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Institute for Hydraulic and Water Resources Engineering, Vienna University of Technology, Karlsplatz 13/222, A-1040 Vienna, Austria

Abstract:

We examine the value of additional information in multiple objective calibration in terms of model performance and parameter
uncertainty. We calibrate and validate a semi-distributed conceptual catchment model for two 11-year periods in 320 Austrian
catchments and test three approaches of parameter calibration: (a) traditional single objective calibration (SINGLE) on daily
runoff; (b) multiple objective calibration (MULTI) using daily runoff and snow cover data; (c) multiple objective calibration
(APRIORI) that incorporates an a priori expert guess about the parameter distribution as additional information to runoff and
snow cover data. Results indicate that the MULTI approach performs slightly poorer than the SINGLE approach in terms of
runoff simulations, but significantly better in terms of snow cover simulations. The APRIORI approach is essentially as good
as the SINGLE approach in terms of runoff simulations but is slightly poorer than the MULTI approach in terms of snow
cover simulations. An analysis of the parameter uncertainty indicates that the MULTI approach significantly decreases the
uncertainty of the model parameters related to snow processes but does not decrease the uncertainty of other model parameters
as compared to the SINGLE case. The APRIORI approach tends to decrease the uncertainty of all model parameters as
compared to the SINGLE case. Copyright  2006 John Wiley & Sons, Ltd.
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INTRODUCTION

Knowledge of the regional variability of water balance
components is important for solving a range of problems
in water resources management and planning. Simula-
tions of the water balance components are, however,
fraught with a range of problems, including uncertainty
in inputs, model parameters and model structure. These
problems are particularly acute in Alpine regions, where
data are sparse and the spatial variability of the hydro-
logical environment is enormous.

Although modellers have always been aware of model
parameter uncertainty it is only in the last few decades
that explicit efforts have been made towards assessing
this uncertainty. Because of multiple optima, non-linear
interactions between model parameters and data errors,
it may be difficult, if not impossible, to identify a
unique parameter set from runoff data. Methods for
assessing parameter uncertainty in hydrologic models
include the generalized likelihood uncertainty estimation
methodology (e.g. Beven and Binley, 1992; Beven and
Freer, 2001), multi-normal approximations to parameter
uncertainty (e.g. Kuczera and Mroczkowski, 1998), and
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Markov Chain Monte Carlo methods (e.g. Kuczera and
Parent, 1998).

Although these methods are useful in identifying the
degree of confidence one can attribute to a calibrated
parameter set they do not reduce their uncertainty.
For reducing parameter uncertainty the general line of
thought has been that information additional to runoff
data needs to be used to constrain the parameters over
what can be achieved from calibrations to runoff alone.
Various types of catchment response data can be used
depending on the application at hand. Seibert (2000)
and Madsen (2003) used runoff data and groundwater
level data jointly to calibrate model parameters. They
found that the groundwater data reduced the uncertainty
of the parameters representing groundwater dynamics
significantly. Beldring (2002) found that the inclusion of
groundwater levels reduced the uncertainty of most of
the model parameters. Other types of data that can be
used in constraining the uncertainty of model parameters
are snow cover and soil moisture data. The value of
snow cover data in distributed hydrologic simulations has
been demonstrated by Blöschl et al. (1991) and others.
Grayson and co-workers (Grayson and Blöschl, 2000;
Grayson et al., 2002) summarize numerous examples of
using snow and soil moisture data in addition to runoff
and suggest that these response data are particularly
useful if available as spatial patterns. Isotopes and
geochemical characteristics, such as stream chloride,
have also been used for identifying model parameters
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(e.g. Holko and Lepistö, 1997; Mroczkowski et al.,
1997).

As an alternative to measurements, the use of ‘soft
data’ or qualitative information from field surveys has
been suggested to constrain model parameters. ‘Soft’
information is widely used in practical applications of
catchment models where parameters are selected based
on all sources of information available to the analyst (e.g.
Blöschl, 2005). A recent contribution of using this type
of qualitative expert knowledge has been provided by
Seibert and McDonnell (2002).

Formal methods of incorporating information in addi-
tion to runoff in the calibration process are usually
referred to as multiple objective calibration. The various
objectives (related to runoff, groundwater levels, snow
cover, etc.) can be combined in various ways. The most
straightforward combination is by a weighted sum, as
in the weighted least-squares method used for calibrat-
ing groundwater models (e.g. Peck et al., 1988: 50). An
alternative is the use of fuzzy logics, where the compo-
nents of the objective function are combined based on
membership functions that indicate the relative degree of
satisfaction of each fuzzy objective (Seibert, 1997; Franks
et al., 1998; Yu and Yang, 2000; Cheng et al., 2002). A
third method is based on the concept of Pareto optimality.
A parameter set is considered Pareto optimal if there is no
other parameter set that performs at least as well on every
objective and strictly better on at least one objective. That
is, a Pareto-optimal solution cannot be improved upon
without hurting at least one of the objectives (Miettinen,
1999). Madsen (2003) proposed a Pareto-based approach
that emulates the ability of manual expert calibration of
using a number of complementary ways in evaluating
model performance. The method provided generally bet-
ter simulations of runoff compared with manual expert
calibration but virtually similar performance for ground-
water level simulations. Vrugt et al. (2003b) proposed an
optimization technique termed the multi-objective shuf-
fled complex evolution Metropolis (MOSCEM-UA) algo-
rithm that provides an estimate of the Pareto solution
space within a single optimization run. They found that
the MOSCEM-UA algorithm generates a fairly uniform
approximation of the entire set of Pareto parameter com-
binations for their problem. Although various methods
exist for making use of multiple data sources, the actual
merits of additional information have, to our knowledge,
never been identified for a large number of catchments
in the context of regional water balance modelling.

