2005]. Finally, m is the Lagrange parameter. We
limited the number of neighbors n to five to minimize
potential numerical problems with the regularization pro-
cedure. The limitation of the number of neighbors also
implies a local kriging approach, which reduces the effect
of heterogeneous observations to a local region. Also, in
some cases the kriging weights were adjusted as described
in Appendix A before they were used in equation (2).
[14] It is assumed that the same variogram is applicable

to all time steps and that the same stream gauges j can be
used as neighbors for all time steps. The kriging equation
has hence only to be solved once for each target
catchment i, and the same weights are used for all time
steps. As noted above, only runoff data for the time step
of interest are used in the estimation.

3.2.2. Spatiotemporal Kriging
[15] Spatiotemporal kriging on the other hand does take into

account information from different time steps [Kyriakidis and
Journel, 1999]:

q̂ xi; twð Þ ¼
Xn
j¼1

Xp
a¼1

ljaq xj; ta
� �

ð4Þ

where p is the number of time steps used for the estimation.
Extending the kriging system of equation (3) gives

Xn
k¼1

Xp
b¼1

ljbgjkab � ljas2
j þ m ¼ gijaw

for j ¼ 1; � � � ; n a ¼ 1; � � � ; pXn
j¼1

Xp
b¼1

ljb ¼ 1 ð5Þ

Table 1. Stream Gauges in the Innviertel Region With Catchment Area, Mean Annual Runoff, and Temporal

Runoff Variance

Stream Gauge Stream
Area,
km2

Average Runoff,
� 10�2m3 s�1km�2

Temporal Variance,
� 10�4m6 s�2km�4

Ried Rieder Bach 69.3 1.53 7.79
Danner Antiesen 55.6 1.45 4.14
Osternach Osternach 68.6 1.42 10.97
Pram Pram 14.2 1.60 9.36
Riedau Pram 59.5 1.44 7.52
Winertsham Pram 128.1 1.33 6.48
Taufkirchen Pram 303.3 1.38 4.65
Angsüß Pfudabach 64.1 1.59 3.80
Alfersham Pfudabach 81.3 1.50 2.38
Lohstampf Messenbach 39.3 1.31 7.04
Still Stillbach 19.4 1.33 6.32
Strötting Trattnach 52.0 1.44 3.06
Bad Schallerbach Trattnach 183.8 1.23 3.19
Pichl Innbach 66.2 1.23 1.32
Weghof Innbach 116.5 1.09 0.79
Fraham Innbach 361.8 1.14 1.62
Neumarkt Dürre Aschach 29.7 1.22 6.78
Niederspaching Aschach 104.0 1.30 7.17
Kropfmühle Aschach 312.5 1.37 4.98
Average 112.1 1.36 5.23
Median 68.6 1.37 4.98

Figure 3. Atmospheric forcing and soil and vegetation
contributions to the runoff generation process locally, which
can be represented by point variograms. The channel
network organizes runoff into streams, which can be
represented by the catchment boundaries.
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which consists of n � p + 1 linear equations. gjkab and gijaw
are, again, found by regularizing a theoretical point
variogram (see section 3.3). Again, for numerical robust-
ness, n = 5. We also limited the number of time steps p and
considered two cases. In the first case, we used five time
steps (ta � tw = �5, �2, 0, 2, 5 hours) and in the second
case we used nine time steps (ta� tw =�20,�10,�5,�2, 0,
2, 5, 10, 20 hours).
3.2.3. Spatiotemporal Cokriging
[16] An alternative method, termed spatiotemporal cok-

riging, uses measurements from other time steps as cova-
riates. Equation (4) is used here as well but the difference
from spatiotemporal kriging is that the sum of weights for
each time step is set equal to zero, except for the weights of
the time step of interest, tw, which sum up to one. Cokriging
hence involves more constraints than spatiotemporal krig-
ing. The kriging weights lja can be found by solving the
following linear system [Rouhani and Wackernagel,
1990]:

Xn
k¼1

Xp
b¼1

ljbgjkab � ljas2
j þ mj ¼ gijaw

for j ¼ 1; � � � ; n a ¼ 1; � � � ; pXn
j¼1

ljw ¼ 1

Xn
j¼1

ljb ¼ 0 8b 6¼ w ð6Þ

where gjkab is the cross variogram between q(xj, ta) and
q(xk, tb). There exist different definitions of the cross
variogram in the literature, and we adopt the definition of
Clark et al. [1987], which has been recommended by
Cressie [1991]. With information from different time steps
as the covariates, the cross variogram is defined as

gjkab ¼ 1

2
var q xj; ta

� �
� q xk ; tb

� �� �
ð7Þ

which is equal to a spatiotemporal variogram [Skøien and
Blöschl, 2006]. As for spatiotemporal kriging, we used n = 5,
and p = 5 and 9.

3.3. Catchments as Space-Time Filters

[17] The observed runoff at the catchment outlet is not
only a result of the spatial aggregation described by Skøien
et al. [2006] and in 3.1 but also a result of a complicated
nonlinear averaging process within the catchment over a
period of time. Skøien and Blöschl [2006] described this
averaging process as a space-time filter that operates on
local runoff. We adopt this concept in this paper to find the
gamma values to be used in equations (3), (5) and (6).
[18] Following Woods and Sivapalan [1999] and Skøien

and Blöschl [2006] we conceptualize the locally generated
runoff or rainfall excess R(r, t) as a continuous point
process in space r and time t. To account for routing on
the hillslopes and in the channels within the catchment, a

weighting function u(r, t) is introduced, which, assuming
linear convolution, allows to combine locally generated
runoff into runoff at the catchment outlet, Qi:

Qi tð Þ ¼
Z
Ai

Z t

t�Ti

R r; tð Þ � u r; t � tð Þdtdr ð8Þ

where Ai is the catchment area and Ti is the time interval that
influences the output. The weighting function u(r, t) can,
for a given point r in space, be seen as equivalent to a unit
hydrograph for the runoff generated at this location. As an
approximation, we assume that, for a given catchment, these
weighting functions are constant within the integration
limits both in space and time, i.e., u(r, t) = ui = 1/T. For
a weighting function constant in space and time, equation (8)
becomes a linear filter or a convolution integral. This can be
seen as the equivalent of using the instantaneous unit
hydrograph in a lumped model. It is important to notice,
however, that this conceptualization is done for finding the
statistical properties of the catchments only, not for estima-
tion in the time domain. In time, the weighting function is
the equivalent of a set of unit hydrographs that are constant
between 0 and Ti and zero for other time steps. In space, the
weighting function is constant within the catchment area
and zero elsewhere. The specific runoff at the catchment
outlet then becomes

qi tð Þ ¼
1

AiTi

Z
Ai

Z t

t�Ti

R r; tð Þdtdr ð9Þ

[19] In geostatistical terminology, Ai and Ti are the spatial
and temporal supports, respectively. Again following Skøien
and Blöschl [2006], we assume that the temporal support is
related to catchment area by

Ti ¼ m � Ak
i ð10Þ

where m and k are parameters to be estimated from the data.
For k > 0 the temporal support (or time base of the unit
hydrograph) increases with catchment area.
[20] In a geostatistical framework, the linear aggregation

of equation (9) is performed on the second moments. We
assume that the local runoff generation process, as the
result of atmospheric forcing and filtering on the ground
by soil and vegetation, can be described as a spatiotemporal
random process. Because of elevation dependencies of
precipitation, we cannot assume homogeneity of the runoff
generation process, but we assume that the intrinsic hypoth-
esis is applicable for the runoff generation process. Hence a
point variogram of runoff represents the second moment of
locally generated runoff, or local instantaneous runoff. From
this point variogram with zero support in space and zero
support in time, we can use equation (9) to estimate vario-
grams that are valid for finite support areas and finite
support times. This procedure is usually referred to as
regularization [Journel and Huijbregts, 1978]. Following
Cressie [1991, p. 66], and Skøien and Blöschl [2006], we
find gamma value gijab between two catchments i and j, and
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two different time steps, ta and tb by regularizing a
spatiotemporal point variogram gst:

