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[1] We present a novel iterative regional calibration (IRC) method in which the model
parameters of a number of catchments are calibrated simultaneously. The method exploits
the spatial correlations of the parameters to condition their a priori distribution for

each catchment. We use a sample of 320 catchments in Austria over a period of 22 years to
test the method. The results indicate that the IRC method allows us to reliably calibrate the
conceptual hydrologic model used here. The novel method reduces the uncertainty of most
parameters as compared to local calibration. This is demonstrated by more consistent
model parameters in two independent calibration periods and by an analysis of their spatial
variability. Jackknife cross validation indicates that the IRC method tends to improve
runoff simulation performance for ungauged catchments as compared to traditional
regionalization, although the gain is small in absolute terms.
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1. Introduction

[2] There are both operational and academic drivers for
pursuing rainfall-runoff modeling of ungauged catchments.
The former include design applications (of spillways, cul-
verts, and embankments), forecasting applications (flood
warning and hydropower operation) and catchment man-
agement applications (water allocation, climate impact stud-
ies), the latter are geared toward understanding the
catchment functioning and how the individual processes
combine to produce catchment response. The main chal-
lenge with rainfall-runoff modeling in ungauged catchments
is the lack of local runoff data that could be used for
calibrating model parameters. Parameter calibration is im-
portant because of a number of reasons. Calibration can
account for the effects of the hydrological setting in a
particular catchment; calibration can adjust for biases in
the inputs, for example as a result of orographic effects and
instrument biases; and calibration can significantly reduce
the biases of model predictions by accounting for the
lumped effect of the catchment response characteristics.
While calibration on runoff data has served hydrology well
in the past, this is not an option in ungauged catchments.
Alternatives are needed.

[3] For the case of conceptual catchment models the most
widely used alternative to calibration is to transfer the
parameters from gauged catchments in the region that can
be considered hydrologically similar to the target catchment
in some way. There are a number of methods of transferring
or regionalizing the parameters [Bloschl, 2005], but the
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general pattern is a two step procedure of first calibrating
the catchment model to the runoff records of the gauged
catchments and then applying a regionalization technique to
obtain the model parameters in the ungauged catchment of
interest. Typically, the regionalization techniques consist of
a regression between model parameters and catchment
attributes (such as soil type) that are available in both
gauged and ungauged catchments. While widely used for
practical purposes, two main difficulties exist: (1) The
regionalization relationships are usually poorly defined,
and (2) the runoff simulations of the ungauged catchments
do not usually perform nearly as well as in the gauged
catchments. These difficulties have, inter alia, been singled
out as the problem of ungauged basins in a recent interna-
tional initiative [Sivapalan et al., 2003].

[4] Bloschl [2005] attributed the poor performance of
regionalization relationships to three main reasons.

[s] 1. One explanation is that the measurable catchment
attributes that are used in the regionalization relationships
may not be very relevant for catchment response. Soil type,
e.g., is an important catchment attribute but its generally
low predictive power is known from its use in pedotransfer
functions [Wasten et al., 2001].

[6] 2. The second explanation is that the structure of the
model relating catchment attributes and model parameters may
not be suitable. Indeed, the usual choice of a linear regression
model is one of convenience rather than one based on known
relationships. Nonlinear methods exist, but they tend to
increase the number of parameters that need to be estimated.

[7] 3. The third explanation is that there may be signif-
icant uncertainty in the calibrated parameter values which
may cloud the underlying relationship between calibrated
model parameters and catchment attributes [e.g., Gottschalk,
2002]. There are methods of accounting for parameter
uncertainty in the regionalization of model parameters (see,
e.g., Bates and Campbell [2001] for the case of an event-scale
rainfall-runoff model illustrated on 39 catchments in south-
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western Australia) but it is clearly desirable to better constrain
model parameters in the calibration process. There are two
possibilities. The first is to use additional data on state
variables in the calibration procedure. These can be geo-
chemical data [Mroczkowski et al., 1997], groundwater data
[Madsen, 2003], soil moisture data [Western and Grayson,
2000] or snow data [Parajka et al., 2007]. The second
possibility is regional calibration in which the model param-
eters of anumber of catchments are calibrated simultaneously.
This is the topic of this paper.

[8] The key idea of regional calibration is that more
robust model parameters can be obtained if a number of
gauged catchments in a region are used simultaneously in
parameter estimation. The more robust parameters are then
hoped to translate into a reduction in runoff simulation
uncertainty when transposing them to ungauged catchments.

[o9] There have only been a few attempts at regional
calibration in catchment hydrology but they have sparked
a heated discussion. Indeed, regional calibration is a con-
troversial issue. There are two main aspects to the debate.
The first issue is whether regional calibration per se is a
desirable goal. The clash in modeling philosophies is that
the raison d’étre of parameter calibration is adjustment to
the local situation while regional calibration strives for the
exact opposite: adjustment to the regional trends. This is a
classical no-win situation. In order to get better local
estimates in ungauged catchments one compromises for
regional trends and hence forfeits some of the local pecu-
liarities in gauged catchments. The second issue is whether
regional calibration actually improves hydrological simula-
tions in ungauged catchments over local calibration and
classical regionalization. The only test we are aware of is by
Fernandez et al. [2000]. Their results indicate that the
regional calibration indeed improved the relationships be-
tween model parameters and catchment attributes but did
not improve the runoff simulations at ungauged sites. Given
that the amount of information used in regional calibration
is significantly larger than that of local calibration for any
one catchment one could, however, speculate that there is
potential in the regional calibration approach. In different
hydrological settings, using different methods and/or more
comprehensive data sets regional calibration may well prove
more useful than what the results of Fernandez et al. [2000]
suggest. In this paper we therefore adopt a pragmatic stance
by (1) proposing a novel method of regional calibration and
(2) testing its potential for improving runoff simulations in
ungauged catchments over alternative methods, without
engaging in the philosophical debate.

[10] The are two types of methods in regional calibration
of catchment hydrological models, methods that concur-
rently solve the parameter estimation and regionalization
problem in a single step; and iterative methods. The first
type includes the method of Fernandez et al. [2000], who
calibrated a monthly water balance model concurrently with
regressions between model parameters and catchment attrib-
utes in 33 catchments by optimizing a compound objective
function involving runoff simulation efficiency and good-
ness of fit of the regressions. Other examples are those of
Hlavéova et al. [2000] and Szolgay et al. [2003], who first
found groups of catchments by cluster analysis of catchment
attributes and then calibrated a monthly water balance
model to 14 catchments assuming uniform model parame-
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ters in each group. In a somewhat similar study, Drogue et
al. [2002] assumed two parameters of an hourly conceptual
catchment model to be uniform in a region of 16 catchments
and stratified the two other parameters by lithological
groups. Hundecha and Bardossy [2004] assumed preset
relationships between model parameters and catchment
attributes, and calibrated the coefficients of the relationships
rather than the parameters themselves for 30 catchments.
The difficulty with most of these methods is that calibration
of the relationships instead of the parameters, significantly
increases the number of coefficients to be calibrated. For
example, in the study of Fernandez et al. [2000] the four
model parameters for each catchment doubled, as linear
regressions involve two coefficients (slope and intercept).
Hundecha and Bdardossy [2004] used attribute-parameter
relationships with four parameters, thereby quadrupling the
number of coefficients to be estimated. The benefit, how-
ever, is that the number of station years of runoff data also
increases, so more information is available to estimate a
larger number of coefficients. One could argue that the total
number of coefficients to be estimated in the regional
calibration should always be smaller than the number of
model parameters times the number of gauged catchments
(local calibration) as it is this decrease in dimensionality on
which regional calibration builds.