The aim of this paper, therefore, is to assess the value
of snow data in addition to runoff data as well as the value
of expert judgement in multiple objective calibration
of a catchment model. Specifically, we address two
science questions: (a) How will the multiple objective
calibration change the model performance over single
objective calibration? (b) To what extent does multiple
objective calibration reduce model parameter uncertainty
over single objective calibration? One would expect that
the use of additional snow data will improve the snow
cover simulations and decrease the model performance

with respect to runoff. The aim of this paper is to assess
the extent of such change. We use daily hydrologic data
from 320 catchments over a period of 22 years, which
will likely allow us to draw more generic inferences
than has been possible in most previous studies that used
smaller data sets.

DATA

This study was carried out in Austria using data from the
period 1976–1997. Austria is flat or undulating in the east
and north, and Alpine in the west and south. Elevations
range from 115 to 3797 m a.s.l. Mean annual precipita-
tion is less than 400 mm in the east and almost 3000 mm
in the west. Land use is mainly agricultural in the low-
lands and forest in the medium elevation ranges. Alpine
vegetation and rocks prevail in the highest catchments.
The dataset used in this study includes measurements of
daily precipitation and snow depths at 1091 stations and
daily air temperature at 212 climatic stations. To cali-
brate and verify a catchment model, daily runoff data
from 320 gauged catchments were used with areas rang-
ing from 10 to 9770 km2 and a median of 196 km2.
Of these, 97 catchments range in area between 10 and
100 km2, 106 catchments between 100 and 300 km2, 64
catchments between 300 and 1000 km2 and 55 catch-
ments have areas of more than 1000 km2. In preliminary
analyses we carefully screened the runoff data for errors
and removed all stations with significant anthropogenic
effects. We also removed stations where we were not able
to close the long-term water balance. The spatial distri-
bution of the climate stations and the boundaries of the
gauged catchments are shown in Figure 1.

The inputs to the water balance model were prepared
in two steps. First, the daily values of precipitation,
snow depth and air temperature were spatially interpo-
lated by methods that use elevation as auxiliary infor-
mation. External drift kriging was used for precipitation
and snow depths, and the least-squares trend predic-
tion method was used for air temperatures (Pebesma,
2001). The spatial distribution of potential evapotran-
spiration was estimated by a modified Blaney–Criddle
method (Schrödter, 1985; Parajka et al., 2003) using
daily air temperature and potential sunshine duration cal-
culated by the Solei-32 model (Mészároš et al., 2002;
http://www.ih.savba.sk/software/solei/) that incorporates
shading by surrounding terrain. In a second step, a digital
elevation model with a 1 km ð 1 km grid resolution was
used for deriving 200 m elevation zones in each catch-
ment. Time-series of daily precipitation, air temperature,
potential evaporation and snow depth were then extracted
for each of the elevation zones to be used in the water
balance simulations.

METHODS

The model used in this paper is a semi-distributed
conceptual rainfall-runoff model, following the structure

Copyright  2006 John Wiley & Sons, Ltd. Hydrol. Process. 21, 435–446 (2007)
DOI: 10.1002/hyp



REGIONAL WATER BALANCE MODELLING 437

Figure 1. Map of Austria, including boundaries of gauged catchments and stations with precipitation and snow depth measurements

of the HBV model (Bergström, 1976; Lindström et al.,
1997). The model runs on a daily time step and consists
of a snow routine, a soil moisture routine and a flow
routing routine (Merz and Blöschl, 2004). A flow chart of
the model is presented in Merz (2002). The snow routine
represents snow accumulation and melt by a simple
degree-day concept, using a degree-day factor DDF and
a melt temperature parameter TM. The catch deficit of
precipitation gauges during snowfall is corrected by a
snow correction factor SCF. A threshold temperature
interval TR � TS is used to distinguish between rainfall,
snowfall and a mix of rain and snow. The soil moisture
routine represents runoff generation and changes in the
soil moisture state of the catchment and involves three
parameters: the maximum soil moisture storage FC, a
parameter representing the soil moisture state above
which evaporation is at its potential rate, termed the
limit for potential evaporation LP, and a parameter in
the non-linear function relating runoff generation to the
soil moisture state, termed the non-linearity parameter
ˇ. Runoff routing on the hillslopes is represented by an
upper and a lower soil reservoir. Excess rainfall enters the
upper zone reservoir and leaves this reservoir through
three paths: outflow from the reservoir based on a fast
storage coefficient K1; percolation to the lower zone with
a constant percolation rate CP; and, if a threshold of the
storage state LSUZ is exceeded, through an additional
outlet based on a very fast storage coefficient K0. Water
leaves the lower zone based on a slow storage coefficient
K2. The outflow from both reservoirs is then routed by a
triangular transfer function representing runoff routing in
the streams, where CR is a free parameter. More details
on the model are given in Appendix A.

