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ABSTRACT
In monitoring and modeling landscape soil processes, the sampling

andmodeling scales should, ideally, be commensuratewith the scales of
the soil characteristics of interest. Unfortunately, this is usually not
possible, both because the true covariance structure of the variable of
interest is unknown a priori and because of logistical constraints. We
examine the biases and random errors in variogram parameters that
result from the choice of a sample scale triplet (spacing, extent, and
support) that is not commensurate with the scales of the underlying
‘‘true’’ soil variability.We generate numerous two-dimensional random
fields, from which we sample data sets randomly or on a grid. We use
these samples to estimate the variogram parameters with various
methods. The results indicate that both biases and random errors may
be large and depend on the sampling scale triplet relative to the scale of
the underlying soil variability. The maximum likelihood (ML) method
of parameter estimation gives the smallest biases for largely spaced
random samples, while the weighted least squares (WLS)method gives
the smallest biases for largely spaced gridded samples. Nonparametric
estimates exhibit smaller random errors but larger biases than
estimates from the two parametric methods (ML, WLS).

VADOSE ZONE–RELATED variables often exhibit some
sort of organization at the landscape scale. In some

cases it may be possible to explain the laws underlying
the organization, but in other cases this may be very
difficult. It may then be prudent to represent the soil-
related variables as random variables (Webster, 2000).
This variable can be soil moisture; concentrations of nu-
trients, pollutants, or bacteria; or dynamic properties
related to any of these, such as hydraulic conductivity or
denitrification rates. Assuming that the variable of in-
terest can be considered a realization of a random field,
geostatistical methods can be used both for interpola-
tion of the variable between the measurements and for
characterizing the spatial properties of the variable of
interest in a parsimonious way by making use of the
variogram. The sill of the variogram is a measure of the
magnitude of the spatial variability, the correlation length
is a measure of the degree of correlation in space (i.e., the
scale of the underlying process), and the nugget is a mea-
sure of small-scale variability.

In this study we focused on the use of geostatistics for
characterizing spatial properties in the landscape. Such
characterization has been used in numerous scientific
disciplines. Soil and hydrologically related studies in-
clude radon concentration in soils (Oliver and Khayrat,

2001), hydraulic conductivity in aquifers (Gelhar, 1993,
p. 292), infiltration rates in agricultural landscapes (Haws
et al., 2004), and soil moisture characteristics of land-
scapes (Mohanty et al., 2000;Western et al., 2004), among
many other examples.
Common to all these studies is that the sampling

scales are not necessarily commensurate with the scales
of the underlying processes. The three sampling scales—
spacing, extent, and support—were termed the scale
triplet by Blöschl and Sivapalan (1995). In the two-
dimensional case, as is of importance for environmental
variables in landscapes, Blöschl (1999) defined them as
characteristic length scales: spacing (LS), extent (LE), and
support (LA) (Fig. 1). When measuring, for example, soil
moisture in an area of size Adom, the spacing (LS) is the
average distance between the centers of each measure-
ment and is a function of the size of the domain,Adom, and
the number of samples N. The extent (LE) reflects the
physical boundaries of the domain of measurements, and
the support (LA) is related to the support area A of the
measurement, e.g., the surface area of a soil sample or the
footprint of a pixel from remote sensing. In the case of a
square, these relations are:

LS 5

ffiffiffiffiffiffiffiffiffiffi
Adom

N

r
[1]

LE 5
ffiffiffiffiffiffiffiffiffiffi
Adom

p
[2]

LA 5
ffiffiffiffi
A

p
[3]

When the sampling scales are not commensurate with the
scale of the underlying process, they will likely affect the
estimated characteristics of the data. The data may then
exhibit both biases and random errors that are related to
the choice of sampling scale.
Large supports will typically result in underestimation