[11] Iterative methods have been proposed to reduce the
dimensionality of the estimation system as compared to
single-step methods. Lamb et al. [2000] and Wagener and
Wheater [2006] sequentially identified model parameters
during the calibration. In a first iteration they examined
what is the model parameter that can be estimated with the
least uncertainty from local calibration in a region. They
then regressed the calibration values of this model param-
eter against catchment attributes, estimated the parameter
from the regression for each catchment and froze this
parameter value for the remainder of the analysis. In a
second step they recalibrated the model to all catchments
(without changing the values of the previously identified
parameter) and identified the next parameter that could be
estimated with least uncertainty. They then proceeded to
obtain regressions with catchment attributes for all param-
eters. While the procedure did involve a number of prob-
lems, particularly the inability to define the calibration
problem without introducing a bias in the parameter esti-
mates, it is a strategy that may be worth pursuing.

[12] In this paper we propose an iterative regional cali-
bration (IRC) method that builds on the spatial correlations
of model parameters and efficiently converges for a large
number of catchments. Specifically, the aim of the paper is
to test the iterative regional calibration method in terms of
the robustness of the estimated parameters, and the potential
it has for hydrological simulations in ungauged catchments.
We use a sample of 320 catchments over a period of 22 years
which will likely allow us to draw more generic inferences
than has been possible in previous studies.

2. Method
2.1. Proposed Iterative Regional Calibration Scheme

[13] The basic idea of the method is to combine local and
regional information in one objective function to be opti-
mized. The local information involves runoff data and other
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Definition of components for multiple objective model calibration
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Z, - a priori distribution of model parameters

fori=1ton

Calibration of model parameters
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A
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\

Regionalization of model parameters
from neighboring catchments only

Result: p,, ;

Figure 1. Flowchart of the iterative regional calibration
procedure.

hydrological response data such as snow cover. The regional
information involves an a priori distribution of each model
parameter that is conditioned on parameter values calibrated
in gauged catchments within the study region. While there
are potentially many different ways of solving this estima-
tion problem we have chosen an iterative approach that is
numerically efficient for a large number of catchments.

[14] The iterative scheme is depicted in Figure 1. As a
starting point, a compound objective function is defined that
linearly combines local and regional information. In this
paper we use two types of local information, runoff data and
snow cover data. The compound objective function, Z,
hence is

ZC:W1~ZQ+W2'Zs+W3~Zp (1)

where Z is the runoff related component, Zg is the snow
cover component, Zp is the regional component represent-
ing the conditioned a priori distributions of the parameters,
and the w are weights. This objective function is to be
minimized to find optimum parameters.

[15] Let p; be the parameter vector of the hydrological
model, m the number of catchments in the study region and
n the number of iterations. In a first iterative step, the model
parameters are calibrated for each catchment separately. The
a priori distributions of the parameters are specified based
on a first guess. Different distributions are used for different
parameters but, for a given parameter j, the same distribu-
tion is used for all m catchments in the region. The result of
this calibration is a calibrated parameter vector p; for each
catchment. The calibrated parameters can then be trans-
ferred in space by any regionalization procedure. The
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regionalization approach may, e.g., utilize the relationship
between model parameters and selected catchment attributes,
or may be based on the spatial correlation of the model
parameters. For a given catchment, the model parameters j
are regionalized independently of each other without using
the locally calibrated parameters. The result of this region-
alization is a regionalized parameter vector p; ., for each
catchment. The a priori distribution for each parameter j of
each catchment is now conditioned on these regional
parameter values. While there are, again, numerous ways
of conditioning distributions to additional information we
have chosen a very simple method. We assumed that the
regional value is identical with the most likely local value of
the parameter but does not affect the upper and lower
bounds of the distributions. We hence shifted the mode or
maximum ppy, ; of the distribution to the regional value of
the parameter and left the upper and lower bounds un-
changed, i.e.,

Pmax,j = Preg,j (2)

[16] The updating of the distribution changes Z, as Z, is a
function of the distribution (and hence ppmax ;).

[17] The procedure moves to the second iterative step
using the updated Z, instead of the original one. The
iteration is performed » times until the parameters converge.
The parameters are assumed to have approximately con-
verged if the innovations of the parameters from an iterative
step are small.

[18] While, as mentioned above, alternative regional
calibration procedures would also be feasible, we consider
the iterative approach to have two main strengths. The
dimensionality of the optimization system is kept low as,
in each iteration, each catchment is calibrated independently.
The total number of unknowns in any one step is hence
equal to the number of calibration parameters. Second, the
iterations allow us to monitor the change of parameters as a
function of the iteration step. This provides insight into the
robustness of the parameters. Parameters that can be esti-
mated robustly would be expected to not change much
between the iteration steps while poorly identifiable param-
eters may fluctuate strongly between the iterations.

[19] The objective function component Z, is here defined
as a penalty function based on the a priori distribution f; of
the parameters:

ey~ (200

Zp=Y 3)
j=1 fmax,/
pmaxj _pl,/
o = =) 4
maxs =S (4)

where p; is the model parameter j to be calibrated, p; and p,
are the lower and upper bounds of the parameter space,
respectively, pmax 1S the parameter value corresponding to
the mode of the a priori distribution, and & is the number of
parameters to be calibrated. The probability density function
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Figure 2. Location of 320 catchments and topography of Austria.

of distribution f was assumed to conform to a Beta
distribution with parameters u and v.

f(x|u,v):B( —x)" for0<x<1lu>0,v>0

1
with  B(u,v) = /x“71(1 —x) ==
0

[20] The updating procedure allows the a priori distribu-
tions to vary between catchments. The main motivation for
choosing this procedure (equation (2)) was its consistency
with the a priori component of the objective function, Z,. If
the locally calibrated parameters are identical with the
regionally estimated parameters, Z, is zero which amounts
to no penalty from the regional calibration component as the
local parameters are consistent with their regional trend.
Shifting the mode p,,,x of the distribution to the regional
value of the parameter, leaving the upper and lower bounds
unchanged, means that the shape of the a priori distribution
changes. In the updating step this is accomplished by
modifying the parameters u and v in equations (5) and
(6). The parameters u and v can be expressed as a function
of the mode py,.x but there is no unique relationship as there
are two unknowns with a single equation. An additional
assumption is hence needed. We assumed here that the sum
of the parameters remains constant, i.c.,

ut+v=y¢§ (7)

where £ is a constant to be defined in the modeling set up.
This assumption has yielded plausible results judged by
comparing the distributions found in the IRC procedure for
individual catchments with the frequency distributions of
the parameters obtained from all catchments in the region.

2.2. Data

[21] This study was carried out in Austria using data from
the period 1976—1997. Austria is flat or undulating in the
east and north and Alpine in the west and south. Elevations
range from 115 m asl to 3797 m asl. Mean annual
precipitation is less than 400 mm/year in the east and almost

3000 mm/year in the west. Land use is mainly agricultural
in the lowlands and forest in the medium elevation ranges.
Alpine vegetation and rocks prevail in the highest catch-
ments. The data set used in this study includes measure-
ments of daily precipitation and snow depths at 1091
stations and daily air temperature at 212 climatic stations.
Daily runoff data from 320 gauged catchments were used
with areas ranging from 10 km?® to 9770 km? and a median
of 196 km®. The boundaries of the gauged catchments are
shown in Figure 2.