The model is run for all 320 gauged catchments in
Austria. Inputs (precipitation, air temperature and poten-
tial evapotranspiration) are allowed to vary with elevation
within a catchment, so the soil moisture accounting and
snow accounting is performed independently in each ele-
vation zone of the 200 m altitudinal range. However, the

same model parameters are assumed to apply to all eleva-
tion zones of a catchment. These parameters (14 in total)
are estimated by model calibration.

We tested three cases of model calibration in this
paper. The first case conforms to the most widely used
procedure in hydrology, where the model parameters
are adjusted in a way that runoff simulations closely
match measured runoff. This case is termed SINGLE in
this study. The runoff objective function ZQ follows the
relation proposed by Lindström (1997), which combines
the Nash–Sutcliffe efficiency ME and the relative volume
error VE and is defined as

ZQ D �1 � ME� C wVE �1�

where

ME D 1 �

n∑
iD1

�Qobs,i � Qsim,i�
2

n∑
iD1

�Qobs,i � Qobs�
2

�2�

VE D

n∑
iD1

Qsim,i �
n∑

iD1

Qobs,i

n∑
iD1

Qobs,i

�3�

Qsim,i is the simulated runoff on day i, Qobs,i is the
observed runoff, Qobs is the average of the observed
runoff over the calibration (or verification) period of
n days, and the weight w D 0Ð1 was found in test
simulations to give the most plausible results.

The second case, referred to as MULTI in this study,
uses snow data in addition to runoff. In this study
we did not directly compare the observed snow depths
with simulated snow water equivalent, because the snow
density measurements necessary for such a comparison
were not available. Observed snow cover, therefore, was
estimated from daily grid maps constructed from the
observed snow depth data. If the catchment zone average
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of snow depth was greater than 0Ð5 mm then the zone was
considered as snow covered, otherwise it was considered
as snow free. Simulated snow cover was derived from
the snow water equivalent simulated by the model: a zone
was considered snow covered if the water equivalent was
greater than 0Ð1 mm; otherwise, it was considered snow
free. The thresholds of 0Ð5 and 0Ð1 mm were set a little
above zero to avoid snow cover overestimation that may
result from the spatial interpolation. For local snowfall
events the interpolation of snow depth measurements into
neighbouring regions, where no snow was observed, may
lead to small values of catchment (or elevation zone)
snow depth average that, however, should be considered
as no snow. Snow simulations on a particular day were
considered to be poor if the absolute difference between
simulated and observed snow cover was greater than
50% of the catchment area. The 50% threshold was
determined in sensitivity analysis (not shown here) taking
into account different areal arrangements of elevation
zones in different catchments, where the sensitivity was
assessed on the basis of model performance. The snow
objective function ZS was then defined as the ratio of the
number of days with poor snow cover simulation nps to
the total number of days in the simulation period n:

ZS D nps

n
�4�

The third calibration arrangement, termed APRIORI,
accounts not only for the runoff and snow cover objec-
tives, but also incorporates an a priori expert judgement
about the expected distribution of each model parame-
ter. In calibration procedures, the parameter values are
usually bounded between two limits (Duan et al., 1992)
and otherwise no a priori assumptions are made about
the parameters. This implies that the a priori distribution
of the parameters is a uniform distribution. We believe
that it is possible to make a more informed guess about
the shape of the a priori distribution and introduced a

penalty function ZP:

ZP D
k∑

jD1

fmax,j � fj

(
pj � pl,j

pu,j � pl,j

)

fmax,j
�5�

fmax,j D fj

(
pmax,j � pl,j

pu,j � pl,j

)
�6�

where pj is the model parameter j to be calibrated, pl

and pu are the lower and upper bounds of the parameter
space respectively, pmax is the parameter value at which
the a priori distribution is at a maximum and k is the
number of parameters to be calibrated. The probability
density function of the Beta distribution is

f�xjU, V� D 1

B�u, v�
xu�1�1 � x�v�1

for 0 < x < 1, u > 0, v > 0 �7�

with

B�u, v� D
∫ 1

0
xu�1�1 � x�v�1dx D �u��v�

�u C v�
�8�

We assumed values of u, v, pl, pu and pmax for each
parameter j based on our own assessment of the hydro-
logic characteristics of the study region and on literature
values (Bergström, 1992; Seibert, 1997). The order of
magnitude of the pmax was consistent with values found
by modelling studies in the region (Merz and Blöschl,
2004). In the absence of more detailed information we
have chosen the same values of u, v, pl, pu and pmax

(Table I) for all catchments. If more detailed informa-
tion was available (e.g. from catchment attributes or from
field studies), then the limits and parameters of the Beta
distributions for each model parameter could be assigned
differently from catchment to catchment. The resulting
Beta distribution functions are shown in Figure 2.