gijab ¼ 1

AiAjTiTj

Z
Ai

Z
Aj

ZTi
0

ZTj
0

gst r1 � r2j j; t1 þ ht � t2j jð Þ

� dt1dt2dr1dr2

� 0:5 *
1

A2
i T

2
i

Z
Ai

Z
Ai

ZTi
0

ZTi
0

gst r1 � r2j j; t1 � t2j jð Þ

2
64

� dt1dt2dr1dr2

þ 1

A2
j T

2
j

Z
Aj

Z
Aj

ZTj
0

ZTj
0

gst

� r1 � r2j j; t1 � t2j jð Þdt1dt2dr1dr2



ð11Þ

where ht = jta � tbj, r1 and r2 are spatial integration vectors
within the two catchments, and t1 and t2 are the temporal
integration variables. For the integration in equation (11)
over Ai and Aj the catchment boundaries from the digital
database were used for each catchment. For spatial kriging,
ht = 0 in equation (11).
[21] On the basis of a comparison of different variogram

models of Skøien and Blöschl [2006] we chose their
exponential model, because the number of parameters is
limited and some physical interpretation of the parameters is
possible:

gst hs; htð Þ ¼ a 1� exp � cht þ hsð Þ=dð Þb
� �� �

þ ash
bs
s þ ath

bt
t

ð12Þ

[22] The first term of this variogram represents the
stationary part. a gives the variance of the (stationary)
process, c relates space and time, d is the combined
correlation length, and b gives the slope of the variogram.
The second and the third terms give the nonstationary parts
of the variogram in space and time, respectively.

3.4. Simple Routing Model

[23] The space-time filter accounts for the effects of
routing within the catchment on the spatial and temporal
variance. However, it does not explicitly represent time lags
between catchments, as a result of the water flowing from
upstream to downstream catchment. catchments as a result
of the water flowing from an upstream to a downstream
catchment. We have simplified the correlation structure by
the use of temporally symmetric variograms, i.e., assuming
that past and future time steps will have the same correlation
to the target time step. To account for time lags as a result of
in-stream routing in the estimation procedure we use a
routing model that consists of applying a time lag that is
constant with time. To estimate runoff at time step tw of
catchment i, we use q(zj, t*a) at time step t*a = ta + t0a instead
of ta in equations (2) and (4). Depending on the relative
position on the stream network of catchments i and j, the
time lag t0a can be positive or negative.
[24] The lag time was defined differently for nested

catchments and nonnested catchments. For nested catch-

ments, we inferred traveltimes from cross variograms for
catchment pairs estimated from the runoff data (equation (17)
below). The minimum variance of the cross variograms
typically occurred for a temporal separation larger than 0.
Dividing the spatial distance between the stream gauges by
that temporal separation gave a flow velocity for each pair
of catchments. For the Innviertel region we found an
average velocity of v = 0.67 m/s:

t0a ¼ dij=v if i and j are nested ð13Þ

where dij is the distance between the two stream gauges. dij
is positive when j is a downstream neighbor and negative
when j is an upstream neighbor of i. If dij/v does not
correspond to an integer time step, a weighted average of q
of the two time steps is used.
[25] A slightly different assumption was made about the

time lags for nonnested catchments. Typically, the charac-
teristic velocity of precipitation is much larger than that of
flow routing processes in catchments [Skøien et al., 2003].
This means that the difference in the timing of a flood event
of two catchments of different size that are close to each
other will be mainly due to routing differences as the time
difference due to the convective motion of the rainfall
system will be much smaller. As an approximation, we
hence relate the time lag to the size of the catchments. For a
single catchment i the time lag TLi of runoff relative to
rainfall has been estimated as

TLi ¼ x � Ay
i ð14Þ

following Melone et al. [2002]. For the Innviertel region
x = 1.5 and y = 0.35 [Merz and Blöschl, 2003]. The time lag
of two nonnested catchments is then assumed to be the
difference of the individual time lags:

t0a ¼ TLj � TLi if i and j are nonnested ð15Þ

[26] To analyze the effect of the routing model on runoff
estimation we examined an alternative variant where we set
all time lags to zero:

t0a ¼ 0 ð16Þ

[27] The variant with a routing model is termed ‘‘routing
all’’ below, whereas the variant with all time lags set equal
to zero is termed ‘‘no routing.’’

3.5. Hydrologic Interpretation of Top Kriging

[28] There are two main groups of processes that control
runoff. The first group consists of variables that are contin-
uous in space and include rainfall, evapotranspiration and
soil characteristics. In top kriging their variability is repre-
sented by the point variogram that is based on Euclidian
distances. The second group of processes is related to
routing on the hillslope and in the stream network. Their
effect cannot be represented by Euclidian distances. Top
kriging represents these processes in three ways.
[29] 1. The channel network structure and the similarity

between upstream and downstream neighbors are repre-
sented by the catchment area that drains to a particular
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location on the stream network. The catchment areas are
defined by their boundaries in space.
[30] 2. Advective runoff routing (Figure 4) is represented

by a simple routing model (equations (13)–(16)). This
model takes into account the traveltime between upstream
and downstream neighbors and involves direction in both
space and time. The routing is incorporated directly in the
estimation procedure (equations (2) and (4)) by a time lag in
estimating runoff as a weighted average of the runoff of
neighboring catchments.
[31] 3. Dispersive routing is represented by the space-

time filter (equation (11)). Dispersive effects include hill-
slope routing and what Rinaldo et al. [1991] refer to as
hydrodynamic and geomorphologic dispersion (Figure 4).
Hydrodynamic dispersion is caused by different traveltimes
in the stream within individual reaches and is related to the
pressure term in the St. Venant equation. Geomorphologic
dispersion is related to the different lengths and junctions of
the stream network and results in a superposition of runoff
from the tributaries. The representation of dispersion in top
kriging has an analogy in the unit hydrograph concept.
Application of the unit hydrograph concept involves two
steps-estimation of catchment rainfall (e.g., by areal
reduction factors [Sivapalan and Blöschl, 1998]) and
convolution of catchment rainfall with the unit hydrograph.
The former step is a spatial filter, the latter step a temporal
filter. Both are represented in the space-time filter of top
kriging that is used to estimate the gamma values and hence
the kriging weights.

3.6. Estimation of the Spatiotemporal Point Variogram

[32] For applying top kriging, a spatiotemporal point
variogram is needed in the region of interest. We estimated
the point variogram from the runoff data in the Innviertel
region in the following way. In a first step, we estimated
temporal cross variograms ĝij(ht) for all pairs of catchments
i and j within the Innviertel region, which resulted in a
family of temporal variograms, one for each pair of
catchments:

ĝij htð Þ ¼ 1

2n htð Þ
Xn htð Þ

i¼1

q xi; ti þ htð Þ � q xj; ti
� �� �2 ð17Þ

where q(xi, tt) is runoff at time tt of stream gauge i with
spatial location xi, ht is the temporal lag, and n(ht) is the
number of pairs of runoff measurements in time for the
temporal separation bin associated with ht.
[33] In a second step, we estimated theoretical gamma

values gij (ht) for pairs of catchments from a theoretical
point variogram gst using the same regularization method as
in equation (11). The parameters of the point variogram
equation (12) (a, b, c, d, as, at, bs, bt) are initially unknown
as are the parameters of equation (10) (m, k). To obtain these
parameters, we fitted the theoretical gamma values gij(ht) to
the sample variograms ĝij(ht) by minimizing the objective
function F using the shuffle complex evolution method
[Duan et al., 1992]:

F ¼ 2

N N þ 1ð ÞM
XN
i¼1

XN
j¼i

XM
m¼1

�min
ĝij htð Þ
gij htð Þ � 1

" #2

;
gij htð Þ
ĝij htð Þ � 1

" #2
8<
:

9=
; ð18Þ

Figure 5. Flow scheme of the estimation process
presented in this paper.

Figure 4. Schematic of runoff routing processes represented by top kriging. Hydrographs for locations
A, B, and C are shown.
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[34] N is the total number of catchments andM is the total
number of temporal bins. Equation (18) is a modified
version of the weighted least squares (WLS) method. The
WLS method as introduced by Cressie [1985] only contains
the first term of min{. . .} in equation (18). This gives
asymmetrical errors, as errors of overestimation are limited
to 1, while errors of underestimation can be very large and
can mask the errors from other catchment pairs and
temporal lags. The modified version used here limits all
errors to the range from 0 to 1. Equation (18) is normalized
to also give in the range from 0 to 1.
[35] Initial tests indicated that the type of routing method

did not change the parameter values of the point variogram
much. The parameters for all methods are hence estimated
from cross variograms inferred without routing.
[36] As guidance for the reader, Figure 5 presents a flow

scheme of the estimation process.