[22] The inputs to the hydrologic catchment model were
prepared in two steps. First, the daily values of precipitation,
snow depth and air temperature were spatially interpolated
by methods that use elevation as auxiliary information.
External drift kriging was used for precipitation and snow
depth, and the least squares trend prediction method was
used for air temperature [Pebesma, 2001]. The spatial
distribution of potential evapotranspiration was estimated
by a modified Blaney-Criddle method [Parajka et al., 2003]
using daily air temperature and potential sunshine duration
calculated by the Solei-32 model [Mészaros et al., 2002;
Meészaros and Miklanek, 2006] that incorporates shading by
surrounding terrain. In a second step, a digital elevation
model of 1 x 1 km grid resolution was used for deriving
200 m elevation zones in each catchment. Time series of
daily precipitation, air temperature, potential evaporation
and snow depth were then extracted for each of the
elevation zones to be used in the water balance simulations.

2.3. Hydrological Model

[23] The model used in this paper to demonstrate the
IRC procedure is a semidistributed conceptual rainfall-
runoff model, following the structure of the HBV model
[Bergstrom, 1976]. The model equations are given in the
appendix of Merz and Bloschl [2004], although their model
version was spatially lumped while a semidistributed ver-
sion is used here. Each catchment is subdivided into
elevation zones of 200 m vertical range. The model runs
on a daily time step and consists of a snow routine, a soil
moisture routine and a flow routing routine. The snow
routine represents snow accumulation and melt by a simple
degree-day concept, involving the degree-day factor DDF
and melt temperature 7),. Catch deficit of the precipitation
gauges during snowfall is corrected by a snow correction
factor, SCF. A threshold temperature interval T — Tg is
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Table 1. Model Parameters to Be Calibrated by the IRC Method®

Model Parameter ; Model Component — u v Pr Pu Pmax
SCF snow 1.2 40 1.0 15 1.03
DDF, mm/°C d Snow 20 40 00 50 1.25
LP/FC soil 40 12 00 1.0 094
FC, mm soil .1 1.5 00 600 100
B soil .1 15 00 20 34
Ky, days runoff 20 40 00 20 05
K, days runoff 20 40 20 30 90
K,, days runoff 1.05 1.05 30 250 105
Cp mm/d runoff 20 40 00 80 20
Chr, d*/mm runoff 1.05 1.05 0.0 50 25
LSyz, mm runoff 30 30 1.0 100 50

“Here u and v are the initial parameters of the a priori distribution
(equations (5) and (6)), p; and p, are the lower and upper bounds of the
parameter space used in all iterations, and pp. is the initial parameter value
at which the a priori distribution is at a maximum (equation (4)). Parameters
u, v, and p.. are allowed to change between iterations.

used to distinguish between rainfall, snowfall and a mix of
rain and snow. The soil moisture routine represents runoff
generation and changes in the soil moisture state of the
catchment and involves three parameters: the maximum soil
moisture storage FC, a parameter representing the soil
moisture state above which evaporation is at its potential
rate, termed the limit for potential evaporation LP, and a
parameter in the nonlinear function relating runoff genera-
tion to the soil moisture state, termed the nonlinearity
parameter B. Runoff routing on the hillslopes is represented
by an upper and a lower soil reservoir. Excess rainfall enters
the upper zone reservoir and leaves this reservoir through
three paths, outflow from the reservoir based on a fast
storage coefficient K;; percolation to the lower zone with a
constant percolation rate Cp; and, if a threshold of the
storage state LSy is exceeded, through an additional outlet
based on a very fast storage coefficient K. Water leaves the
lower zone based on a slow storage coefficient K,. The
outflow from both reservoirs is then routed by a triangular
transfer function representing runoff routing in the streams,
where the base of the transfer function is related to the
outflow by a free calibration parameter Cpy.

[24] The model was run for all 320 gauged catchments in
Austria. Daily inputs (precipitation, air temperature and
potential evapotranspiration) were allowed to vary with
elevation within a catchment, and the soil moisture account-
ing and snow accounting was performed independently in
each elevation zone. However, the same model parameters
were assumed to apply to all elevation zones of a catchment.
In order to reduce the number of calibrated model param-
eters we performed a sensitivity analysis based on the
combination of Latin hypercube and one-factor-at-a-time
sampling [van Griensven et al., 2006]. Ranking the sensi-
tivity of each model parameter in all 320 Austrian catch-
ments revealed that many of the model parameters are
sensitive in some catchments but insensitive in others. Three
parameters that were among those that generally showed the
least sensitivity were preset (T = 2°C, Tg= 0°C, T, = 0°C)
and 11 parameters (Table 1) were estimated by regional
calibration. Out of these, the Latin hypercube sampling
indicated that the degree-day factor DDF and the snow
correction factor SCF were the most sensitive and the slow

PARAJKA ET AL.: REGIONAL CALIBRATION OF CATCHMENT MODELS

W06406

storage coefficient K, and Cp the most insensitive model
parameters in the majority of the 320 catchments.

2.4. Application of the Iterative Regional Calibration
Scheme

[25] For the demonstration of the regional calibration
algorithm the local components of the objective function
in equation (1) had to be first specified. The runoff objective
function Z,, follows the relationship proposed by Lindstrom
[1997] that combines the Nash-Sutcliffe coefficient (Mf)
and the relative volume error (Vx):

Zo = (1 — Mg) + wq - |Vg|, (8)

where

i (Qobs,i - Q.vim‘i)2
Mp=1-5— )
(Qahx,i - %)

Z Qxim,i - Z Q(}hx,i
Vp="1 o FL (10)

n
Z Q()b,\xi
i=1

[26] Qgim,; 1s the simulated runoff on day i, O, ; is the
observed runoff, O, is the average of the observed runoff
over the calibration (or verification) period of n days. The
weight w, was chosen based on test simulations. These
simulations indicated that optimization against ME efficiency
alone resulted in simulations that did not close the long-term
water balance in a few catchments. We therefore tested
different criteria combinations and weighting schemes and
found that the weight of w4, = 0.1 gave the most plausible
results with respect to both daily variations of runoff and the
long-term water balance.

[27] The snow objective function Zg uses observed and
simulated snow coverage. Observed snow coverage was
estimated from daily grid maps constructed from the
observed snow depth data. If the zone average of snow
depth in a catchment was greater than 0.5 mm the zone was
considered as snow covered, otherwise as snow free.
Simulated snow coverage was derived from the snow water
equivalent simulated by the model where an elevation zone
was considered as snow covered if the water equivalent was
greater than 0.1 mm, otherwise it was considered as snow
free. Snow simulations on a particular day were considered
to be poor if the absolute difference between simulated and
observed snow coverage was greater than 50% of the
catchment area. The snow objective function Zg was then
defined as the ratio of the number of days with poor snow
cover simulation (n,,) to the total number of days in the
simulation period:

(11)

[28] The a priori distributions of the parameters used in
the first iteration of Zp were set by expert judgment based
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Figure 3. Examples of the shape of the scaled a priori
distribution of the model parameters with £ = 6. Numbers in
brackets are the # and v parameters of equation (5).

on prior experience with the model, an assessment of
hydrological processes in the region and literature values.
The coefficients of the distributions used in the first iteration
(u and v), and in all iterations (p,; and p,)) are given in Table 1.