We calibrated the rainfall-runoff model for 320 catch-
ments using two automatic calibration methods: the
MOSCEM-UA (Vrugt et al., 2003a) and the SCE-UA

Table I. A priori distribution of parameter values. u and v are parameters of the Beta function (Equation (7)), pl and pu are the
lower and upper bounds of the parameter space and pmax is the parameter value at which the Beta distribution is at a maximum

(Equation (5))

Parameter Model part u v pl pu pmax

SCF Snow 1Ð2 4Ð0 1Ð0 1Ð5 1Ð03
DDF (mm °C�1 day�1) Snow 2Ð0 4Ð0 0Ð0 5Ð0 1Ð25
TR (°C) Snow 2Ð0 4Ð0 1Ð0 3Ð0 1Ð5
TS (°C) Snow 2Ð0 4Ð0 �3Ð0 1Ð0 �2Ð0
TM (°C) Snow 3Ð0 3Ð0 �2Ð0 3Ð0 0Ð5
LP/FC Soil 4Ð0 1Ð2 0Ð0 1Ð0 0Ð94
FC (mm) Soil 1Ð1 1Ð5 0Ð0 600 100
ˇ Soil 1Ð1 1Ð5 0Ð0 20 3Ð4
K0 (day) Runoff 2Ð0 4Ð0 0Ð0 2Ð0 0Ð5
K1 (day) Runoff 2Ð0 4Ð0 2Ð0 30 9Ð0
K2 (day) Runoff 1Ð05 1Ð05 30 180 105
CP (mm day�1) Runoff 2Ð0 4Ð0 0Ð0 8Ð0 2Ð0
CR �day2 mm�1� Runoff 1Ð05 1Ð05 0Ð0 50 25
LSUZ (mm) Runoff 3Ð0 3Ð0 1Ð0 100 50
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Figure 2. Shapes of the Beta functions used for defining the a priori
distributions of the model parameters. Number in parentheses are u and

v (see Table I)

(Duan et al., 1992) methods. The MOSCEM-UA algo-
rithm we applied to the SINGLE and MULTI calibration
cases. As a result of the calibration, the MOSCEM-UA
provides a discrete set of possible parameter combina-
tions (a Pareto set) that represent tradeoffs between opti-
mal ways of constraining the model to be consistent with
observed daily runoff and snow cover data. From the
Pareto set solutions we selected two parameter combi-
nations. The single criterion end point in the Pareto set
with respect to the minimum ZQ represents the parameter
combination used for the SINGLE calibration case. The
second parameter combination represents a compromise
solution between the runoff and snow cover objective
functions and is used for the MULTI calibration case.
We selected this parameter set in a way that yielded the
minimum value of

ZMULTI D 0Ð8ZQ C 0Ð2 ZS

ZS,MAX
�9�

The weights (0Ð8 and 0Ð2) were determined by test
simulations and gave a relative importance of 80% to ZQ

and 20% to ZS on average over the 320 catchments.
An example of the Pareto solution space for the

Wienerbruck catchment is presented in Figure 3. The
triangle in Figure 3 represents the parameter set selected
for the SINGLE case and the big black circle represents
the parameter set selected for the MULTI case.

For three objective functions, the MOSCEM-UA
method can be numerically quite taxing as it evaluates
the entire three-dimensional Pareto solution space. For
the APRIORI case, therefore, we used the SCE-UA cal-
ibration algorithm instead, which is numerically more
efficient, and minimized one compound objective func-
tion ZC:

ZC D w1ZQ C w2ZSC C w3ZP �10�

where the part representing the snow objective function
ZSC is defined as the ratio of number of days with poor
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Figure 3. Pareto solutions in the two-dimensional objective function
space obtained by the MOSCEM-UA method; Wienerbruck catchment
is shown as an example. The small black dots correspond to 1500 Pareto
solutions, the filled triangle represents the minimum runoff objective
function (SINGLE) and the large filled circle shows the compromise
solution (MULTI) between the runoff and snow objective functions, ZQ

and ZS

snow cover simulation nps to the number of days with
observed snow cover nos expressed as

ZSC D ZS
n

nos
�11�

The weights in Equation (10) were assigned in test
simulations as w1 D 0Ð7, w2 D 0Ð2 and w3 D 0Ð1. These
test simulations consisted of sensitivity analyses that
showed that the model results were only moderately
sensitive to the choice of weights. The selection of
weights is arbitrary and always depends on subjective
user requirements and expectations. In this paper we
estimated the weights so that, on average, the runoff
ZQ, snow ZSC and a priori penalty ZP contribute to the
final compound objective function ZC with 40%, 40%
and 20% respectively.

The evaluation of the calibration and verification effi-
ciencies of the SINGLE, MULTI and APRIORI opti-
mization approaches, along with the comparison of their
parameter uncertainties, were performed in two steps. In
a first analysis, we split the entire period of observations
(1976–1997) into two 11-year periods: from 1 January
1976 to 31 December 1986 and from 1 January 1987
to 31 December 1997. Warm-up periods from January
to October were used in both cases. For the efficiency
estimation and comparison between different calibration
procedures, we performed a split sample test in the ter-
minology of Klemeš (1986). We used the 11-year periods
in turn for calibration and validation, and compared the
model performances from both arrangements. In a sec-
ond analysis, we judged the parameter uncertainty for the
SINGLE, MULTI and APRIORI methods by comparing
the parameters calibrated for the 1976–1986 period with
those calibrated for the 1987–1997 period. The compari-
son of parameter values obtained in two different periods
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gives the total amount of uncertainty of these parame-
ters, including uncertainty due to input data and model
structure.