of the variance and overestimation of the correlation
length (Journel and Huijbregts, 1978). Romshoo (2004)
analyzed remotely sensed soil moisture at different spa-
tial scales and noted that increasing the support in-
creased the estimated correlation length and decreased
the variance. Russo and Jury (1987) found that large
spacings led to overestimation of the correlation length
because the small-scale variability will be aliased with
larger scales (Nyquist, 1924). Beckie (1996) analyzed sam-
pling scales associated with the spacing and support of a
single groundwater field test and used filter functions in
the frequency domain to estimate the variability between
measurements, given their support and spacing. He found
that increasing spacing increased the unresolved small-
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scale variability, while increasing support decreased it.
Gelhar (1993) compared estimates of the spatial correla-
tion length of hydraulic conductivity with the extent of
the analyzed domains, and suggested (Fig. 6.5 of Gelhar,
1993) that the correlation lengths tend to be on the order
of 10% of the extent of the domain irrespective of the
underlying hydrogeology of the aquifer. Similar results
have been obtained by Blöschl (1999) for snow cover
patterns. McBratney (1992) showed that the spatial vari-
ance of soil characteristics increases with extent. Dungan
et al. (2002) discussed different scales used in spatial sta-
tistics with descriptions of their effect on different spatial
characteristics. Western and Blöschl (1999) performed a
more coherent analysis of spacing, extent, and support,
using soil moisture data, and developed analytical expres-
sions for the biases of variance and correlation length.
They noted that the sampling scales affected the estimates
of the variogram parameters depending on which scale
of the scale triplet (spacing, extent, and support) is con-
sidered and provided a framework for reconciling the ap-
parently conflicting results in the literature regarding scale
effects on variogram parameters.

There have been several studies that examined un-
certainties or random errors in the estimated variogram
parameters. Cressie (1985) suggested that the uncertainty
would depend on the variogram value and the number of
samples in a bin. Shafer and Varljen (1990) proposed a
jack-knifing method to estimate the confidence limits.
Ortiz andDeutsch (2002) and Pardo-Igúzquiza andDowd
(2001) developed analytical expressions for describing
the uncertainty of the estimates, taking the correlation
between sample pairs into account, based on work by
Menke (1989) and Woodbury and Sudicky (1991). Web-
ster andOliver (1992) examined the influence of the num-
ber of samples on the estimates of the local variogram
for one particular experimental setup. They concluded
that a variogram computed from 150 samples will often
be satisfactory, while one derived from 225 samples will
usually be reliable. Their findings were for one experi-
mental setup, and estimation of the local variogram. In
different applications the number of samples needed for
reliably estimating the variogram may be different.

Sample variograms can be estimated in different ways
(Matheron, 1965; Cressie and Hawkins, 1980; Omre,
1984), most of which are a variant of plotting the squared
differences of the data values of pairs of points against
lag and then averaging them within each lag bin. Fitting

a variogram model to the sample variogram can be done
by, for example, ordinary least squares (OLS), gener-
alized least squares, weighted least squares with ap-
proximations (WLS) (all from Cressie, 1991, p. 94–97),
maximum likelihood (ML), and restricted maximum
likelihood (REML) (Kitanidis, 1983; Kitanidis and Lane,
1985; Pardo-Igúzquiza, 1998). These methods assume
that the type of variogram model is known. Gorsich and
Genton (2000) proposed a method of finding the most
likely type of variogram model by estimating the non-
parametric derivative of the sample variogram values.

Zimmerman and Zimmerman (1991) compared seven
estimators that can be used for estimating the parameters
of a variogram. They also examined the estimates as a
function of the parameters of the underlying variogram to
get an indication of sampling scale effects. Their results
showed that the performance of all methods was similar.
They suggested that the loss of accuracy by using simple
methods such as OLS and WLS is small compared with
the extra computational burden of using more complex
methods such as ML and REML. Cressie (1991, p. 100)
discussed these results and questioned the robustness of
the ML and REML methods, and related them to depar-
tures from the Gaussian assumption to which they are
closely tied. Pardo-Igúzquiza (1998), however, suggested
that the MLmethod is applicable to data that do not con-
form to amultivariateGaussian distribution, although this
may be difficult to verify in practice.