[29] The regionalization method chosen in this paper for
the spatial transfer of model parameters exploits their spatial
correlations. Each model parameter of a given catchment is
regionalized by ordinary kriging from the neighboring
catchments. This amounts to estimating each parameter in
the catchment as a weighted mean of the parameters in
catchments within a specified distance of 90 km. The
weights are found from the spatial correlations, i.e., the
variogram of each parameter. The choice of the kriging
regionalization method was motivated by three aspects.
First, the analyses of Merz and Bloschl [2004] and Parajka
et al. [2005] indicated that the method is as good or better
than alternative regionalization methods in terms of the
predictive performance of catchment models in ungauged
basins. It should be noted, however, that these studies took
advantage of the relatively dense stream gauging network
which may not be available in all regions around the world.
Second, kriging is a best linear unbiased estimator and
hence a logical choice for a regional estimation method.
Third, kriging regionalization does not involve additional
calibration parameters. In contrast, regionalization by linear
regression [Fernandez et al., 2000] in a regional calibration
context doubles the number of coefficients to be estimated.
A small number of coefficients and hence low dimension-
ality of the optimization system is considered an advantage.

[30] The selection of weights in equation (1) is arbitrary
and always depends on subjective user requirements and
expectations. In this paper we estimated the weights so that,
on average, the runoff (Zy), snow (Zs) and a priori penalty
(Zp) contributed to the final compound objective function
Zc by one third each. This gave w; = 0.6, w, = 0.1 and w; =
0.3. The objective function Z- was optimized by the SCE-
UA method [Duan et al., 1992]. In each optimization step, a
total of 11 variables had to be estimated (i.e., the number of
calibration parameters) for each catchment.

[31] In the kriging regionalization step, a variogram needs
to be specified for each parameter. We examined the spatial
variability of the model parameters calibrated in the first
iteration. The distance between two catchments was mea-
sured by the geographical distance of the catchment cent-
roids. The experimental variograms found by this analysis
suggested that the shape of the variograms is similar for
most parameters. The maximum distance over which corre-

PARAJKA ET AL.: REGIONAL CALIBRATION OF CATCHMENT MODELS

W06406

lations exist is about 60 km. We therefore assumed a
spherical shape of the variogram for all model parameters
with a range of 60 km. We calculated the variance (termed
the sill in geostatistics) for each parameter and each iteration
step separately by setting it to the spatial variance of the
calibrated parameters of the same iteration step.

[32] In the current setup of the updating procedure the
sum of the u and v parameters, £, needs to be specified. On
the basis of previous modeling experience in the region and
graphical evaluation of various combinations we set £ = 6.
This assumption implies that only a subset of the possible
shapes of the a priori distribution of the parameters is
allowed. Figure 3 shows examples of the shapes of the
distribution. The iteration is performed » times until the
parameters have converged. Comparisons of the parameters
of subsequent iterations in this study suggested that the
parameters do not change much after 10 iterations. n was
therefore set to » = 10 in this paper.

[33] The proposed IRC procedure was evaluated in three
steps. First, we examined the calibration and verification
efficiencies with respect to measured runoff and snow
cover. We split the entire period of observations (1976—
1997) into two 11 year periods: from 1 January 1976 to
31 December 1986 and from 1 January 1987 to 31 December
1997. Warm up periods from January to October were used
in both cases. For the efficiency estimation we performed
split sample tests in the terminology of Klemes [1986]. We
used the 11 year periods in turn for calibration and valida-
tion, and compared the model performances from both
arrangements. Second, we assessed the parameter uncer-
tainty by comparing the model parameters calibrated for the
19761986 period with those calibrated for the 1987—1997
period. A comparison of parameter values obtained from
two different periods shows the total amount of uncertainty
of these parameters including uncertainty due to input data
and model structure. Third, we examined whether the
regional calibration actually improves hydrological simula-
tions in ungauged catchments over local calibration and
classical regionalization. We emulate the ungauged case for
each catchment by jackknife cross validation where we only
use regional information for estimating the model parame-
ters (i.e., the regionalization result of the last iteration),
simulate runoff for each catchment using these parameters
and compare the simulations with the local runoff data as
well as the snow data. Strictly speaking, the analysis does
not fully represent an ungauged setting as we do use local
information of runoff and snow cover in the previous
iterations to condition the parameter distributions of the
neighboring catchments. However, given the dimensionality
of the system the effect is very small. In other words there is
a very weak dependence of the cross-validation perfor-
mance on the local runoff data, so it provides a very good
approximation to the ungauged catchment situation. The
cross-validation method hence allows us to examine the
potential of regional calibration for ungauged sites for all
320 catchments in the study region. The number of catch-
ments involved in the spatial transfer of the model param-
eters differs regionally from 5 to 66 catchments, with an
average of 31 catchments within the 50 km radius.

[34] The results of the first iteration prior to regionaliza-
tion are the model parameters p; found by local (at-site)
calibration and the associated local calibration and verifica-
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Figure 4. Model efficiencies during the iterative regional calibration for the (top) calibration 1987—
1997 and (bottom) verification 1976—1986 periods. M is the Nash-Sutcliffe runoff model efficiency, Vx
is the runoff volume error, and Zg is the snow model error expressed as the percentage of days with poor
snow cover simulation. The horizontal lines in the boxes represent the median, the box sizes represent the
25th and 75th percentiles, and the vertical lines represent the 10th and 90th percentiles of the model
efficiencies over the 320 catchments. The first iteration is equivalent to local calibration without any

regionalization.

tion efficiencies. The results of the first and the other
iterations prior to regionalization (p; and associated effi-
ciencies) are shown in Figures 4—11. In addition we
examined the potential for ungauged sites in Figure 12 by
comparing the results of the first iteration after regionaliza-
tion (p,. ;> corresponding to traditional regionalization) with
the results of the last iteration after regionalization (p,.g
corresponding to the ungauged case using the IRC method).

3. Results
3.1.

[35] The runoff model performance is presented in terms
of its efficiency to simulate runoff (Mg, equation (9), and

Calibration and Verification Efficiencies

Vi, equation (10)) and snow cover (Zg, equation (11)) in
Figure 4 and Tables 2 and 3. Percentiles of the efficiencies
over all 320 catchments in each of the ten iterations of the
IRC procedure are given. For a favorable model perfor-
mance, the My runoff efficiencies should be large, the Vi
volume errors should be close to 0 with a small scatter and
the Zg snow cover errors should be small. Figure 4 presents
the results from the calibration period 1987—-1997 and the
verification period 1976—1986 which is based on the
1987—-1997 parameters. Tables 2 and 3 include the cases
where the two periods have been interchanged.

[36] Iteration 1 is equivalent to local calibration without
regionalization (i.e., using p;). For the 19761986 calibra-
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Figure 5. Snow and soil model parameters during the iterative regional calibration. Box-whisker plots
show the minimum, maximum, median, and 25th and 75th percentiles of model parameters over the 320
catchments calibrated for the period 1987—1997. The first iteration is equivalent to local calibration

without any regionalization.
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Figure 6. As in Figure 5 but for the runoff routing model parameters.

tion period the median and scatter of the M, efficiencies are
0.71 and 0.19, respectively. The corresponding values for
the 1987—1997 calibration period are 0.72 and 0.13. The
median of V7 is close to zero and the scatter is small which
indicates that the runoff volumes are essentially unbiased.
The median of the snow performance measure Zg is 6.8%
and 6.5% in the two calibration periods. It is now of interest
to see how these efficiency measures change during the
iteration steps of the iterative regional calibration procedure.
Figure 4 and Table 2 indicate that there is in fact very little
change. Both the median and the scatter remain close to the
values obtained from local calibration (iteration 1).