CALIBRATION AND VERIFICATION
EFFICIENCIES

The performance of the single- and multiple-objective
parameter optimization approaches is presented in terms
of their efficiency to simulate runoff ME (Equation (2)),
runoff volume errors VE (Equation (3)) and snow cover
errors ZS (Equation (4). For a favourable model perfor-
mance, the ME runoff efficiencies should be large, the
VE volume errors should be close to zero with a small
scatter and the ZS snow cover errors should be small.

Table II and Figures 4 and 5 (left panels) show the ME
model efficiencies of the SINGLE, MULTI and APRI-
ORI optimization approaches. The statistical evaluation

Table II. Model efficiency ME of runoff according to Nash–
Sutcliffe for the calibration and verification periods using the

SINGLE, MULTI and APRIORI calibration approaches

MEa

SINGLE MULTI APRIORI

Calibration 1976–1986 0.74/0.17 0.72/0.18 0.74/0.17
Calibration 1987–1997 0.75/0.12 0.74/0.12 0.75/0.12
Verification 1987–1997 0.70/0.13 0.70/0.14 0.71/0.13
Verification 1976–1986 0.68/0.20 0.64/0.20 0.68/0.19

a First value: median of ME efficiency over the 320 catchments. Second
value: difference of the 75% and 25% quantiles of model efficiencies, i.e.
a measure of scatter. High model performances are associated with large
medians and a small scatter

in Table II includes the median and, as a measure of scat-
ter, the differences of the 75th and 25th percentiles over
all 320 catchments. The SINGLE optimization approach
yields median model efficiencies of ME D 0Ð74 and 0Ð75
for the two periods when they are used for calibration.
Incorporating snow cover data in the MULTI approach
slightly decreases the median efficiencies to ME D 0Ð72
and 0Ð74. However, the incorporation of both snow cover
data and an expert judgement about the expected parame-
ter values in the APRIORI optimization scheme yields the
same ME performance as the SINGLE approach. This is
because, in the APRIORI objective function, less weight
is given to snow than in the MULTI case. This result
suggests that the use of a priori information on parame-
ters does not necessarily decrease model efficiency. This
is a typical result, which, of course, depends on the
weights chosen in the objective function. For the veri-
fication cases, there is a slight decrease in runoff model
efficiency for all methods compared with the calibration
case, but the relative performance of the methods remains
similar. It is interesting that in the APRIORI case some of
the lowest model efficiencies improve over the SINGLE
case (Figure 5, bottom left panel), whereas the opposite
seems to be true of the MULTI case (Figure 5, top left
panel).

The runoff volume errors VE are shown in Table III
and Figures 4 and 5 (top centre and bottom centre pan-
els). The median VE values around 0% for the calibration
periods indicate that the calibration is essentially unbi-
ased for all calibration procedures. In the verification
periods, the median biases are around š5%, which is
likely related to data issues. The scatter is around 3–4%
in the calibration periods and increases to around 11%
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Figure 4. Comparison of the model efficiency of daily runoff ME, runoff volume error VE and snow over error ZS estimated by the single objective
(SINGLE) and the multiple objective (MULTI and APRIORI) calibration approaches. Each point in a panel relates to one out of 320 catchments for

the calibration period 1976–1986
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Figure 5. Comparison of the model efficiency of daily runoff ME, runoff volume error VE and snow cover error ZS estimated by the single objective
(SINGLE) and the multiple objective (MULTI and APRIORI) calibration approaches. Each point in a panel relates to one out of 320 catchments for

the verification period 1976–1986

Table III. Volume errors VE of runoff for the calibration and
verification periods using the SINGLE, MULTI and APRIORI

calibration approaches

VEa (%)

SINGLE MULTI APRIORI

Calibration 1976–1986 �0.4/3.3 �0.8/4.2 �0.1/1.9
Calibration 1987–1997 0.1/3.6 �0.3/4.2 0.3/2.8
Verification 1987–1997 5.7/11.5 4.9/11.5 6.3/12.0
Verification 1976–1986 �5.5/10.7 �6.5/10.5 �5.0/10.1

a First value: median of VE over the 320 catchments. Second value:
difference of the 75% and 25% quantiles of VE, i.e. a measure of scatter.
High model performances are associated with medians close to zero and
a small scatter.

in the verification periods. The patterns of the VE verifi-
cation efficiencies (Figure 5) indicate that, for a number
of catchments, the water balance is not closed properly
for the data. This is the case for all three optimization
schemes.