There is a distinction between the theoretical vario-
gram, and the local variogram (Journel and Huijbregts,
1978, p. 192). The theoretical variogram represents all
possible realizations of a process, while the local vario-
gram is obtained by sampling exhaustively only within
the area of interest. For a description of the general cor-
relation structure of a variable the theoretical variogram
is required, while for interpolation between observations
in a study area, the local variogram is required. This paper
focuses on how the sampling scale affects the estimated
variogram parameters of the theoretical variogram. Spe-
cifically, the aim of this study was to identify the biases
and random errors in variogram parameters that result
from the choice of a sample scale triplet (spacing, extent,
and support) that is not commensurate with the scales of
the underlying ‘‘true’’ soil variability. We have chosen a
simple correlation structure, assuming normally distrib-
uted values, stationarity, and absence of noise to focus
on the base case. More complicated distributions are be-

Fig. 1. The sampling scale triplet—spacing LS, extent LE, and support LA—for the two-dimensional case.
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yond the scope of this paper. The variogram parameters
are estimated by the WLS and ML methods and are
compared with the variogram parameters used for gen-
erating the random fields, along with the corresponding
nonparametric estimates.

METHODS

Generating Random Fields and Sampling

We analyzed sampling scale effects by generating and ana-
lyzing a large number of random fields with a prescribed cor-
relation structure. This provides an opportunity to analyze
repeated realizations from a homogenously distributed vari-
able with a known correlation structure.

The random field represents the spatial distribution of the
variable of interest, and each realization represents one pos-
sible spatial distribution of such a variable. The random fields
are assumed to be stationary; that is, the statistical charac-
teristics of the population of the random field (such as the
mean and the variance) were assumed not to change with spa-
tial location. We also assumed that the univariate distribution
of the random field conforms to a normal distribution with
population mean m and population variance s2. Finally, we
assumed that the spatial correlation structure of the popula-
tion of the random field could be represented by an exponen-
tial variogram:

g(h) 5 c0 1 c1{1 2 exp[2(h/l)]} [4]

where l is the correlation length, h is the spatial distance
between two points in the random field, and c0 is the nugget
effect, caused by microscale variability and measurement er-
rors, while cs 5 c0 1 c1 is the sill of the variogram, equal to the
variance s2 of the variable.

The variogram describes the variance between two points
separated by the distance h. If no microscale variation or mea-
surement errors are present, the nugget is zero. The correlation
length is a measure of the average distance for which a variable
is correlated in space. Small correlation lengths indicate that
the variable varies erratically over short distances, while large
correlation lengths indicate that the variable varies smoothly
over short distances and variability starts to get significant at
larger distances. The exponential variogram is consistent with
a first-order autoregressive or Markov process (Webster and
Oliver, 2001, p. 116) and hence is the simplest assumption one
can make about the spatial variability of random fields.

Themean, variance, and correlation length of the underlying
variogram are the true population characteristics. We assumed
no nugget effect, and generated two-dimensional random fields
with the prescribed statistical characteristics using the turning
band method (TBM) (Mantoglou andWilson, 1981, 1982) on a
square grid of 1024 by 1024 points with grid size of Dx. We used
16 bands for generating the random fields. For each combina-
tion of the sampling scale triplet we generated 1000 realiza-
tions. All results in this paper are normalizedwith respect to the
underlying random field. This corresponds to a random field
with normal distribution N(0,1) and a correlation length l5 1.
The realizations closely resembled the imposed correlation
structure on average, although at small distances, the fields were
a little too smooth. This will have a minor effect on some of the
estimates, as discussed below.

Sampling

Throughout this paper we use dimensionless sampling scales
LS*, LE*, and LA*, that is, the spacing, extent, and support scaled

by the true correlation length l of the population of the ran-
dom field:

LS* 5 LS/l [5]

LE* 5 LE/l [6]

LA* 5 LA/l [7]

In a first analysis we varied spacing and extent jointly. From
each of the 1000 realizations for each extent, we took 16, 100,
and 1024 samples. For a fixed number of samples, the spacing
increases directly with the extent, similar to Eq. [1]:

LS* 5 LE* /
ffiffiffiffi
N

p
[8]

whereN is the number of samples. For these analyzes, we took
point samples from the grid (LA* 5 0). In a second analysis we
varied the support, fixing the extent as LE* 5 10, with spacing
being a function of the number of samples according to Eq. [8].
Again, we took 16, 100, and 1024 samples and aggregated
an increasing number of points from the generated fields to
represent the effect of increasing support. We assumed square
support areas. In both analyzes we examined two different
monitoring schemes, sampling on a regular square grid and
random sampling.