[37] There is a slight decrease in model efficiency when
moving from the calibration to the verification period
(Figure 4 and Table 3). Iteration 1 is equivalent to model
verification based on locally calibrated parameters p;. The
medians of My of the two periods are 0.66 and 0.69 which is
lower than their calibration counterparts (0.71 and 0.72,

respectively) but the scatter of the efficiencies practically
does not change. The runoff volume errors Vy in the
verification periods are larger than those in the calibration
period (medians of around 6% and —6% for the two
verification periods). These differences are probably related
to generally drier climatic conditions in the 1976—1986
period which cannot be fully accounted for by the calibra-
tion parameters. The snow cover errors in the verification
period are very similar to those of the calibration period.
Again, a comparison of the first iteration with the subse-
quent ones shows that the verification efficiencies change
very little during the iteration steps.

3.2. Variability and Uncertainty of Model Parameters

[38] In this section we analyze the variability of model
parameters in each iteration step of the IRC procedure.
Figure 5 shows the minimum, maximum and percentiles
over the 320 catchments of the snow and soil model
parameters, Figure 6 shows analogous results for the runoff
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Figure 7. Variograms of the snow and soil model parameters regionally calibrated for the period 1987—
1997. The first iteration is equivalent to local calibration without any regionalization.
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Figure 9. Spatial patterns of the degree-day factor (DDF) and the slow storage coefficient (K). The first
iteration is equivalent to local calibration without any regionalization; the tenth iteration is a result of the

IRC procedure.
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Figure 10. Change in parameter uncertainty during the iterations of regional calibration. Parameter
uncertainty is represented by the coefficient of determination (+°) between the model parameters
calibrated from the two 11 year periods (19761986 and 1987—1997). Large r* indicate little uncertainty.
The first iteration is equivalent to local calibration without any regionalization. (left) Snow and soil model
parameters and (right) runoff routing model parameters.

routing parameters. The box size represents the difference of
the 75th and 25th percentiles which is a measure of the
spatial variability of the parameters. This spatial variability
measure tends to increase with the number of iterations for
the snow correction factor (SCF), the degree-day factor
(DDF) and the LP to FC ratio (LP/FC) while it does not
change much for the case of the field capacity (FC) and the
nonlinearity (B) model parameters (Figure 5). The spatial
variability tends to increase with the number of iterations for
the fast storage coefficient (K,), the storage state threshold
(LSyz) and the percolation rate (Cp), and tends to decrease
for the slow storage coefficient (K,) and the outflow scaling
parameter (Cg) (Figure 6). For all model parameters the
median remains practically unchanged during the regional
calibration, except the LSy model parameter which
decreases from 51 mm in the first iteration to 41 mm in
the tenth iteration. The other calibration period gives similar
results in terms of the dependence of the spatial variability
of the parameters on the number of iterations (Table 4).
However, the medians of the B and FC parameters differ
markedly. The medians of both parameters tend to be smaller
in the 1976—1986 calibration period than in the 1987—-1997
calibration period. These differences are likely related to
generally different climatic conditions in these two periods.
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Figure 11.

[39] Figures 7 and 8 analyze the spatial variability of the
parameters in terms of the variograms. The sill or overall
level of the variogram is equivalent to the spatial variance of
the parameters and hence a similar measure as the difference
of the 75th and 25th percentiles of Figures 5 and 6. The
increase in the sill and hence spatial variance of the DDF
and LP/FC model parameters with the number of iterations
in Figure 7 is consistent with Figure 5. The snow correction
factor (SCF) shows a somewhat erratic behavior in Figure 7
which is due to a small number of catchments that exhibit
SCF values much larger than the median. The sill of the FC
parameter tends to decrease with the number of iterations
pointing to a decrease in its spatial variability. The spatial
variability of Cz and K, decreases with the number of
iterations which is consistent with Figure 6. The variability
of the other runoff routing parameters increases which is,
again, consistent with Figure 6 and Table 4. In addition to
the overall spatial variability the variogram shows the
spatial coherence of the parameters which allows some
interpretation of parameter uncertainty (see section 4.2).

[40] Examples of the change in the spatial patterns of the
parameters as a result of the IRC are presented in Figure 9.
For the case of the DDF, the spatial patterns become more
diverse as the iterative calibration proceeds. In the south-

180
150 0:,:-: *
o L0t
5 120- it
© i
k) .
& 90+ < .
¢ ;t‘:
'
60 f{
30 T T T T
30 60 90 120 150 180

K2 - iteration 9

Convergence of the model parameters. Comparison of iterations 9 and 10 of the DDF and

the slow storage coefficient (K5) is shown. Each point relates to one catchment.
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Figure 12. Cumulative distribution functions of the model efficiencies Mg of daily runoff for the
320 catchments using model parameters estimated by various methods. Local calibration, parameters p ;
from the first iteration; traditional regionalization, parameters p,.,; from the first iteration; IRC,
parameters p,., ; from the tenth iteration. Traditional regionalization and IRC both relate to the ungauged
catchment case. (left) Calibration period and (right) verification period. The same parameters are used in

the two periods.

west of Austria and in the northwest, consistent regions of
large degree-day factors form. Both are plausible. The
former is plausible as this is a high mountain region where
large snow densities and hence high melt rates can be
expected, the latter as it is a region with frequent rain-
on-snow events where advection melt can give rise to
enhanced melting [Merz and Bloschl, 2003]. The patterns
of the low storage coefficient (K,) (Figure 9, bottom)
become more uniform. The large-scale patterns are those
that can be identified by IRC, the more local-scale variabil-
ity may be due to noise that is reduced during IRC. The two
parameters are typical examples, the other parameters show
either of the two aspects.

[41] The uncertainty of the model parameters is evaluated
by a comparison of parameter values calibrated for the
1976—1986 period with those calibrated for the 1987—
1997 period. The coefficient of determination (+) between
the parameters from the two periods was calculated sepa-
rately for each model parameter and iteration. One would
expect reliably calibrated parameters to be similar in the two
periods and hence exhibit large »* values. The coefficients
of determination in Figure 10 and Table 5 suggest that the
most uncertain parameters are the routing parameter C and
the soil LP/FC ratio. The parameters associated with the
least uncertainty are the soil parameters B and FC and the
runoff parameters K; and LSy . It is interesting that the soil
parameters B and FC are those with noticeable differences
between their median values obtained in the two periods
(Table 4). This indicates that the climatic difference of the
two calibration periods (the period 1976—1986 is noticeably
drier than the period 1987—1997) resulted in different soil
parameter values, but these values are very similar in their
tendency. One of the motivations of the IRC procedure is to
reduce parameter uncertainty. One would therefore hope
that the coefficient of determination increases with the
number of iterations. Figure 10 and Table 5 indicate that
this is indeed the case for most of the parameters. The most
significant increase in 7% occurs for the snow DDF model
parameter, from 0.30 in the first iteration (local calibration
only) to 0.56 in the tenth iteration. Significant increases also

occur for Cp and Cp. The latter is a poorly defined
parameter for which the #* from local calibration is essen-
tially zero which means that Cp cannot be identified from
local runoff data. For the tenth iteration 72 is 0.18 which is
still very small, but the increase indicates that the IRC
procedure does provide information beyond the local runoff
data. The LP/FC ratio is the only parameter that does not
increase but varies erratically during the regional calibration
iterations. The SCF parameter varies erratically as well. The
SCF is designed to account for local catch deficit of the
precipitation gauge. It is therefore likely that a regional
estimation of this parameter may not be very robust.