The snow cover model performances ZS are presented
in Table IV and Figures 4 and 5 (right panels). The
poorest snow cover simulations are obtained by the
SINGLE optimization approach. The median errors over
the 320 catchments are around 7% for the calibration
periods and the scatter is more than 5%. The MULTI
and APRIORI approaches significantly improve the snow
simulations, with medians of less than 5% and around
6% respectively. More importantly, the scatter for the
MULTI and APRIORI approaches is only 3% and 3–4%
respectively. For the verification periods, the MULTI
and APRIORI methods, again, outperform the SINGLE

Table IV. Snow cover simulation errors ZS for the calibration and
verification periods using the SINGLE, MULTI and APRIORI

calibration approaches

ZS (percentage of days)

SINGLE MULTI APRIORI

Calibration 1976–1986 7.7/5.5 5.0/2.9 6.3/3.7
Calibration 1987–1997 6.2/5.2 4.7/2.9 5.9/3.2
Verification 1987–1997 7.5/6.1 5.7/3.4 6.8/4.0
Verification 1976–1986 6.6/4.4 4.8/2.7 5.9/3.5

a First value: median over the 320 catchments of the percentage of days
with poor snow cover simulations. Second value: difference of the 75%
and 25% quantiles, i.e. a measure of scatter. High model performances
are associated with small medians and a small scatter.

method. The median snow errors are around 5% and 6%
respectively in the MULTI and APRIORI cases, with
scatters of around 3% and 4% respectively, and the
SINGLE case gives median errors of around 7% with a
scatter of around 6%. It is clear that the use of snow data
in calibration improves the snow simulations significantly
in both the calibration and verification periods, but the
interesting issue is the extent of such an improvement.
The results show that the snow data have reduced
significantly not only the median of the snow model
performance, but also the regional differences represented
by the percentile difference.

PARAMETER UNCERTAINTY

We evaluated the uncertainty of the model parame-
ters obtained from the SINGLE, MULTI and APRIORI
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Table V. Parameter uncertainty assessed by the coefficient of
determination r2 as a measure of how similar are the model
parameters calibrated for two independent 11-year periods

(1976–1986 and 1987–1997)

Parameter Model part r2

SINGLE MULTI APRIORI

SCF Snow 0Ð50 0Ð40 0Ð56
DDF Snow 0Ð26 0Ð53 0Ð36
TR Snow 0Ð15 0Ð22 0Ð19
TS Snow 0Ð23 0Ð41 0Ð25
TM Snow 0Ð27 0Ð45 0Ð34
LP/FC Soil 0Ð29 0Ð18 0Ð25
FC Soil 0Ð40 0Ð31 0Ð54
ˇ Soil 0Ð44 0Ð26 0Ð55
K0 Runoff 0Ð26 0Ð25 0Ð54
K1 Runoff 0Ð49 0Ð44 0Ð75
K2 Runoff 0Ð48 0Ð31 0Ð43
CP Runoff 0Ð49 0Ð41 0Ð53
CR Runoff �0Ð01 0Ð00 0Ð01
LSUZ Runoff 0Ð14 0Ð18 0Ð56

optimization approaches by a comparison of their values
calibrated for the 1976–1986 period with those calibrated
for the 1987–1997 period. As measures of the uncertainty
we used the coefficient of determination r2 and the root-
mean-square deviation normalized to the parameter range
(RMSD) of each parameter for the two periods. Reliably
estimated parameters with small uncertainties are those
where r2 is large, RMSD is small and they should cluster
around the 1 : 1 line in scatter plots.

The coefficients of determination r2 are presented in
Table V. The most uncertain parameters in all three
optimization approaches are the routing parameter CR

and the threshold temperature for liquid precipitation
TR. Parameters with smaller uncertainties are the snow
correction factor SCF, the fast storage coefficient K1 and
the percolation rate CP in the SINGLE approach, the
degree-day factor DDF and the threshold temperature
for snowmelt TM in MULTI, and practically all soil
and runoff parameters (except the routing parameter CR

and the soil LP/FC ratio) estimated by the APRIORI
approach. It is now interesting to examine how the
uncertainty changes when moving from the SINGLE
to the MULTI approach. Strikingly, the coefficients of
determination increase significantly for the degree-day
factor DDF (from 0Ð26 to 0Ð53), for the lower and upper
threshold temperatures of the precipitation state TR and
TS (from 0Ð15 to 0Ð22 and from 0Ð23 to 0Ð41 respectively)
and for the threshold temperature of melt TM (from 0Ð27
to 0Ð45). These are all parameters related to the snow
module of the model. In contrast, the other parameters
(related to the soil and runoff components) tend to get
slightly more uncertain or do not change much in terms
of their uncertainty. Clearly, if snow data are used in
calibration it is mainly the snow component of the model
that can be expected to improve and, interestingly, only
the snow component. The APRIORI case, in contrast,
tends to reduce the uncertainty of all model parameters
compared with the SINGLE case. However, the snow

Table VI. Parameter uncertainty assessed by the root-mean-
square deviation normalized by the parameter range (RMSD) as
a measure of scatter of the model parameters calibrated for two

independent 11-year periods (1976–1986 and 1987–1997)