In all instances with LA . LS, measurements will be partly
overlapping, and the measurements closest to the border of
the domain will also include values from outside what is de-
fined as the extent of the domain. This can be the case in
remote sensing, where the support of a pixel can be larger than
the spacing between the pixels. We assumed that all sample
values were error free. In a real world study, instrument errors
will introduce additional uncertainty.

Estimation of Spatial Characteristics

Nonparametric Estimates

From the N samples z(xi) at location xi we estimated the
sample mean (

_
z) and sample variance (s2) as

z 5
1
N
ON
i51

z(xi) [9]

and

s2 5
1

N 2 1
ON
i51

[z(xi) 2 z]2 [10]

We estimated the sample variogram by the traditional estima-
tor of Matheron (1965):

ĝ(h) 5
1

2n(h)
On(h)
i51

[z(xi) 2z(xi þ h)]2 [11]

where h 5 |h| is the spatial lag between two points. The
summation over the number of pairs n(h) is within bins, which
we chose at logarithmical intervals. The integral scale of the
population is defined as (Taylor, 1921; Russo and Jury, 1987;
Western and Blöschl, 1999):

J 5 #
¥

0

12
g(h)
s2

� �
dh [12]

The sample integral scale we estimated from the sample
variogram as:

Ĵ 5 ON0

i51
12

ĝ(hi21) 1 ĝ(hi)
2s2

� �
Dhi [13]
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where N0 is the bin number for which ĝ(hN0
) 5 s2, that is, the

bin number where the sample variogram first intersects a
horizontal line ĝ(h) 5 s2. If the variogram reaches the sam-
ple variance between two bins, the exact intersection point
is found by linear interpolation. We assumed ĝ(h0) 5 0 and
Dhi 5 hi 2 hi21. For the spatial correlation structure in Eq. [4]
with no nugget effect, the theoretical integral scale is iden-
tical to the correlation length while for different correla-
tion structures the integral scale can be smaller or larger
than the correlation length, depending on the shape of the
variogram. All nonparametric estimates are shown for com-
parison purposes with their parametric counterparts. More
details on the nonparametric estimates are given in Skøien and
Blöschl (2006).

Parametric Estimates

We estimated the variogram parameters by two different
methods, assuming an exponential variogram model (Eq. [4]).
First we used the WLS method of Cressie. This method opti-
mizes the objective function F dependent on the set of param-
eters u by:

F(u) 5 ONb

i51
|N(hi)|

ĝ(hi)
g(hi|u)

21
� �2

[14]

where N(hi) is the number of pairs with separation distance
hi, Nb is the number of bins, ĝ(hi) is the estimated sample
variogram value for bin i, according to Eq. [11], and g(hi|u)
is the modeled variogram, given the parameter set u. This
method is simple and has two main advantages over OLS.
First, bins with a higher number of pairs will get a higher weight.
Second, the residuals close to h5 0, where the variogram values
are small, will get higher weights because the errors are mea-
sured relative to the modeled variogram value. We examined
three cases. First, we fitted a one-parameter model with no nug-
get effect (c0 5 0) and assumed that the sill was equal to the
sample variance s2. Only the correlation length was fitted. In
the second case, we still assumed no nugget effect, but we fitted
the correlation length and the sill jointly. In the third case, we
fitted the complete three-parameter model. We used the Shuf-
fle Complex Evolution Method (Duan et al., 1992) for solving
the optimization problem. This method needs limits for the
parameter space. As we wanted to minimize the influence of
these limits on the estimates, the possible parameter space had
to include many orders of magnitude. It can in some cases be
difficult to estimate the parameters in this case, especially if
they are small. Therefore we logarithmized the parameters in
the search procedure. This method makes it easier to find small
parameter values, but at the same time increases the likeliness
of estimating small parameters in cases where the optimum
is flat.