[42] A total of ten iteration steps has been chosen in this
study. The statistics of the parameters have indicated con-
vergence within the ten iterations as the statistics of the final
iterations are very similar. However, it is also of interest
whether the individual parameters converge. As an exam-
ple, Figure 11 shows a comparison of the degree-day factors
and the slow storage coefficients (K,) obtained in iterations
9 and 10 (parameters p; in Figure 1). For a full convergence

Table 2. Model Efficiency of Runoff According to Nash-Sutcliffe
(Mg), Runoff Volume Error (Vg), and Snow Model Error (Zg)
Obtained in Two Calibration Periods (1976—1986 and 1987—
1997)*

Iteration 1
(Local Calibration)

Model Efficiency in

Calibration Periods Iteration 5 Tteration 10

Mg 1976—-1986 0.71/0.19 0.71/0.19 0.71/0.19
My 1987-1997 0.72/0.13 0.73/0.13 0.73/0.13
Vi 1976—-1986 —0.3/4.7 —0.0/6.4 0.0/6.4
Vi 1987-1997 0.3/7.4 0.0/8.2 0.0/7.8
Zs 1976—-1986 6.8/3.3 6.8/3.6 6.8/3.6
Zs 19871997 6.5/3.7 6.5/3.7 6.4/3.6

“First value is median of model efficiency over the 320 catchments.
Second value is difference of the 75th and 25th percentiles of model
efficiencies, i.e., a measure of scatter. Iteration 1 is equivalent to local
calibration without regionalization (i.e., using p;). Iterations 5 and 10 are a
result of the IRC procedure based on the p; parameters.
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Table 3. As in Table 2 but for the Verification Periods®

Iteration 1
(Local Calibration)

Model Efficiency in

Verification Periods Iteration 5 Iteration 10

Mg 1976-1986 0.66/0.20 0.65/0.19 0.66/0.19
Mg 1987-1997 0.69/0.14 0.70/0.14 0.70/0.14
Vi 1976—-1986 —5.1/10.2 —6.2/11.6 —6.5/12.2
Vi 19871997 6.2/13.0 6.6/13.4 6.5/13.5
Zs 1976—1986 6.4/3.6 6.4/3.9 6.4/3.9
Zs 1987—-1997 6.8/4.0 7.0/4.1 7.0/4.2

“The 19761986 verification period is based on the parameters of the
1987—-1997 calibration period and vice versa.

one would expect the parameters to fall on the 1:1 line. This
is approximately the case, indicating that these two param-
eters converge to good approximation within ten iterations.
The other model parameters converge in a similar way.

3.3. Model Performance in Ungauged Catchments

[43] We examined the predictive accuracy of the pro-
posed IRC method by jackknife cross validation. In this
approach, we treated one gauged catchment as ungauged
and simulated the water balance dynamics using model
parameters p,.,; estimated from regional information only
(Figure 1). In a second step, we estimated the model
performance measures Mg, Vi, and Zg by comparing the
simulated and observed hydrographs as well as the simu-
lated and observed snow cover. We repeated the analysis for
each catchment in turn and calculated the statistics of these
performance measures for the entire study region. We
examined two cases by jackknife cross validation: Using
the p,..; parameters from iteration 1 which is equivalent to
traditional regionalization; and using the p,.,; parameters
from iteration 10 which is the result of the IRC procedure.
The comparison of these performance measures with those
for the locally calibrated case indicates what decrease of
model performance one would have to expect when moving
from gauged to ungauged catchments.

[44] The quantile statistics of model performance of tradi-
tional regionalization (iteration 1) and IRC (iteration 10)
for the calibration and verification periods are presented in
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Tables 6 and 7, respectively. The corresponding quantile
statistics of the local calibration case are given in the first
columns of Tables 2 and 3. The distribution functions of the
Nash-Sutcliffe runoff model efficiencies My are shown in
Figure 12 as an example. The median model efficiencies My
for the local calibration, traditional regionalization and IRC
are 0.71, 0.66, and 0.69 (1976—1986 calibration period) and
0.72, 0.67, and 0.69 (1987—1997 calibration period), re-
spectively. This means that when moving from locally
calibrated parameters to traditionally regionalized parame-
ters one loses 0.05 in terms of median M. If one uses IRC
instead of traditional regionalization one only loses 0.02—
0.03 in terms of the median M. In other words, iterative
regional calibration halves the loss in accuracy encountered
when moving from gauged to ungauged catchments as
compared to the traditional approach. This is also borne
out in Figure 12 (left) as the cumulative distribution
function for IRC (dotted line) lies halfway in between the
local calibration and traditional regionalization curves. For
the verification periods, the M}, runoff efficiencies are lower
(Tables 3 and 7 and Figure 12, right), but there is a similar
increase in the efficiency when using IRC as compared to
traditional calibration.

[45] The scatter of the runoff volume errors Vy for the
local calibration, traditional regionalization and IRC are 5,
16 and 13% (1976—1986 calibration period) and 7, 17 and
14% (1987—1997 calibration period), respectively. This
means that, when moving from locally calibrated parame-
ters to traditionally regionalized parameters, one loses 10%
in terms of the scatter of the V7 but only 8% if one uses IRC
instead. This is a small gain but it is consistent over both
calibration and verification periods.

[46] Tables 6 and 7 also indicate an improvement in the
snow simulation performance when using IRC instead of
traditional regionalization but it is very small and hardly
significant.

4. Discussion and Conclusions
4.1.

[47] Local calibration to gauged catchments yields medi-
an M} runoff simulation efficiencies of 0.71 and 0.72 for the
two calibration periods, and 0.66 and 0.69 for the two

Calibration and Verification Efficiencies

Table 4. Median and 75th Minus 25th Percentile Difference of Model Parameters Calibrated for Two Independent 11 Year Periods

(1976—1986 and 1987—-1997) Over 320 Catchments®

Calibration (1976—1986)

Calibration (1987—-1997)

Model Parameter Iteration 1 (Local Calibration) Iteration 5 Iteration 10 Iteration 1 (Local Calibration) Iteration 5 Iteration 10
SCF 1.04/0.01 1.04/0.04 1.04/0.06 1.03/0.01 1.04/0.03 1.04/0.04
DDF, mm/°C d 1.7/0.6 1.9/0.9 2.0/0.8 1.6/0.4 1.7/0.6 1.8/0.7
LP/FC 0.95/0.02 0.93/0.03 0.92/0.07 0.94/0.02 0.93/0.05 0.92/0.08
FC, mm 114/102 129/95 132/87 145/130 160/110 166/111
B 2.7/5.2 2.0/4.9 1.8/4.5 4.1/7.8 4.2/7.8 4.0/8.2
Ko, days 0.5/0.1 0.4/0.2 0.4/0.2 0.5/0.1 0.4/0.2 0.4/0.1
K, days 9.3/2.0 9.7/4.8 10.4/5.8 9.4/1.9 10.0/5.0 10.5/6.6
K, days 104/77 105/34 100/34 104/66 104/31 100/28
Cp, mm/d 2.1/0.5 2.2/0.9 2.2/0.9 2.2/0.6 2.3/1.0 2.3/1.1
Cr, d/mm 26.1/4.8 26.2/1.7 26.4/1.6 26.5/4.6 26.6/1.5 26.7/1.0
LSyz, mm 50/7 43/17 40/20 51/8 45/16 41/18