Parameter Model part RMSD

SINGLE MULTI APRIORI

SCF Snow 0Ð32 0Ð34 0Ð22
DDF Snow 0Ð27 0Ð24 0Ð11
TR Snow 0Ð42 0Ð39 0Ð06
TS Snow 0Ð41 0Ð37 0Ð09
TM Snow 0Ð30 0Ð26 0Ð13
LP/FC Soil 0Ð42 0Ð43 0Ð10
FC Soil 0Ð35 0Ð35 0Ð16
ˇ Soil 0Ð38 0Ð45 0Ð22
K0 Runoff 0Ð41 0Ð44 0Ð06
K1 Runoff 0Ð29 0Ð30 0Ð08
K2 Runoff 0Ð34 0Ð40 0Ð26
CP Runoff 0Ð27 0Ð28 0Ð10
CR Runoff 0Ð40 0Ð39 0Ð16
LSUZ Runoff 0Ð39 0Ð41 0Ð10

model parameters are more uncertain than in the MULTI
case. This is because, in the APRIORI objective function,
less weight is given to snow than in the MULTI case.

As an alternative measure of parameter uncertainty,
Table VI shows the root-mean-square deviation of the
parameters in the two periods normalized by the parame-
ter range (RMSD). The change in uncertainty when mov-
ing from the SINGLE to the MULTI approach is similar
to that identified by the coefficients of determination. The
RMSD values decrease for the snow parameters and tend
to increase or remain similar for the other parameters.
However, the RMSD values decrease significantly for
all parameters when moving to the APRIORI approach.
This indicates that the APRIORI approach constrains the
parameters much more drastically than the other meth-
ods do.

Examples of the visual appearance of the differences
between the calibrated parameters for the two periods are
plotted in Figure 6 for the degree-day factor DDF, the
maximum soil moisture storage FC and the fast storage
coefficient K1. The left panels relate to the SINGLE
case, the middle panels to the MULTI case and the right
panels to the APRIORI case. The scatter for the degree-
day factor DDF decreases when moving from SINGLE
to MULTI, but the scatter of the other parameters does
not change much. In contrast, the APRIORI case shows
significantly less scatter for all parameters. It should be
noted that the reduction in parameter variability in the
APRIORI case compared with the SINGLE case does
not come at the cost of decreased model performance,
as the runoff model performances for the two cases are
similar.

DISCUSSION AND CONCLUSIONS

In this study we have assessed the model performance
and the parameter uncertainty of two multiple objective
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Figure 6. Selected model parameters estimated by the SINGLE (left), the MULTI (centre) and the APRIORI (right) calibration approaches. Horizontal
axes show the parameters calibrated for the period 1987–1997; vertical axes show the parameters calibrated for the period 1976–1986. The top
panels show the degree-day factor DDF, the middle panels the maximum soil moisture storage FC, and the bottom panels show the fast storage

coefficient K1

calibration approaches and compared their effectiveness
with a single objective calibration procedure that involved
only daily runoff data in the calibration. The verifi-
cation approach used for the validation of the three
calibration procedures corresponds to the undisturbed-
catchment multi-response split-sample and independent-
sample strategies proposed by Mroczkowski et al. (1997).
The first multiple objective approach (termed MULTI)
uses snow cover data in addition to runoff. The results
indicate that the use of snow cover data significantly
improves the model performance in terms of simulat-
ing snow cover, but slightly decreases the performance
in terms of simulating runoff. This is true of both the
calibration and the verification periods. It is interesting
that this finding applies to a large number of catchments
in diverse hydroclimatic regions of Austria. For a much
smaller number of catchments (only two) and different
processes (groundwater instead of snow), Seibert (2000)
concluded that, when calibrating a model against two

objectives, ‘the values of the objective functions were
about 5 per cent below their values from the single-
criterion calibration for both criteria’. Similar results have
been reported by Madsen (2003), who showed that the
calibration based only on groundwater levels provided
poor simulation of catchment runoff. However, a minor
relaxation of the performance of the groundwater level
simulations led to a significant improvement in runoff
simulation. Along similar lines, Seibert and McDonnell
(2002) reported that the decrease in model performance
was mainly caused by a conflict between the criteria used
in parameter optimization for their case of incorporating
soft data in multiple objective calibration.

We also used expert judgement to constrain the param-
eter distribution in addition to using runoff and snow
cover data (termed APRIORI case). For the calibration
periods, the runoff model efficiencies of this case were
similar to single objective calibration on runoff only and
for the verification periods the efficiencies were even
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slightly better. This suggests that it is useful to make
a priori assumptions on the distribution of parameters
even if these are approximate estimates.

In the APRIORI case, the snow cover model efficiency
was somewhat lower than in the MULTI case where
runoff and snow cover data were used; this is because
less weight is given to snow in the objective function.
However, the MULTI case yielded significantly better
snow simulations than the SINGLE case where no snow
data were used. It appears that similar values of the runoff
objective function do not necessarily imply a similar
hydrological response of the catchment. As pointed out
by Gupta et al. (2003), ‘regardless of the objective
function, the response surface contains numerous very
similar solutions (in terms of objective function value) at
widely differing locations in the parameter space’. The
reduction of parameter uncertainty, hence, is clearly of
paramount importance.