The second method was the ML method, which maximizes
the likelihood of actually having observed the data set given
the parameters of the variogram model. This method is based
on the assumption that the data conform to a multivariate
Gaussian distribution. The joint probability density function of
n experimental data can then be expressed as

p(z|u)5 (2p)2n/2|V|21/2 exp 2
1
2
(z2m)9V21(z2m)

� �
[15]

where z is the n31 vector of data, m is the n31 vector of
means, and V is the n3n variance-covariance matrix (Pardo-
Igúzquiza, 1998). Separating the covariance matrix into a

variance and a correlation matrix, V 5 s2Q, the negative log
likelihood function (NLLF) can be defined as:

L9(b̂,ŝ2,u|z) 5
n
2
[ln(2p) 1 12 ln(n)] 1

1
2
ln|Q|

1
n
2
ln[(z 2 Xb̂)9Q21(z 2 Xb̂)] [16]

where b̂ is the ML estimator of the drift parameters. The
NLLF is minimized through an iteration procedure. Cressie
(1991, p. 91) and Pardo-Igúzquiza (1998) give a more detailed
description of the method, especially how to estimate the
mean vector and the variance. We used a method implemented
under the statistical environment R (R Development Core
Team, 2004) by Ribeiro and Diggle (2001).

We used theMLmethod for examining the same three cases
as with the WLS method (one-, two-, and three-parameter
models). The computational demand of ML estimation rapidly
increases with the number of samples. We have, therefore, only
used this method to fit variogram parameters to 50 of the sam-
ple sets for each sampling scale for 1024 samples, while we
fitted variogram parameters to all 1000 sample sets for 16 and
100 samples. The increasing demand of computational power
is related to a particular advantage of ML estimation (Lark,
2000); that is, theMLmethod estimates the parameters directly
from the cloud of squared differences of the variable between
the points. Hence, no predefined lag classes are needed.

To reduce the effect of outliers and confine the search to
parameters within a reasonable parameter space, we allowed
the variogram parameters to vary within certain bounds for the
WLS and ML methods. In the WLS method the estimated
nugget was allowed to vary between zero and the estimated
sample variance; in the ML method there was no upper limit
for the nugget. In both methods, the estimated sill was allowed
to vary between 0 and 10 times the estimated sample variance,
and the estimated correlation length was allowed to vary
between 0 and 10 for LE*,1. For larger extents, the upper limit
was set to 10 times the extent of the data set, the lower limit to
LS*/50. The lower limit of the correlation length will affect the
estimates of the correlation length, but in practice this is ir-
relevant since a fitted correlation length smaller than 2% of
the spacing of the samples would not be acceptable.

Presentation of Results

From each realization for a given combination of the scale
triplet, we estimated the nonparametric characteristics (mean,
variance, and integral scale) by Eq. [9], [10], [13], and the
variogram parameters by theWLS andMLmethods. We chose
the median as the representative value of all estimates because
the distributions ofmost parameters were strongly skewed, and
plotted the 25 and 75% quantiles as error bars. The error bars
then represent the uncertainty of the estimates one encounters
if only one sample set (i.e., one realization) is available. With
1000 realizations, the estimation error of the median is small.
The error bars are only shown for every third sampling scale
combination, and the estimates from the ML and WLS
methods are slightly shifted for clarity of presentation.

Figure 2 shows an example of the sample variograms
estimated from 10 realizations and samples from a 10 by 10
grid. The extent was LE* 5 5.6, corresponding to a spacing of
LS*5 0.56, and the support was LA*5 0. Although the extent is
considerably larger than the correlation length (l* 5 1), some
of the sample variograms still appear nonstationary. Figure 2
also indicates the parametric estimates of sill (vertical dashed
line) and correlation length (horizontal dashed line) from
a two-parameter model, and the nonparametric estimates of
sample variance (vertical solid line) and integral scale (hori-
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zontal solid line), together with their error bars, as calculated
from the complete set of 1000 realizations.

We plotted the estimates in nondimensional form scaled by
the (true) population characteristics. The nonparametric esti-
mates of the spatial correlation structure (variance and inte-
gral scale) are

s2* 5
s2

s2
[17]

Ĵ* 5
Ĵ
l

[18]

and the parametric estimates (i.e., the parameters of the
variogram model—nugget, sill, and correlation length) are

ĉ0* 5
ĉ0
s2

[19]

ĉs* 5 ĉ0* 1 ĉ1* 5
ĉ0 1 ĉ1

s2
[20]

l̂* 5
l̂

l
[21]

Since spacing and extent are related through the number of
samples, we first present the results for spacing and extent
together, followed by the results for the support.