“The first value is the median, and the second value is the difference. Results are given for the first, fifth, and tenth iteration of the regional calibration

procedure.
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Table 5. Parameter Uncertainty Assessed by the Coefficient of
Determination (r*) Between the Model Parameters Calibrated for
Two Independent 11 Year Periods (1976—1986 and 1987—-1997)*

Iteration 1

Model Parameter (Local Calibration) Iteration 5 Iteration 10

SCF 0.58 0.60 0.59
DDF, mm/°C d 0.30 0.54 0.56
LP/FC 0.47 0.41 0.29
FC, mm 0.67 0.70 0.70
B 0.71 0.79 0.79
Ko, days 0.57 0.61 0.60
K, days 0.79 0.85 0.87
K,, days 0.51 0.52 0.52
Cp, mm/d 0.44 0.60 0.63
Cr. d*/mm 0.01 0.17 0.18
LSyz mm 0.63 0.77 0.78

Large r* indicate little uncertainty. Results are given for the first, fifth,
and tenth iteration of the regional calibration procedure.

verification periods. These efficiencies are within the range
of what one can expect at the regional scale. Merz et al.
[2006] summarized studies of regional catchment modeling
on a daily time step and noted that the median Mg
efficiencies typically range between 0.6 and 0.7. There is
a decrease in model performance when moving from the
calibration to the verification periods, but the decrease is
small and consistent with the results of other regional
studies [e.g., Young, 2006]. The other performance mea-
sures (runoff volume error, snow cover simulation error)
similarly yield statistics that are within the range of other
studies [e.g., Parajka et al., 2005]. In dedicated catchment
studies one would expect better efficiencies. Dedicated
studies are typically based on a higher density of the
hydrographic network than what is available here and the
model structure is often adjusted to the local particularities
of the catchment [e.g., Reszler et al., 2006]. For a regional
study the model performance obtained here is considered
very reasonable.

[48] The use of regional information in the iterative
regional calibration (IRC) procedure does not decrease the
model performance for the case of gauged catchments. One
would potentially expect a decrease in model performance
as, in addition to the local runoff data, regional information

Table 6. Model Efficiencies for the Ungauged Catchment Case®

Iteration 1
(Regionalization)

Model Efficiency in

Calibration Periods Iteration 10

Mg 1976—-1986 0.66/0.20 0.69/0.19
M 1987-1997 0.67/0.16 0.69/0.15
Vi 1976—-1986 —3.5/16.0 —2.0/13.4
Vi 1987-1997 0.1/16.9 —0.8/14.3
Zs 19761986 7.0/3.6 6.8/3.9
Zs 19871997 6.7/4.2 6.6/4.0

“Nash-Sutcliffe runoff model efficiency (M), runoff volume error (V7),
and snow model error (Zs) obtained in two calibration periods (1976—1986
and 1987-1997). First value is median of model efficiency over the 320
catchments. Second value is difference of the 75th and 25th percentiles of
model efficiencies, i.e., a measure of scatter. Iteration 1 is equivalent to
traditional regionalization (i.e., using p,, ;). Iteration 10 is a result of the
IRC procedure based on the p,,, parameters.
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Table 7. As in Table 6 but for the Verification Periods®

Model Efficiency in Iteration 1

Verification Periods (Regionalization) Iteration 10
My 1976-1986 0.62/0.17 0.63/0.18
Mg 1987-1997 0.66/0.20 0.67/0.16
Vi 1976—1986 —8.1/16.1 —8.2/14.0
Vi 1987-1997 4.6/20.0 5.6/17.8
Zs 1976—1986 6.6/3.3 6.7/3.2
Zs 1987-1997 6.9/4.5 6.9/4.4

“The 19761986 verification period is based on the parameters of the
1987—-1997 calibration period and vice versa.

is incorporated into the objective function and the combined
objective function then represents a trade off between
regional and local information. If the regional information
is not fully consistent with the local runoff data, the ability
of representing local runoff may decrease. Fernandez et al.
[2000, pp. 698—699] reported that “the at site calibration
approach is nearly always an improvement over the regional
calibration approach,” and Szolgay et al. [2003, p. 267]
noted “the regional calibration methods slightly degraded
the model performance in individual catchments when
compared to the at site calibration, but on the average it
proved to be comparable to the manual calibration method.”
The main motivation of regional calibration is to find more
reliable parameters to be used for ungauged catchments, so
a slight decrease of model performance for gauged catch-
ments may be acceptable. In the light of these studies, the
consistency of the efficiencies obtained here suggests that
the proposed IRC approach allows to robustly calibrate the
hydrologic model and provides a framework that accounts
for local and regional information in a consistent way.

4.2. Variability and Uncertainty of Model Parameters

[49] Although the overall model efficiencies remain prac-
tically unchanged during the iterative calibration, the model
parameters do change significantly. The analysis of the
spatial variability both through the percentiles of the param-
eters (Table 4 and Figures 5 and 6) and through the vario-
gram analyses (Figures 7 and 8) sheds light on the
parameter uncertainty.

[s0] The first indicator to parameter uncertainty is the
overall spatial variability of the parameters. For some model
parameters the spatial variability increases with the number
of iterations, i.e., it increases as one moves from local
calibration (iteration 1) to regional calibration (iteration
>1). For example, the variabilities of the degree-day factor
and the fast storage coefficient (K;) increase. These are also
the parameters where the split sample comparison (Table 5
and Figure 10) suggests that they are rather well defined.
Apparently, for well defined parameters, the IRC approach
exploits the ability to account for the spatially variable
shape of the a priori parameter distributions. Also, the
spatial patterns of these parameters obtained by the IRC
method are more plausible. This has been illustrated for the
case of the DDF for which consistently large values in the
southwest and in the northwest of Austria could be inter-
preted by large snow densities in the high mountain region
and frequent rain-on-snow events [Merz and Bloschl, 2003].
For other model parameters the spatial variability decreases
as one moves from local calibration (iteration 1) to regional
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calibration (iteration >1). Examples are the Cp parameter
and the slow storage coefficient K,. These are the most
poorly defined parameters that cannot be estimated reliably
from local runoff data. For the case of the Cx parameter, the
75th minus 25th percentile difference decreases from
around 5 to less than 2 d*/mm as one moves from local
calibration to regional calibration (tenth iteration), and at the
same time the correlation increases from 720f 0.01 to 0.18. It
appears that the reduction in the spatial variability of these
parameters is related to the ability of the IRC method to
reduce the noise in the estimates of poorly identifiable
model parameters. This is important as it is one of the
motivations for using a regional calibration procedure.
There may also exist a compensation effect as not all the
parameters are statistically independent [see, e.g., Merz and
Bloschl, 2004, Figure 3]. For example, the fast storage
coefficient K; and the slow storage coefficient K, appear
to be interrelated, so a decrease in the spatial variability of
one model parameter may be related to an increase in the
spatial variability of another parameter.