We used a method for assessing parameter uncertainty
that is based on a split sample comparison of model
parameters for two periods following the suggestion of
Merz and Blöschl (2004). The advantage of the method
over, say, Monte Carlo methods is that it accounts for
a range of uncertainties, including data uncertainties and
non-stationarity, but it may only be used in a meaningful
way if a large set of catchments is available for testing, as
is the case here. Quantification of parameter uncertainty
by the coefficient of determination and the root-mean-
square deviation showed that the use of additional snow
cover data significantly reduced the parameter uncertainty
for the parameters representing the snow cover dynamics,
but tended to increase the parameter uncertainty for other
model parameters. This is in line with Seibert (2000),
who, for the case of using additional groundwater level
data, noted that ‘the parameter uncertainty decreases for
five parameters of the response routine, which is the
part of the model representing groundwater dynamics’.
Our results show that incorporating an expert guess
about the parameter distribution, additionally to runoff
and snow cover data, reduced the scatter significantly
between parameters optimized for different periods. It
is important that this finding applies to an ensemble
of 320 catchments. For individual catchments, expert
knowledge may or may not reduce parameter uncertainty.
An individual example where this has been the case was
reported by Seibert and Mc Donnell (2002), who found
a reduction of the parameter uncertainty when soft data
were added to the multi-criteria model calibration.

The use of expert knowledge about the distribution of
model parameters in the optimization procedure appears a
promising avenue for further reducing parameter uncer-
tainty. In this study we have used the same parameter
distribution for all catchments, but it may be of advan-
tage to use different distributions for different catch-
ments, depending on catchment characteristics for exam-
ple. Alternatively, neighbouring catchments could be
used, as is the case in regional calibration (e.g. Szolgay
et al., 2003). We believe that constraining the parame-
ter distribution in a regional calibration procedure will

improve the effectiveness of multiple objective calibra-
tion and provide even more robust regional patterns of
model parameters.
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APPENDIX A

Snow model

The snow routine represents snow accumulation and
melt by a simple degree-day concept. Mean daily precip-
itation P in an elevation zone is partitioned into rain PR

and snow PS based on the mean daily air temperature

TA:

PR D P if TA ½ TR

PR D PTA � TS
TR � TS

if TS < TA < TR

PR D 0 if TA < TS

PS D P � PR

�A.1�

where TS and TR are the lower and upper threshold
temperatures respectively. Melt starts at air temperatures
above a threshold TM:

M D �TA � TM�DDF if TA > TM and SWE > 0
�A.2�

where M is the amount of melt water per time step,
DDF is the degree-day factor and SWE is the snow water
equivalent. The catch deficit of the precipitation gauges
during snowfall is corrected by a snow correction factor
SCF. Changes in the snow water equivalent from days
i � 1 to i are accounted for by

SWEi D SWEi�1 C �SCFPS � M�t �A.3�

where t is the time step of 1 day.

Soil moisture accounting

The soil moisture routine represents runoff generation
and changes in the soil moisture state of the catchment:

SSM,i D SSM,1�i C PR C M � EA �A.4�

where SSM is the soil moisture of a top soil layer
controlling runoff generation and actual evaporation EA.
The contribution SUZ of rain and snowmelt to runoff is
calculated by an explicit scheme as a function of the
soil moisture of the top layer SSM using a non-linear
relationship with two free parameters, FC and ˇ:

SUZ D
(

SSM

FC

)ˇ

�PR C M� �A.5�

FC is the maximum soil moisture storage. The parameter
ˇ controls the characteristics of runoff generation and is a
non-linearity parameter. If the top soil layer is saturated,
i.e. SSM D FC, then all rainfall and snowmelt contributes
to runoff. The actual evaporation EA is calculated from
potential evaporation EP by a piecewise linear function
of the soil moisture of the top layer:

EA D EP
SSM
LP if SSM < LP

EA D EP if SSM ½ LP
�A.6�

where LP is a parameter termed the limit for potential
evaporation EP.

Response and transfer functions

The response function represents runoff routing on the
hillslopes and consists of two reservoirs, representing two
soil zones. The storage states of the upper and lower
zones are SUZ and SLZ respectively. SUZ enters the
upper zone reservoir and leaves this reservoir through
three paths: outflow from the reservoir with a fast storage
coefficient of K1, percolation to the lower zone with a
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constant percolation rate CP, and, if a threshold LSUZ of
the storage state is exceeded, through an additional outlet
with a storage coefficient of K0. Water leaves the lower
zone with a slow storage coefficient of K2. The outflow
from both reservoirs QG is then routed by a triangular
transfer function, which represents the runoff routing in
the streams:

BQ D BMAX � CRQG if �BMAX � CRQG� ½ 1
BQ D 1 otherwise

�A.7�

where BQ is the base of the transfer (triangular) function,
BMAX is the maximum base at low flows and CR is a
free scaling parameter. The BMAX model parameter was
set to a constant value of BMAX D 10 days on the basis of
sensitivity analyses, whereas the remaining 14 parameters
were found by the calibration.

Copyright  2006 John Wiley & Sons, Ltd. Hydrol. Process. 21, 435–446 (2007)
DOI: 10.1002/hyp