3.7. Evaluation of Methods

[37] To examine the predictive performance of the pro-
posed method for ungauged catchments we performed a
cross-validation analysis. We withheld one runoff record
from the data set, estimated the runoff time series for that
catchment from measurements of the neighboring stream
gauges and finally compared the estimates with the runoff
data of that catchment. As performance statistics we
calculated the model efficiency (MEi) according to Nash
and Sutcliffe [1970] for each target catchment i:

MEi ¼ 1�

PW
w¼1

qi wð Þ � q̂i wð Þð Þ2

PW
w¼1

qi wð Þ � qi wð Þ
� �2

ð19Þ

where W is the number of time steps estimated (W = 87672
for the 10 years analyzed in this paper) and qiðwÞ is the
mean of the runoff data for the same time period. The
efficiency is less equal unity, where ME = 1 indicates
perfect estimation and ME = 0 means that the estimation
method performs no better than the mean of the runoff data.
In addition to the Nash-Sutcliffe efficiency, we examined
the estimated hydrographs visually to understand the
dynamics of the estimated runoff time series.
[38] A total of 10 estimation variants were tested; two

routing models (no routing and routing model for all
catchments), five methods of top kriging (spatial kriging,

and spatiotemporal kriging and spatiotemporal cokriging
with five and nine time steps) and combinations thereof.
[39] The proposed method is an alternative to determin-

istic runoff models that use regionalized model parameters.
To illustrate the relative merits of the two genres of methods
we compared the top kriging estimates with simulations of a
deterministic rainfall-runoff model taken from the study of
Parajka et al. [2005]. The runoff model is a conceptual soil
moisture accounting scheme that uses precipitation and air
temperature data as inputs and runs on a daily time step. It
consists of a snow routine, a soil moisture routine and a
flow routing routine and involves 14 model parameters.
Three of the parameters were preset in their study, leaving
11 parameters to be found by model calibration. Parajka et
al. [2005] first calibrated the model to 320 catchments in
Austria. They then regionalized the calibrated model
parameters by different methods and examined the model
performance for the ungauged catchment case by cross
validation. We contrast their results (both locally calibrated
and regionalized) with the results from top kriging. As their
analysis is based on a daily time step, we averaged the
hourly top kriging estimates to daily values and compared
the daily runoff time series. A first comparison focuses on
the Innviertel region and involves 17 stream gauges that are
common to both studies. To provide context, a second
comparison examines 208 stream gauges in Austria that are
common to both studies. We used the results from their
calibration period (1987–1997) which has 74% overlap
with the period used in this study (1990–2000).

4. Results

4.1. Estimation of Point Variogram

[40] The estimated parameters of the point variogram are
shown in Table 2. The parameters are similar to those
obtained by Skøien and Blöschl [2006] for 488 catchments
in Austria although differences exist. For example, the spatial
correlation length of d = 2.3 km found here is somewhat
larger than that of Skøien and Blöschl [2006] (1.0 km) which

Figure 6. Comparison of sample gamma values (equation (17))
with gamma values obtained by regularizing the point
variogram (equation (12) and Table 2) in terms of the mean
(thick solid line) and standard deviation (error bars). Dashed
line shows 1:1 line. Units are m6 s�2 km�4 � 10�4.

Table 2. Parameters of the Point Variogram (Equation (12)) and

Equation (10) Estimated for the Innviertel Region

Parameter Value Units

a 0.00139 m6 s�2 km4

b 0.445
c 0.300 km hr�1

d 2.31 km
as 0.00003 m6 s�2 km4

at 0.00009 m6 s�2 km4

bs 0.0247 -
bt 0.186 -
m 2.90 hours
k 0.167 -
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may be due to the somewhat more homogeneous runoff in
the Innviertel region as compared to the rest of Austria.
However, it must be noted that catchments are correlated
also on distances longer than the here indicated 2.3 km, as a
result of the regularization of the point variogram. The
exponent k relating temporal and spatial supports in
(equation (10)) is smaller (k = 0.17 instead of 0.4) and
the scale m is similar (2.9 as compared to 1.9) indicating that
the catchments in the Innviertel respond somewhat faster
than the average of the catchments in Austria. For example,
the temporal support of a 100 km2 catchment found in this
study is Ti = 6 hours, as compared to 12 hours found by
Skøien and Blöschl [2006]. For consistency across the two
scales (Innviertel and Austria) we however used the
parameters of Table 2 for all analyses in this paper.
[41] Figure 6 shows a comparison of all the sample

gamma values for different catchment pairs and different
temporal lags found from equation (17) and the gamma
values obtained by regularizing the point variogram
(equation (12), Table 2). The sample gamma values have
been grouped into bins, and the mean and standard devia-
tion of the corresponding gamma values obtained from
regularizing the point variogram are shown as a line and
the error bars, respectively. The regularized gamma values
exhibit some scatter as indicated by the error bars, but they
are very close to unbiased. This suggests that the point
variogram parameters of Table 2 describe a realistic repre-
sentation of the space time variability of runoff.
[42] As estimates of the local uncertainty in equations (3),

(5) and (6) were unavailable in this study, we assumed a
value of sj

2 = 0.000005 m6 s�2 km�4 on the basis of test

simulations. This value is about 1% of the average temporal
variance of runoff in the Innviertel region (Table 1).

4.2. Estimation Performance

[43] Table 3 shows model efficiencies (ME) of the hourly
runoff time series estimated by top kriging in the Innviertel
region. The largest model efficiency (ME) for each catch-
ment is shown in bold. The largest ME for each catchment
for the routing model (no routing or routing all) that did not
have the highest ME is shown in italics.
[44] Considering spatial kriging first, ME ranges between

0.73–0.96 with an average of 0.84 for no routing and 0.86
for the routing all model. The routing all model gives the
highest ME for 13 out of the 19 catchments and the no
routing model gives the highest ME for three catchments
indicating that a routing model does improve the runoff
estimates over the variant where no routing is used. When
we include the results from spatiotemporal kriging and
spatiotemporal cokriging, the advantage of the routing
model is similar, with the routing all model giving the
highest ME for 15 catchments, whereas the variant without
routing performs best only for one catchment.
[45] A comparison of the efficiency of spatial kriging

with that of spatiotemporal kriging and cokriging for the
routing all model indicates that spatial kriging outperforms or
is as good as the other variants of kriging for 12 catchments.
In the remaining seven catchments the efficiency of spatio-
temporal kriging or cokriging is in most cases only mar-
ginally higher than that of spatial kriging, whereas one or
more models of spatiotemporal kriging and cokriging per-
form considerably poorer than spatial kriging for almost all
catchments. The median and the average show a similar

Table 3. Model Efficiencies of Hourly Top Kriging Estimates of Runoff in the Innviertel Region for the Period 1 August 1990 to 31 July

2000a

Catchment

No
Routing Routing All Model

S STK1 STK2 STC1 STC2 S STK1 STK2 STC1 STC2

Ried 0.76 0.77 0.74 0.76 0.76 0.75 0.77 0.74 0.76 0.76
Danner 0.76 0.78 0.76 0.76 0.76 0.79 0.80 0.78 0.78 0.78
Osternach 0.82 0.79 0.70 0.81 0.81 0.82 0.79 0.70 0.82 0.82
Pram 0.80 0.74 0.67 0.76 0.76 0.80 0.75 0.67 0.77 0.77
Riedau 0.84 0.88 0.85 0.87 0.87 0.87 0.90 0.87 0.89 0.89
Winertsham 0.88 0.90 0.83 0.89 0.89 0.91 0.92 0.84 0.93 0.93
Taufkirchen 0.94 0.94 0.89 0.92 0.92 0.96 0.96 0.89 0.96 0.96
Angsüß 0.77 0.79 0.77 0.74 0.75 0.82 0.84 0.80 0.79 0.80
Alfersham 0.73 0.70 0.76 0.56 0.60 0.78 0.70 0.77 0.53 0.57
Lohstampf 0.84 0.83 0.73 0.86 0.85 0.88 0.83 0.73 0.86 0.86
Still 0.89 0.90 0.81 0.91 0.91 0.86 0.87 0.82 0.87 0.87
Strötting 0.84 0.83 0.76 0.82 0.81 0.87 0.82 0.77 0.83 0.83
Bad
Schallerbach