[51] The second indicator of parameter uncertainty is the
nugget of the variogram, i.e., the gamma value for very
short distances. The nugget indicates how similar the
parameters of adjacent catchments are, with small nuggets
representing similar parameters. Noise that is purely due to
artifacts in the parameter estimation process can be assumed
to be spatially independent. In the variogram this would
appear as a nugget effect. Figures 7 and 8 show indeed large
nuggets for the poorly defined parameters and the nuggets
decrease significantly with the number of iterations. The
most obvious example is the C parameter which exhibits a
very large nugget for the local calibration case that is
dramatically reduced through the IRC. This is because the
regional calibration reduces the noise that results from poor
identifiability. To a lesser extent this reduction in the nugget
also occurs with the field capacity (FC) and the nonlinearity
(B) model parameters and with the storage state threshold
(LSyz). The snow correction factor (SCF) is an interesting
case as it is designed to account for the local catch deficit of
the precipitation gauge. It is therefore likely that the
regional estimation of this parameters may not add infor-
mation. Indeed, the nugget of the variogram stays relatively
large for all iterations (Figure 7, top left).

[52] It is also of interest to interpret the distance over
which spatial correlations are present, i.e., the distance
where the variogram reaches the sill. It appears that the
shapes of the snow and soil variograms (Figure 7) are
different from the shapes of the runoff routing variograms
(Figure 8). The former tend to approach a sill at distances of
around 50 km with a flat sill at larger distances. This means
that very little correlation exists for distances larger than
50 km. In contrast, most of the runoff parameter variograms
(Figure 8) do not reach a sill but increase consistently with
distance. These differences in the shape can be interpreted
in terms of the role of the parameters in the hydrological
model. The snow and soil parameters tend to be local
parameters, i.e., mainly represent vertical fluxes while the
runoff routing parameters represent lateral flow processes
associated with larger space scales. It is hence not surprising
that the local parameters are only correlated over a limited
distance while the nonlocal parameters exhibit correlations
over much larger distances.
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[53] Application of an iterative method also raises the
issue of convergence. The comparison of consecutive iter-
ations (Figure 11) showed that the parameters did not
change much between iterations 9 and 10, so for the data
used here the method seems to converge after ten iterations.
Also, the change in the spatial variability of the model
parameters suggested that noise in the poorly defined
parameters can be reduced within ten iterations. In general,
the number of iterations needed will depend on the region-
alization method used. In this study, kriging has been used
which is a linear method. For nonlinear regionalization
methods the convergence may be slower.

[54] The uncertainty of model parameters has been quan-
tified more directly by a split sample comparison for two
independent periods following the suggestion of Merz and
Bloschl [2004]. The advantage of the method over, say,
Monte Carlo methods is that it accounts for a range of
uncertainties including data uncertainties and nonstationar-
ity. However, this type of evaluation may only be used in a
meaningful way if a large set of catchments is available for
testing as is the case here. This comparison has indicated
that the IRC procedure increases the similarity of the model
parameters estimated from the two periods as compared to
local calibration. This is consistent with the spatial analyses
of the parameters. The similarity of the parameters in the
two periods does not imply spatially more uniform param-
eters, rather it implies that the differences between the two
parameter values relative to their spatial variability are
smaller. A reduction in parameter uncertainty may also give
rise to the hope that regionalization relationships between
calibrated model parameters and physiographic catchment
attributes could be better defined if the IRC method is used
as compared to local calibration.

4.3. Model Performance in Ungauged Catchments
and Outlook

[s5] The evaluation of the predictive accuracy by jack-
knife cross validation indicated that the proposed iterative
regional calibration method has the potential for improving
model performance in ungauged catchments for both the
calibration and verification periods. The main mechanism
seems to be the constraint on the shape of the parameter
distribution through regional calibration, which tends to
translate into more accurate runoff simulations in catch-
ments considered as ungauged. Apparently, for well defined
parameters, the IRC approach exploits the ability of
accounting for the spatially variable shape of the a priori
parameter distributions, and for the poorly identifiable
model parameters the IRC approach reduces the noise in
the parameter estimates. When moving from locally cali-
brated parameters to traditionally regionalized parameters
one loses 0.05 in terms of the median runoff simulation
efficiency My. If one uses IRC instead of traditional
regionalization one only loses 0.02—0.03 in terms of the
median Mz. In other words, iterative regional calibration
halves the loss in accuracy encountered when moving from
gauged to ungauged catchments as compared to the tradi-
tional approach. The loss in accuracy is smaller than that
obtained by various parameter regionalization methods of
Parajka et al. [2005]. It is also smaller than the loss in mean
runoff efficiency of 0.07 found by the regional calibration
study of Drogue et al. [2002].
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[s6] Although the reduction in the loss of accuracy is
noticeable in relative terms and is consistent across all
calibration and verification periods, it is small in absolute
terms. Typically, one can expect an improvement in the
median My of 0.03 when using the IRC method. This is
only ten percent of the difference of a perfect simulation
(Mg = 1.0) and the typical model efficiencies of about 0.7.
Striving for more accurate data sets and hydrological
models that better account for local effects is hence prob-
ably as important as are improvements in the regionalization
methods. While comparisons of the performance statistics
as in this paper are useful for testing methods it should also
be noted that for practical applications one is not interested
in the median model efficiency over many catchments but in
the model efficiency in one particular catchment. The results
of this study suggest that the likelihood of obtaining more
reliable model parameters increases when using IRC as
compared to traditional calibration but it does not necessar-
ily entail more reliable parameters in any one catchment.

[57] For reducing parameter uncertainty and improving
model simulations in ungauged catchments the general line
of thought has been that information additional to runoff
data needs to be used to constrain the parameters over what
can be achieved from calibration to runoff alone. As an
alternative to direct measurements of additional data, the
use of “soft data” or qualitative information from field
surveys has been suggested in the literature to constrain
model parameters [e.g., Bloschl, 2005]. “Soft” information
is widely used in practical applications of catchment models
where parameters are selected based on all sources of
information available to the analyst and more formal meth-
ods of incorporating soft information have been proposed
[e.g., Seibert and McDonnell, 2002]. In this study, snow
data have been used in the calibration procedure as well as
regional parameter information. The use of regional infor-
mation to condition the a priori parameter distribution can
be considered as a type of soft information in the calibration
process. More local types of soft information that could be
combined with the present approach are maps of saturation
areas, for example. Combining local data with the regional
calibration approach may perhaps help resolve some of the
conflicts in the current philosophical debate related to
regional calibration, of adjusting parameters to the local
situation as opposed to adjusting parameters to the regional
trend as is the case in regional calibration.

[s8] There are a number of logical extensions of the
method proposed here. The most obvious extension would
be a test of alternative regionalization methods such as top
kriging [Skoien et al., 2006], the use of physiographic
catchment characteristics in the regionalization procedure
[Parajka et al., 2005] or the use of pooling parameters from
hydrologically similar catchments [Mclntyre et al., 2005].
Performance measures, such as peak flow statistics and time
to peak, may help to better discriminate between alternative
methods. Finally, it would be worth improving the model
efficiency for the local calibration case, perhaps, by varying
the model structure between catchments depending on
regional runoff processes.
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