RESULTS
Spacing and Extent

One-Parameter Model

Figure 3 shows the results when only correlation
length has been fitted to the sample variograms from
gridded samples. The green lines relate to the WLS
method, the blue lines to the ML method. Unbiased
estimates of the correlation length should produce me-
dians of l̂* 5 1. For comparison, the red lines show the
nonparametric estimates (i.e., the integral scale). For
small extents, the WLS estimates are strongly negatively
biased for all sample sizes. In these cases, the sample
variograms increase monotonously with distance. The
sill has been fixed equal to the sample variance, but
the estimated correlation lengths increase with extent.
The WLS estimates for small extents are almost equal
to the estimates of the integral scale, but the uncertainty
is slightly larger. The ML estimates for small extents are
negatively biased for 16 samples, close to unbiased for
100 samples, and positively biased for 1024 samples.
This is related to a tendency of the ML method of es-
timating the variogram considerably flatter than the
WLS method for small extents, which is because the
ML method appears to put more emphasis on the short
distance part of the variogram and the TBM generated
fields are slightly too smooth. Because the sill is fixed
equal to the variance, the estimated correlation lengths
for small extents are larger than those estimated by
the two other methods. This effect increases with an in-
creasing number of samples, and while the estimated
correlation length is considerably underestimated for
16 samples, it is overestimated for 1000 samples. The
small biases of the ML method for 100 samples are
hence believed to be due to a compensation of two bi-
ases rather than an indication of a generally better per-
formance than the other methods.
There is only a short range of sampling scales where

both the WLS and the ML methods are able to produce

Fig. 2. Sample variograms obtained from 100 samples with extent LE*5
5.6 and support LA* 5 0 from 10 realizations of the random field.
Horizontal bars represent estimates of the integral scale (solid) and
the correlation length (dashed) from a two-parameter model, and
the vertical bars represent the variance (solid) and sill from a two-
parameter model (median with 25 and 75% quantiles as error bars).

Fig. 3. Effect of spacing LS* and extent LE* on the estimated correlation length l̂*, by the weighted least squares (WLS, green) and maximum
likelihood (ML, blue) methods, and integral scale Ĵ* (red lines) for gridded sampling (median with 25 and 75% quantiles as error bars), for the
one-parameter model.
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close to unbiased estimates of the correlation length.
Figure 3 indicates that the estimates are unbiased for
LE* . 8 and LS* , 3. The range hence increases with an
increasing number of samples. With 16 samples, the es-
timates are always biased. Unbiased estimates can only
be achieved when the biases from small extent and large
spacing cancel each other out. With 100 samples, the
range of unbiased estimates is less than one order of
magnitude for both the WLS and the ML methods.
With 1024 samples, both methods can achieve unbiased
estimates over more than one order of magnitude of
the sampling scales relative to the scale of the underly-
ing process.

For large spacings LS* . 3, the WLS estimates are
positively biased. The estimates tend to fluctuate be-
tween the lower limit allowed and the spacing, and the
uncertainty is large. In most cases the sample variograms
do not exhibit any correlation (a steep increase to the sill
at very short lags), so the WLS method will estimate the
correlation length as a value between zero and the lag
of the bin with the shortest lag, which has a lag close to
the spacing. From the 1000 realizations, a large number
of the estimates are equal to the lower limit. If this in-
cludes more than 500 of the estimates, the ensemble
median is also equal to the lower limit. The ensemble
medians from the ML method are close to the lower
limit for large spacings. The parametric estimates of the
correlation length for the WLS and ML methods are
generally less biased than the nonparametric estimates
(i.e., integral scale), but the uncertainty is much larger.

Figure 4 shows the results for random samples as op-
posed to the gridded samples in Fig. 3. When extent is
small, the results are similar to the results for gridded
sampling. This is because the biases and uncertainties
are controlled by the extent in this case. For larger ex-
tents, and hence larger spacings, most estimates are less
biased than the estimates from gridded samples. For
16 samples, the estimates from both the WLS and ML
methods increase with increasing extent. With 100 sam-
ples, the scale range of unbiased estimates is significantly
larger than for the gridded case (approximately between
LE*. 8 and LS*, 10), but theMLmethod gives unbiased
estimates for larger spacings than the WLS method. The

upper limit seems to increase slightly with an increasing
number of samples. This is because there will be more
sample pairs constraining the short part of the variogram,
both increasing the resolution and the certainty of the
estimates. The parametric estimates of the correlation
length are again less biased than the nonparametric
integral scale, and the uncertainties are larger. The ML
method has the largest uncertainties. With 1024 sam-
ples the WLS and ML estimates of the correlation length
are close to unbiased for a large range, and the uncer-
tainty is small. This also indicates that the TBM method
preserves the correlation structure of the underlying ran-
dom field.