0.92 0.90 0.83 0.91 0.91 0.93 0.91 0.84 0.91 0.91

Pichl 0.80 0.70 0.59 0.66 0.62 0.82 0.72 0.58 0.67 0.63
Weghof 0.83 0.43 0.44 0.27 0.22 0.85 0.45 0.44 0.29 0.24
Fraham 0.89 0.84 0.85 0.81 0.81 0.92 0.90 0.86 0.90 0.89
Neumarkt 0.89 0.85 0.76 0.87 0.87 0.88 0.86 0.77 0.89 0.89
Niederspaching 0.92 0.83 0.75 0.86 0.87 0.92 0.86 0.75 0.89 0.89
Kropfmühle 0.90 0.88 0.83 0.88 0.88 0.91 0.88 0.83 0.87 0.86
Average 0.84 0.80 0.75 0.79 0.78 0.86 0.82 0.76 0.80 0.80
Median 0.84 0.83 0.76 0.82 0.81 0.87 0.84 0.77 0.86 0.86

aS refers to spatial kriging; STK1 and STK2 refer to spatiotemporal kriging with five and nine time steps, respectively; and STC1 and STC2 refer to
spatiotemporal cokriging with five and nine time steps, respectively. The largest model efficiency (ME) for each catchment is shown in bold, and the largest
ME for each catchment and the routing/no routing model is shown in italics.
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tendency for spatial kriging to outperform spatiotemporal
kriging and spatiotemporal cokriging.
[46] The best runoff estimates are obtained for those

catchments that have one or more close upstream neighbors.
The highest ME is found for Taufkirchen (ME around 0.96,
depending on the choice of routing model). Upstream
gauges cover 248 km2 of the 303 km2 of the catchment. It
is therefore not surprising that a weighted average of the
upstream neighbors gives an estimated hydrograph that is
similar to the observed hydrograph. The more of the
catchment area that is shared with neighboring catchments
the larger the efficiency. ME is around 0.9 for most of the
catchments with several upstream neighbors, or which are a
large part of a downstream catchment (e.g., Winertsham,
Kropfmühle, Fraham, Bad Schallerbach). The catchments
without such neighbors generally have ME on the order of
0.8 or lower (e.g., Ried, Osternach, Danner, Pram, Pichl).

4.3. Runoff Dynamics

[47] To analyze the ability of top kriging to reproduce the
runoff dynamics we examined a large number of event
hydrographs visually. A few examples are given below to
illustrate the main characteristics of top kriging. The illus-
tration begins with estimates of the spatial kriging method.
Taufkirchen is the catchment with the highest model effi-
ciency (ME) according to Table 3. One event is presented in
Figure 7a. Although there is a large variety in the runoff
from the neighboring catchments (bottom plot) and the
peaks occur at different times, top kriging with routing for
all catchments is able to estimate both the magnitude and
the timing of the peak with high accuracy (top plot).
[48] The bottom plot of Figure 7a gives the kriging

weights (first number) and the time lags (second number)

of the neighbors used. A positive time lag refers to a
downstream or larger catchment (use of future measure-
ments) while a negative number refers to an upstream or
smaller catchment (use of earlier measurements). Wine-
rtsham (128.1 km2) is the largest tributary (Figure 2), and
is associated with the largest weight of 0.43. Alfersham
(81.3 km2) is smaller and has a weight of 0.37, while its
upstream neighbor, Angsüb, is associated with a weight of

Figure 7b. Weights of neighboring catchments for
estimating runoff at Taufkirchen from Figure 7a.

Figure 7a. Observed and estimated hydrographs for (top) Taufkirchen (303 km2) and (bottom) the
neighbors for the period 17–18 March 1993. The first number after the neighbor name represents the
kriging weight of the neighbor, and the second number represents the lag of the routing model in hours.
Estimate is from spatial kriging, routing all model. Units of runoff are m3 s�1 km�2. Points illustrate
example in text.
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0.02. This very low weight is a result of the large correlation
between Alfersham and Angsüb. The sum of weights from
this tributary is then 0.39. The smallest tributary is
Lohstampf (39.3 km2) with a weight of 0.17. Riedau has
a weight of –0.001. Angsüb and Riedau are upstream
neighbors of Alfersham and Winertsham respectively, and
each pair of nested catchments can be regarded as a
clustered sample, reducing the weight for the upstream
neighbor in this case. Figure 7b illustrates the weights given
to the different neighboring catchments.
[49] The time lags are all negative for Taufkirchen. This

is because all catchments are upstream neighbors, and a
peak flow will reach these catchments before it reaches
Taufkirchen. The time lag is largest for Riedau, which is
furthest away (13.7 km), with 5.70 hours. The smallest time
lag is for Alfersham (2.9 km away) with 1.19 hours.
[50] To illustrate themethod, one target time step (23 hours)

has been marked by a cross in the top plot of Figure 7a. The
observation at this time step is 0.245 m3 s�1 km�2 but it is
assumed not to be known. Rather the runoff is to be
estimated from the neighboring catchments. The observa-
tions of the neighboring catchments (circles in Figure 7a)
that are used to obtain this estimate are shifted by a time lag
as represented by the routing model. The weighted average
of the observations (circles) then gives the final estimate for

Taufkirchen (0.271 m3 s�1 km�2), indicated by a cross in
Figure 7a. The calculation is illustrated in Table 4. For this
time step, top kriging slightly overestimates runoff.
[51] Although top kriging works best with several

upstream neighbors, the estimates are also satisfying for
the smaller catchments. Figure 8 shows the observed and
the estimated hydrographs of an event in August 1991 for
the 52 km2 Strötting catchment. This is a catchment without
upstream neighbors, but with two downstream neighbors,
Bad Schallerbach (184 km2) and Fraham (362 km2). As Bad
Schallerbach is the first downstream neighbor, it gets the
largest weight with 0.61. This is partly compensated by a
negative weight of �0.10 for Fraham which is the down-
stream neighbor of Bad Schallerbach, so that the total
weight of the downstream measurements is 0.51. These
catchments are clustered, and top kriging gives a negative
weight to the one least correlated with Strötting. The non-
nested neighboring catchment Pichl (66 km2) gets a weight
of 0.42, partly compensated by the weight of �0.15 of its
downstream neighbor, Weghof (117 km2). Danner (56 km2)
is slightly smaller than Pichl and gets a weight of 0.22.
[52] The most important stream gauge for the estimation

of runoff at Strötting is Bad Schallerbach. The peak of this
catchment is quite similar to the peak of Strötting, but
slightly delayed. The other catchments east and south of

Table 4. Example Estimation of Runoff at Taufkirchen (Time Step 23 Hours) From Runoff at the Neighboring Catchments as in Figure 7

Neighbor Weight Time Lag, hours Time, hours Observation, m3 s�1 km�2 Weighted Observation, m3 s�1 km�2

Winertsham 0.43 �1.88 21.12 0.31 0.133
Alfersham 0.37 �1.19 21.81 0.19 0.070
Angsüß 0.02 �2.64 20.36 0.26 0.005
Lohstampf 0.18 �1.84 21.16 0.35 0.063
Riedau 0.00 �5.70 17.30 0.28 0.000
Sum=Estimate 0.271

Figure 8. Observed and estimated hydrographs for (top) Strötting (52 km2) and (bottom) the neighbors
for the period 1–4 August 1991. The first number after the neighbor name represents the kriging weight
of the neighbor, and the second number represents the lag of the routing model in hours. Estimate is from
spatial kriging, routing all model. Units of runoff are m3 s�1 km�2.
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Strötting show considerably lower peaks, while the non-
nested Danner catchment has a peak more than twice of that
at Strötting. The weighted average gives a reasonably well-
estimated peak. The close match is also a result of the time
lags applied. A time lag of 5.64 hours was applied to Bad
Schallerbach, which is also apparent in Figure 8. As Pichl,

Weghof and Danner are not nested with Strötting, their time
lags have been estimated by equations (14)–(15). Although
the time lags are considerably smaller than those of Bad
Schallerbach and Weghof, Figure 8 does confirm that the
time lags are reasonable.