Two-Parameter Model

Figure 5 presents the results when sill and correlation
length have been simultaneously fitted to the empirical
variograms from gridded samples. For large extents the
sill converges to unity, which indicates that the TBM
method preserves the variance of the underlying ran-
dom field. For small extents, the WLS method signifi-
cantly overestimates both the sill and the correlation
length. When extent is small, it is apparently not possible
to separately estimate the sill and the correlation length.
The derivative of the variogram is

dg
dh

5
cs
l
exp(2h/l) []

When the extent is small, the exponential part will be
close to 1, and the derivative becomes independent of
the lag. The parameter estimation methods can then
only identify the ratio between the sill and the corre-
lation length, cs/l.

The ML estimates of the sill for small extent are
negatively biased and close to the sample estimates of
variance, but they are slightly less underestimated from
100 samples and 1024 samples. As the ML estimates of
the sill are close to the estimated variance, the ML esti-
mates of the correlation length are similar to the results
from the one-parameter model (Fig. 3). For large ex-
tents, the sill is estimated close to the true sill, although
for a small number of samples the uncertainty is larger

Fig. 4. Effect of spacing LS* and extent LE* on the estimated correlation length, by the weighted least squares (WLS, green) and maximum likelihood
(ML, blue) methods, and integral scale Ĵ* (red lines) for random sampling (median with 25 and 75% quantiles as error bars), for the one-
parameter model.
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than that of the sample variance. For extents slightly
smaller than 1, the estimated sill and correlation lengths
from the WLS and ML methods are less biased than the
estimated variance and integral scale, except the ML
estimates from 16 samples. On the other hand, the un-
certainty is much larger, even for the WLS estimates
from 1024 samples. For large extents and spacings, the
estimates of the sill are unbiased with small uncertain-
ties, and the estimates of the correlation lengths are simi-
lar to the one-parameter model of Fig. 3. The estimates
of correlation length are practically unbiased for LE* . 2
and LS* , 3. This means that the two-parameter model
is able to provide unbiased estimates for smaller extents
than the one-parameter model for which the limits were
LE* . 8 and LS* , 3.

Figure 6 shows the same estimates as Fig. 5 but
for a random sampling scheme. For extents LE* , 5,
the sampling strategy does not appear to influence the
estimates. For large extents and spacings, the figure
shows the same effect as for a one-parameter model in
Fig. 4 with a wider range of unbiased estimates than from
gridded sampling.

Three-Parameter Model

Figure 7 shows the results of the three-parameter
variogram model for gridded sampling. Unbiased esti-
mates should produce median nuggets of ĉ0*5 0, median
sills of ĉs*5 1, and median correlation lengths of l̂*5 1.
Figure 7 (top) indicates that there is close to zero nugget
effect for short spacings LS* , 1. For larger spacings, the
estimated nugget increases for all sample sizes. The
nugget estimated by the ML method is larger than that

of the WLS method and approaches the underlying
variance for very large spacings. The estimates of the
sill in the middle panels of Fig. 7 indicate that, for small
spacings (LS* , 1), there are only small differences be-
tween this sill and the estimates from the two-parameter
variogram model, as shown in Fig. 5. The estimates from
16 samples are always positively biased and are asso-
ciated with larger uncertainties than the estimates from
the two-parameter model. For large extents, the bias is
small, but the uncertainties of the WLS and ML esti-
mates are considerably higher than the uncertainties of
the sample variance for 16 and 100 samples. In the case
of 1024 samples, the uncertainties are only slightly larger
than those of the sample variance. The ML method
slightly underestimates the sill for 16 samples, while the
WLS method slightly overestimates the sill. The ML
estimates have significantly larger uncertainty than the
ML estimates for 16 samples, and slightly larger uncer-
tainties for estimates from 100 samples. Figure 7 (bot-
tom) indicates that, for small extents, the estimates of
the correlation lengths are similar to the two-parameter
estimates shown in Fig. 5, except for a larger bias in the
case of 16 samples. For large spacings LS* . 3, the es-
timates are positively biased, similar to the estimates
from the one- and two-parameter model, but the uncer-
tainties are larger. It appears to be impossible to fit a
three-parameter variogram model to 16 samples with a
reasonable level of accuracy. For 100 and 1024 samples,
reasonable fits over a scale range of LE* . 2 and LS* , 3
are possible with the WLS and ML methods, but the
uncertainty at the upper limit (LS* 5 3) is much larger
than for a two-parameter model.