Figure 9. Observed and estimated hydrographs for (top) Ried (69 km2) and (bottom) the neighbors for
the period 29 October to 1 November 1998. The first number after the neighbor name represents the
kriging weight of the neighbor, and the second number represents the lag of the routing model in hours.
Estimate is from spatial kriging, routing all model. Units of runoff are m3 s�1 km�2.

Figure 10. Observed and estimated hydrographs for (top) Fraham (362 km2) and (bottom) the
neighbors for the period 23–25 October 1993. The first number after the neighbor name represents the
kriging weight of the neighbor, and the second number represents the lag of the routing model in hours.
Estimate is from spatial kriging, routing all model. Units of runoff are m3 s�1 km�2.

12 of 21
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[53] There are also some events where the top kriging
estimates differ significantly from the observed hydro-
graphs. This typically happens for local events that do not
appear in the hydrographs of the neighboring catchments.
One example for Ried (69 km2) is presented in Figure 9.
This catchment has neither nested upstream nor downstream
neighbors. In the three day period shown two events
occurred. The first event (shown at time 18 hours) was
properly estimated. The second event (shown at time 48
hours) was not. This is because it was apparently the result
of a local precipitation event. None of the surrounding
catchments experienced more than a small change in runoff
for this period. It is interesting to note that the local event
was also missed by the rain gauges in the region, so rainfall-
runoff models could not have simulated this event either.
[54] The merits of the routing model, in many cases, are

obvious in the hydrographs. The top plot of Figure 10
shows the estimated hydrograph for Fraham (362 km2) with
and without the use of a routing model. The time lags
presented in the bottom plot show that all the neighbors have
their peaks earlier than Fraham. The largest weights are given
to the two large tributaries, Bad Schallerbach (184 km2) with
0.49 and Weghof (117 km2) with 0.51. The larger weight for
Weghof is partly compensated by the negative weight of
�0.10 of Pichl, giving 0.41 as the total weight for this
tributary. The upstream neighbor of Bad Schallerbach,
Strötting (52 km2), has a negative weight of �0.02. The
nonnested neighbor of equal size, Kropfmühle (313 km2),
has a weight of 0.12. Fraham is a large catchment, so the
time lags are considerably larger than those of the earlier
examples. Strötting is 23 km from Fraham and the time lag
is 9.6 hours. The other nested stream gauges are closer, with
time lags ranging from 3 to 6 hours.
[55] The model efficiencies presented in Table 3 indicate

that spatiotemporal kriging and spatiotemporal cokriging

usually do not perform as well as spatial kriging. However,
there are events where the spatiotemporal approach per-
forms better than spatial kriging. One example is an event at
Taufkirchen in November 1990, presented in Figure 11. The
top plot shows that spatial kriging and spatiotemporal
cokriging are quite similar and overestimate the peak. The
hydrograph estimated by spatiotemporal kriging on the
other hand is closer to the observed hydrograph, although
it is slightly too flat at the beginning and the end of the
event. There are two reasons for this effect. First, spatio-
temporal kriging, in this case, involves weights for nine
time steps (ta � tw ranging from �20 to 20 hours) as
opposed to spatial kriging where all weights are associated
with the same time step (ta = tw). As the weights are
distributed over more time steps, the estimation method
more strongly smoothes peaks observed at the neighboring
catchments. Second, the weights were rescaled (see
appendix A). This tended to reduce the weights of the
closest neighbors and increase the weights of the more
remote neighbors. Summed over all time steps, the weights
associated with the neighbors of Taufkirchen ranged from
0.15 to 0.26 instead of 0.00 to 0.43 for spatial kriging.
These two effects consistently gave smoother hydrographs
than spatial kriging. In many cases they were smoother than
the observed hydrographs.

4.4. Temporal Average and Variance of the Time Series

[56] When estimating runoff time series of ungauged
catchments it is important to represent the statistical
moments of the temporal variability well. The left plot of
Figure 12 presents the average runoff estimated by spatial
kriging plotted against the observed averages for the
Innviertel catchments. There is a good correspondence with
a slight tendency for the small averages to be overestimated
and the larger averages to be underestimated. There is no

Figure 11. Observed and estimated hydrographs for (top) Taufkirchen (303 km2) and (bottom) the
neighbors for the period 18–23 November 1990. The first number after the neighbor name represents the
kriging weight of the neighbor, and the second number represents the lag of the routing model in hours.
Estimate is from spatial kriging, spatiotemporal kriging (nine time steps), and spatiotemporal cokriging
(nine time steps). Units of runoff are m3 s�1 km�2.
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obvious relationship between this tendency and catchment
area.
[57] The right plot of Figure 12 presents an analogous

plot for the temporal variance of runoff. Overall, there is a
relatively good correspondence between the estimated and
observed variances although the largest variances are
underestimated. This is particularly the case for the Ried,
Osternach and Pram catchments. These are headwaters, and
Osternach and Ried do not have nested neighbors at all.
Danner is located between Osternach and Ried but has a
considerably lower temporal variance which is, conversely,
overestimated. Clearly, top kriging has difficulties with
representing local hydrological effects well that are not
reflected in the runoff data of neighboring catchments.
When examining a hydrogeological map [Schubert et al.,
2003] there are apparent hydrological reasons for the
differences in the temporal variances of these catchments.
Danner has a large number of artesian springs while
Osternach has none. The subsurface contribution to runoff
in Danner is hence larger than that in Osternach. Some of
the Danner catchment area is forested with the remaining
land being agricultural while all of the Osternach catchment
is agricultural which is likely another factor contributing to
the differences in the dynamics. Out of the catchments in the
Innviertel region, the Weghof catchment has the smallest
temporal variance, which can be estimated well even though
the low variance is due to local gravel deposits in the
valleys of the catchment.
[58] The underestimation of the large temporal variances

is more pronounced for spatiotemporal kriging and spatio-
temporal cokriging than for spatial kriging as illustrated in
Figure 13. In 14 out the 19 catchments, spatiotemporal
kriging and cokriging underestimate the variance, which is
clearly not a desirable property. Figure 13 indicates that
spatiotemporal cokriging retains more of the observed
variance than spatiotemporal kriging. It also indicates that
the spatiotemporal estimation methods with 5 time steps
retain more of the variance than those using 9 time steps. It
is particularly the catchments with large observed variances

where the estimated time series have less variance than the
observed time series. For catchments with small variances,
the estimates tend to be slightly too large and there are only
minor differences between the different spatiotemporal
estimation methods.

4.5. Comparison With a Deterministic
Rainfall-Runoff Model

[59] The runoff time series estimated by top kriging were
finally compared with the simulation results of a determin-
istic rainfall-runoff model obtained by Parajka et al. [2005].
For comparison, the top kriging estimates were aggregated
to daily values so there is almost no difference between the
routing models. The results are hence only presented for
spatial kriging with the routing all model. Out of the 19
catchments in the Innviertel, 17 were part of the data set of
Parajka et al. [2005].
[60] The model efficiencies (ME) for top kriging and the

deterministic model are shown in Table 5. The first column
gives ME for the deterministic model calibrated at site. This
is the case where the parameters have been obtained by
fitting the runoff simulations directly to the runoff data; that
is, it is the gauged catchment case. The second column
gives the ungauged catchment case of the deterministic
model using parameters that have been regionalized from
the neighboring catchments by kriging. This is the region-
alization method of Parajka et al. [2005] that performed
best; see Table 2, line 6, and Figure 9, top left green line, of
Parajka et al. [2005]. The at site calibration efficiency is in
the range of 0.58–0.79, with an average of 0.71. When
using regionalized parameters, the efficiency decreases to a
range of 0.43–0.66, with an average of 0.58. This is quite a
significant decrease which is a result of the uncertainty
associated with the ungauged catchment problem. The third
column of Table 5 shows the efficiencies for top kriging
which, again, is an ungauged catchment case. Note that the
top kriging efficiencies in Table 5 are considerably larger
than those in Table 3. This is because errors in estimating
the time of peak and the dynamics of the runoff hydrograph

Figure 12. (left) Average runoff estimated by top kriging (spatial kriging, routing all model) plotted
against average runoff of the observed time series for the 19 catchments in the Innviertel region. (right)
Temporal variance of the estimated time series plotted against the variances of the observed time series.
The size of the points indicates catchment area. Units are m3 s�1 km�2 for average runoff and m6 s�2

km�4 � 10�4 for the variance.
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will be less important for the daily averages of Table 5 than
for the hourly values of Table 3. Top kriging gives
efficiencies in the range of 0.87–0.98 with an average of
0.93. This is remarkably better than the corresponding
results of the deterministic model (average of 0.58). In fact,
for every single catchment the top kriging estimates are
much better than the corresponding deterministic estimates
of regionalization. This is not surprising for, say, Taufkirch-
en where 80% of the catchment area is covered by upstream
gauges. However, the much better performance is true for
all catchments including those without upstream or down-
stream neighbors.
[61] To illustrate the differences of the two approaches

in terms of representing the runoff dynamics Figure 14
shows an example of an event for the Kropfmühle catch-
ment (313 km2). The solid line is the runoff time series
estimated by top kriging. The dashed and dotted lines are
the deterministic model results based on at site and region-
alized parameters, respectively. The observed runoff is
shown as points. The top kriging estimates are very close
to the observed hydrograph for the entire period including
the peak of the events and the recession. The deterministic
model results tend to underestimate the peak. Interestingly,

the first event is better captured by the regionalized model
parameters while the second event is better captured by the
locally calibrated parameters. It is also of interest that top
kriging tends to estimate the low flow period better than
either of the two deterministic model setups.
[62] Although the hydrogeology of the Innviertel region

is complex, average annual runoff is rather uniform
(Table 1). It is therefore of interest to put the results of
the Innviertel into the context of all of Austria, which is
hydrologically much more diverse. For the entire Austrian
data set of 367 catchments, the median model efficiency of
top kriging in terms of estimating hourly runoff time series
is 0.75 (Table 6). This is lower than the median of 0.87 for
the Innviertel region where the stream gauge density is
higher. It is also of interest to compare the results to the
deterministic results of Parajka et al. [2005]. There were a
total of 208 catchments that were common to Parajka et al.
[2005] and this paper. For these catchments, the regiona-
lized deterministic model gives a median efficiency is 0.67
while it is 0.87 for top kriging, both on the basis of daily
runoff time series for the ungauged catchment case (Table 6).
This means that top kriging performs much better than the
deterministic model. To illustrate the between-catchment

Figure 13. Temporal variance of the runoff time series estimated by various top kriging variants plotted
against the variances of the observed time series. (left) Spatiotemporal kriging with (top) five and
(bottom) nine time steps. (right) Spatiotemporal cokriging with (top) five and (bottom) nine time steps.
Units are m6 s�2 km�4 � 10�4.
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variability of model performance, Figure 15 shows the
cumulative distribution function (cdf) of the model
efficiencies for the deterministic model (both at site
calibration and regionalized) and top kriging. Figure 15,
again, indicates that top kriging indeed outperforms the
regionalized deterministic model substantially. There are a
small number of catchments where top kriging gives
efficiencies less than zero. A closer examination of these
catchments suggested that a number of factors contribute to

the poor performance. The majority of these catchments
were close to the border of Austria and/or spatially isolated
with a large distance to the nearest stream gauge. Some of
the catchments, however, did have close neighbors but the
hydrogeology differed significantly from that of the
neighboring catchments. A typical example in Austria are
gravel deposits in some valleys that increase the ground-
water component of runoff and produce much slower
response as compared to neighboring catchments without
such gravel deposits.
[63] While the top kriging cdf in Figure 15 is always

above that of the regionalized deterministic model, the
efficiencies do not necessarily relate to the same catch-
ments. In Figure 16, the top kriging efficiencies have been
plotted against those of the regionalized deterministic model.
The comparison indicates that there are indeed catchments
where top kriging performs more poorly than the determin-
istic model. As indicated above, these are mostly catch-
ments that do not have a stream gauge in their vicinity.
However, this is the case for only 15% of the catchments.
For the remaining catchments top kriging performs better.
[64] To identify locations with potentially poor estimates,

geostatistical analysis generally makes use of the kriging
variance. This is also possible for the top kriging approach
[Skøien et al., 2006]. For spatial kriging (equations (2)–(3)),
the kriging variance is

s2
Ri ¼

Xn
j¼1

ljgij þ m ð20Þ

[65] In this paper the kriging variance sRi
2 was estimated

in a cross-validation model; that is, in solving the kriging
system to obtain the set of weights lj for a given catchment

Table 5. Model Efficiencies of Daily Runoff Estimated by Top

Kriging (Spatial Kriging, Routing All Model) and the Determinis-

tic Runoff Model in the Innviertel Regiona

Stream Gauge
Deterministic
Model at Site

Deterministic Model
Regionalized (PUB)

Top Kriging
(PUB)

Ried 0.71 0.56 0.87
Osternach 0.69 0.60 0.88
Pram 0.74 0.50 0.90
Riedau 0.77 0.64 0.94
Winertsham 0.70 0.55 0.96
Taufkirchen 0.73 0.62 0.98
Angsüß 0.73 0.63 0.92
Alfersham 0.71 0.66 0.90
Lohstampf 0.67 0.59 0.92
Still 0.74 0.57 0.94
Strötting 0.75 0.62 0.91
Bad Schallerbach 0.72 0.64 0.96
Pichl 0.58 0.43 0.89
Weghof 0.66 0.52 0.89
Fraham 0.71 0.52 0.97
Niederspaching 0.72 0.59 0.96
Kropfmühle 0.79 0.61 0.94
Average 0.71 0.58 0.93
Median 0.72 0.59 0.92

aPUB indicates the ungauged catchment case as assessed by cross
validation.

Figure 14. Comparison of runoff time series estimated by top kriging and the deterministic model for
the period of 1 May to 30 June 1996 at Kropfmühle (313 km2). The top kriging weights of the neighbors
are Niederspaching, 0.53; Fraham, 0.39; Taufkirchen, 0.31; Bad Schallerbach, –0.13; and Winertsham,
�0.09. Units of runoff are m3 km�2s�1.
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i it was assumed that it is ungauged and only runoff data for
the neighboring catchments j were available. This means
that sRi2 should be an indicator of the uncertainty of
estimating runoff in ungauged catchments. To examine this
idea, Figure 17 shows the top kriging efficiencies of
376 catchments plotted against the kriging variance. The
model efficiencies are indeed well correlated with the
kriging variance indicating that the kriging variance can be
used as an indicator to identifying catchments with
potentially poor estimates. For example, catchments
with kriging variances less than 4 � 10�5 m6 s�2 km�4

are associated with median model efficiencies of hourly
time series of 0.9. If the kriging variance is more than 12 �
10�5 m6 s�2 km�4, median model efficiencies of 0.5 can be
expected.

5. Discussion and Conclusions

[66] In this paper we have extended the top kriging
approach of Skøien et al. [2006] to account for hydro-

dynamic and geomorphologic dispersion as well as routing.
The main appeal of the method is that it is a best linear
unbiased estimator adapted for the case of stream networks.
We hence believe it is the most natural way of statistically
estimating runoff time series in ungauged catchments.
[67] Examination of the top kriging results in the Innvier-

tel region suggests that the kriging weights are plausible. In
particular, they take into account the upstream and down-
stream similarities of catchments as well as similarities with
catchments that do not share a subcatchment. They also
account for clustering effects, giving less weight to clusters
of catchments that consist of catchments with highly corre-
lated runoff records.

5.1. Top Kriging Performance

[68] The cross-validation analyses in the Innviertel region
indicate that the Nash-Sutcliffe model efficiency of the
spatial kriging variant of top kriging is on the order of
0.8–0.95 for hourly runoff time series and 0.85–0.98 for
daily runoff time series. The efficiency is slightly lower for
the rest of Austria with a median of 0.82 for hourly runoff

Table 6. Median Model Efficiencies for Top Kriging as Compared to the Deterministic Runoff Model for the

Ungauged Catchment Casea

Region
Number of
Catchments

Top Kriging
Hourly Runoff

Top Kriging
Daily Runoff

Regionalized
Deterministic Model,

Daily Runoff

Innviertel 19 0.87 0.92
Innviertel 17 0.87 0.92 0.59
Austria 376 0.75 0.82
Austria 320 0.68
Austria 208 0.82 0.87 0.67

aFor 208 catchments, both Top kriging and deterministic model results were available; 17 of these are in the Innviertel
region.

Figure 15. Cumulative distribution functions of model
efficiencies (ME) of daily runoff estimated by top kriging
(spatial kriging, routing all model) and the deterministic
runoff model for 208 catchments in Austria. Top kriging
and the regionalized deterministic model relate to the
ungauged catchment case as assessed by cross validation.

Figure 16. Model efficiencies (ME) of daily runoff
estimated by top kriging (spatial kriging, routing all model)
and the regionalized deterministic runoff model for
208 catchments in Austria. Large circles indicate the
Innviertel catchments. All model efficiencies relate to the
ungauged catchment case as assessed by cross validation.
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and 0.87 for daily runoff for a set of 208 catchments, and
0.75 for hourly runoff and 0.82 for daily runoff for a set of
376 catchments. These efficiencies are excellent as com-
pared to what can usually be obtained by deterministic
rainfall-runoff models in ungauged catchments. For the
same 208 catchments, the deterministic runoff model of
Parajka et al. [2005] gave median efficiencies of daily
runoff ME = 0.67 if the catchments were treated as
ungauged. This means that the top kriging efficiency is 0.20
higher than the corresponding efficiency of a deterministic
runoff model.
[69] These efficiencies also compare well with other stud-

ies around the world. A review ofMerz et al. [2007] suggests
that, typically, the runoff modeling efficiency of daily runoff
in ungauged catchments ranges between 0.6 and 0.7,
depending on data availability. If the focus is on simulating
runoff with hourly temporal resolution, the efficiency is
usually lower, mainly because of poorer rainfall information
and errors in the timing of runoff dynamics. An example is
the DMIP distributed model intercomparison project [Reed
et al., 2004]. In the DMIP project, 12 deterministic runoff
models were used to simulate hourly runoff for 8 catchments
(65 km2 to 2484 km2) in the USA for a period of 7 years
(1994–2000). The models were run both in an at site mode
where local runoff data were used to calibrate model
parameters and in an uncalibrated mode that represents the
ungauged catchment case. In the at site (calibrated
parameter case) the median of the hourly model efficiencies
over the eight catchments ranged between 0.30 and 0.73,
depending on the model with a mean of 0.58. The
efficiencies for the uncalibrated case was significantly
lower with the median over the eight catchments ranging
between �0.50 and 0.61, depending on the model, with a
mean of 0.22. The median efficiencies obtained by top
kriging (0.82 and 0.75 for the 208 and 376 catchment data
sets, respectively) is much higher than that of the best model

of that study. There may exist differences in the efficiency
that are due to differences in the climate but the relatively
low DMIP efficiencies are typical of the general difficulty of
estimating runoff in ungauged catchments. What sets top
kriging apart from deterministic models such as those of
Parajka et al. [2005] and Reed et al. [2004] is that top
kriging does use concurrent runoff data of neighboring
catchments. This means that, for some of the applications
envisaged by Parajka et al. [2005] and Reed et al. [2004],
such as flood forecasting, top kriging is not applicable.
However, for those applications where concurrent runoff
data are available, the better performance of top kriging as
compared to the traditional deterministic modeling approach
can be a real advantage.
[70] Other indicators of model performance are the

statistical moments of temporal runoff variability. Capturing
the temporal variability well is of particular importance
for assessing the hydropower potential of streams and
for ecological studies. The analyses of the Innviertel
region indicate that, overall, top kriging does represent the
moments well with little bias. However, the temporal
variances of the catchments with the largest observed
temporal variances were underestimated and the temporal
variance of the catchments with the smallest observed
temporal variances were overestimated. This means that
the spatial variance of the temporal variance was under-
estimated. This would be expected as kriging, generally,
does not retain the spatial variance, being a best estimator.
Rather, kriging introduces smoothing as it minimizes the
error variance. Methods such as stochastic simulation do
retain the spatial variance but the errors of such methods are
larger [e.g., Deutsch and Journel, 1992]. A similar effect of
spatial smoothing was found by Gottschalk et al. [2006,
Figure 6] (1 hour) who estimated the first two moments
of runoff directly from neighboring catchments by
geostatistical techniques for 17 catchments in France.

5.2. Factors Controlling Performance

[71] For deterministic models, obviously, the uncertainty
in rainfall is one of the main factors contributing to
simulation uncertainty, particularly for hourly models
[Faures et al., 1995]. Other uncertainties are problems with
parameter identifiability and the representativeness of
catchment characteristics such as soils data [Blöschl,
2005]. The factors controlling the uncertainties of top
kriging are quite different. The main limitations are the
assumption of spatial homogeneity of runoff, the spatial
distribution of stream gauges and the quality of the runoff
measurements. Much of the spatial and temporal variability
of the atmospheric forcing is filtered by the catchments.
Both the runoff of the target catchment and the runoff at the
neighboring stream gauges therefore represent aggregated
values that have much larger spatial and temporal correla-
tions than the atmospheric input [Skøien et al., 2003; Skøien
and Blöschl, 2006]. With this in mind, it is clear that the
Innviertel region with a high density of stream gauges is a
favorable case for the top kriging approach. For the
deterministic model, the Innviertel region was on the other
hand a region with poorer results than the average of
Austria. This can be attributed to two reasons. First, the
response times in this region are relatively small, which
makes it more difficult for a daily runoff model to simulate

Figure 17. Model efficiencies (ME) of hourly runoff
estimated by top kriging (spatial kriging, routing all model)
plotted as a function of the kriging variance (equation (20))
for 376 catchments in Austria. The thick line represents the
median ME, and the error bars represent the 25 and
75 percentiles. Both model efficiencies and the kriging
variance relate to the ungauged catchment case obtained in a
cross-validation mode.
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runoff well (see Figures 7–11). Second, although the mean
runoff is relatively homogenous in the Innviertel region, the
dynamics reflect a rather heterogeneous hydrogeology
which may contribute to parameter identifiability issues
and regionalization uncertainty. This is also indicated by the
decrease in median model performance from 0.72 to 0.59 in
the Innviertel region when moving from gauged to
ungauged catchments which is substantial.
[72] In other parts of Austria, stream gauge density is

lower and there are, in particular, a number of stream gauges
located at the Austrian border with no close neighbors. If
one moves from the Innviertel to all of Austria, the top
kriging performance hence decreases from a median effi-
ciency of 0.87 to 0.75 (hourly data). In addition to the lower
stream gauge density, the variogram may contribute to the
decrease in performance as it was estimated for the Innvier-
tel and used for all of Austria for consistency. Also, the
quality of the Innviertel data set may be above average. The
data set of 208 catchments used by Parajka et al. [2005]
gives a better top kriging performance (ME = 0.82 for
hourly data) than the entire Austrian data set because
Parajka et al. [2005] have been more restrictive in selecting
high-quality runoff records.
[73] It was shown that the kriging variance (Figure 17) is

an indicator of expected model performance. The kriging
variance takes into account the catchment shape, stream
network organization, routing characteristics and, most
importantly, the location of the stream gauges including
the effects of catchment nesting [Skøien et al., 2006].
However, kriging variance does not take into account local
particularities in the hydrogeology. Because of this, for
some catchments, the efficiency was considerably poorer
than what could be expected from the kriging variance. To
capture these effects, maps of the hydrogeology would have
to be consulted or, preferably, reconnaissance field trips
undertaken to assess the runoff dynamics in ungauged
catchments [Blöschl, 2005].

5.3. Top Kriging Variants

[74] We tested a number of variants of top kriging to
examine what variant would produce the most realistic
runoff hydrographs. The results indicated that inclusion of
a routing model almost always improves the estimated
runoff time series. Figure 10 shows a typical example. We
also tested spatiotemporal kriging and cokriging variants of
top kriging. From a conceptual point of view spatiotemporal
kriging and cokriging are more complete than spatial krig-
ing as they account for the temporal filtering (i.e., the unit
hydrograph) effects of catchments in the estimation equa-
tion (equation (4)) while spatial kriging estimates runoff
from concurrent time steps only. It should be noted that
spatial kriging does account for the temporal filtering effects
on the regularized variogram; that is, the unit hydrograph
enters the estimation indirectly through the gamma values.
The analyses indicate that spatiotemporal kriging and spa-
tiotemporal cokriging, in some cases, improved the results
over spatial kriging, but this was not generally the case. The
median model efficiency of spatiotemporal cokriging was
similar to that of spatial kriging but there was a clear trend
of underestimating the temporal variance of runoff. Spatio-
temporal kriging underestimated the temporal variance
more and the underestimation increased with the number
of time steps used in the estimation. Clearly, this is related

to the smoothing effect of kriging. The better performance
of spatiotemporal cokriging as compared to spatiotemporal
kriging is a result of the additional unbiasedness constraints.
Given that spatiotemporal kriging and spatiotemporal cok-
riging increases the computational burden significantly over
spatial kriging, the additional complexity does not seem to be
warranted in the light of the results of this paper. This is in line
with the results of Goovaerts et al. [2006] who suggested
that, in their case, spatiotemporal kriging did not generally
improve the estimation results over spatial kriging.

5.4. Top Kriging Assumptions

[75] Top kriging as presented in this paper involves a
number of assumptions. Some of them were made for
clarity of presentation and can be easily relaxed if suitable
data are available. In this paper it was assumed that the
temporal support (equation (10)) is a function of catchment
area only but it can be easily made a function of physio-
graphic catchment characteristics. Similarly, the simple
routing model based on a constant velocity used here
(equations (13) and (15)) was mainly chosen for clarity.
Also, equation (14) can be relaxed by introducing more
complex relationships between lag and catchment character-
istics. Specific runoff was assumed to be a random field. It
would be possible to include a temporal trend model
[Montanari, 2005a] or a spatial trend model and apply top
kriging to the residuals of the trend model. A spatial trend
model could, for example, be based on mean annual rainfall,
to account for differences in runoff in ungauged catchments as
a result of climate. In fact, one could also use a deterministic
runoff model as a trend model and apply top kriging as an
error model to improve runoff estimates over those of the
deterministic runoff model [Goovaerts et al., 2006].
[76] An assumption that would be more difficult to relax,

is the assumption of the variogram not changing with time.
It is likely that low flows are correlated over larger distances
in both space and time than flood flows, so one would
expect temporal differences in the space-time variogram of
runoff. In this paper we have argued that the variograms of
runoff time series will be dominated by the variability
of high flows as the variogram is the second moment of
runoff. Changing the variogram with time would have to
involve additional assumptions about temporal aggregation.
Catchments were conceptualized to operate as a linear
space-time filter which is at the heart of top kriging.
Introducing nonlinearity would in effect modify top kriging
to become a spatially distributed runoff model.
[77] Relaxing assumptions will generally require addi-

tional data and add complexity, which may not be warranted
as suggested by the comparison of the spatial and spatio-
temporal kriging variants of top kriging. Also, the high
model efficiencies obtained in this paper indicate that the
assumptions on which the spatial variant of top kriging is
based may be highly appropriate for practical purposes of
estimating runoff time series in ungauged catchments.

5.5. Potential Applications of Top Kriging

[78] Top kriging uses concurrent runoff data in neighbor-
ing catchments and does not explicitly account for rainfall-
runoff processes. This means that there are a number of
applications, such as flood forecasting and assessing the
effects of land use change on runoff, for which top kriging
is not the right method and deterministic runoff models are
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needed. However, there are a range of applications where
top kriging could be applied to estimate runoff time series in
ungauged catchments. The main applications in a simula-
tion mode are estimating the flow duration curve for
assessing the hydropower potential of river reaches, esti-
mating temporal flow (and low flow) variability in the
context of environmental flow requirements, and producing
high-resolution maps of runoff variability. These maps
could not only involve mean annual runoff, as in the
traditional runoff mapping approaches, but also high-
resolution characteristics such as temporal variance and
runoff regimes. Another simulation application is the gen-
eration of hydrographs for ungauged catchments to which
deterministic rainfall-runoff models are calibrated. This may
reduce some of the problems with regionalizing model
parameters [Parajka et al., 2007]. There are also potential
online applications. One of them is near– real time
monitoring and visualization of runoff. In top kriging,
much of the effort is in estimating the kriging weights. Once
the weights are known, estimation of runoff for all river
reaches in a region from runoff data is a straightforward
linear operation, ideally suited for online applications.
[79] The relatively high performance of top kriging found

in this paper is because errors of rainfall data and parameter
identifiability issues of traditional runoff models are
avoided. The model efficiencies obtained by top kriging
are considerably higher than what can be typically achieved
by using a regionalized deterministic model. This means
that, for certain applications, top kriging is an appealing
method for estimating runoff in ungauged catchments.
However, a prerequisite of using top kriging is a relatively
dense stream gauging network. In the Innviertel and Austrian
examples, a total of 19 stream gauges over an area of
1500 km2 and 376 stream gauges over an area of 80,000 km2,
respectively, were available. If the stream gauging network
is less dense, the benefits of top kriging would probably be
less obvious. When the distances between observations
become too large, it is likely that deterministic models
will perform better than top kriging. However, given that
the improvement over deterministic models is quite sig-
nificant, top kriging may still be the method of choice for
regions with considerably fewer stream gauges than
Austria.

Appendix A: Adjustment of Kriging Weights

[80] If measurements are close to each other, i.e., clus-
tered in space, they tend to be correlated. One advantage of
kriging is to account for this effect by reducing the kriging
weights of clustered measurements. However, in the limit, if
two measurements are located at the same point in space,
the kriging system will only give the sum of their weights
and it is impossible to identify the weights individually.
Measurements that are close may hence lead to ill-
conditioned kriging systems and numerical problems may
arise. Some of the kriging weights obtained may then be
much smaller than zero. This is not a desirable result as they
can produce artifacts in the estimates. As catchments are,
occasionally, very close, and runoff measurements are
highly correlated in time, this needs to be dealt with in
top kriging. The issue was addressed in two ways in this
paper. First, nonzero local uncertainty of runoff, sj

2, was
used. The larger sj

2, the fewer numerical problems will arise

as it effectively decreases the correlation between neighbor-
ing catchments. sj

2 has been set to a physically realistic
value of 1% of the average temporal variance of runoff.
However, occasional large negative weights still remained.
These were adjusted by rescaling them.
[81] The method of rescaling weights usually recommen-

ded in the literature [see Yamamoto, 2000] is to remove all
negative weights and to rescale the remaining weights to a
sum of unity. However, as a large negative weight is usually
the counterpart of a large positive weight, this method gives
a loss of information. Instead, in this paper we use a method
that keeps some of the negative weights and, in most
instances, maintains the internal ranking of the weights. The
starting point is that ill-conditioned kriging systems can be
identified by large absolute sum of weights:

L ¼
Xn
j¼1

Xp
b¼1

ljb
�� �� >> 1 ðA1Þ

where ljb are the kriging weights. We defined an upper
limit for this sum and, after testing different limits, found
Lmax = 1.5 to be a suitable choice. All weights were then

1350scaled according to

l0
jb ¼ ljbLmax=L ðA2Þ

[82] As the sum of the weights is no longer unity the
1354difference to unity is added to all weights:

l00
jb ¼ l0

jb þ
1�

Pn
j¼1

Pp
b¼1

l0
jb

np
ðA3Þ

1355[83] For spatial and spatiotemporal kriging all weights
were adjusted in this way while for spatiotemporal cokrig-
ing only the weights for time step tw were adjusted by
equations (A2) and (A3). Equation (A1) was used to
recalculate L using the weights of equation (A3), typically,
giving L > Lmax. The procedure ((A2), (A3), (A1)) was then
repeated until jL > Lmaxj < dL with dL = 0.05. We suggest
that the weights adjusted by this procedure respect the
kriging system to a larger extent than the methods presented
by Yamamoto [2000].
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Österreichs (Hydrological Atlas of Austria), Bundesminist. für Land-
und Forstwirtsch., Umwelt und Wasserwirtsch., Vienna.
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G. Blöschl, Institute for Hydraulic and Water Resources Engineering,

Vienna University of Technology, Karlsplatz 13/222, A-1040 Vienna,
Austria.

J. O. Skøien, Department of Physical Geography, Faculty of
Geosciences, Utrecht University, P.O. Box 80.115, NL-3508 TC Utrecht,
Netherlands. (j.skoien@geo.uu.nl)
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