Fig. 5. (Top) Effect of spacing LS* and extent LE* on the estimated sill ĉs*, by the weighted least squares (WLS, green) and maximum likelihood
(ML, blue) methods, and the sample variance s2* (red). (Bottom) Effect of spacing LS* and extent LE* on the estimated correlation length l̂* (WLS
green, ML blue) and the integral scale Ĵ* (red). Gridded sampling (median with 25 and 75% quantiles as error bars). All are for the two-
parameter model.
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Figure 8 shows the same estimates as Fig. 7, but for a
random sampling scheme.The results are generally similar
to those in Fig. 7 but differ for large spacings. Figure 8
(top) indicates that the biases in the nugget first appear
for spacings larger than in the gridded sampling case. Es-
timates of the sill are similar to the estimates from the
gridded sampling scheme, but the correlation lengths can
be estimated without bias over a wider range of sampling
scales than for gridded sampling. For large spacings, the
uncertainty appears to be slightly smaller than for gridded
sampling. For large spacings, estimates of the correlation
lengths from 100 and 1024 samples show similar biases as
the integral scale, but the uncertainties are larger.

Support
One-Parameter Model

Figure 9 shows the results for the case where the
support is large compared to the underlying correlation
length, using a one-parameter model and gridded sam-
ples. The vertical line in each panel shows LS* 5 LA*. An
extent of LE* 5 10 has been used in all cases. The figure
indicates that large supports generally increase the
correlation length and the integral scale. This is related
to the smoothing effects of aggregation, which reduces
the variability over short distances. For 100 and 1024
samples, the estimates from the ML and WLS methods
are quite similar as long as LA* , LS* with little bias. For
larger supports, the biases increase. The WLS estimates
of the correlation length from 100 and 1024 samples
are slightly less biased than the estimates of the integral
scale. Both the WLS and the ML methods underesti-
mate the correlation lengths for small supports from

16 samples, as the spacing is large relative to the under-
lying correlation length. The estimates in this case are
similar to the results for the same spacing and extent in
Fig. 3 (LE* 5 10, LS* 5 2.5).

The ML estimates exhibit significant biases for large
supports. This is because the variograms tend to monot-
onously increase with lag if the support is large. This is
similar to the situation on the left side of Fig. 3, where also
the ratio between sill and correlation length is estimated,
rather than the sill and correlation length separately. Sim-
ilar to what was noted earlier, the ML procedure has a
tendency of underestimating this ratio. For a fixed sill, the
correlation length is overestimated, leading to significant
biases for 100 samples, and evenmore so for 1024 samples
as shown in Fig. 9.

Random sampling (not shown here) gave results simi-
lar to those shown in Fig. 9, with some differences for
16 samples, as spacings are also large in this case. For
small supports, the biases and uncertainties are similar
to the results for the same spacing and extent in Fig. 4.

Two-Parameter Model

Figure 10 shows the results for the case where the
support is large compared with the underlying correla-
tion length using a two-parameter variogram model and
gridded sampling. The estimates of sill and variance (top
panels in Fig. 10) decrease with increasing support, ex-
cept for some estimates of the sill from theWLSmethod.
The ML estimates of the sill are close to the estimates of
the sample variance. For large supports, the variogram
will appear nonstationary, and it is again only possible
to estimate the ratio between sill and correlation length.
TheWLS estimates of the sill then increase. For yet larger

0

Fig. 6. (Top) Effect of spacing LS* and extent LE* on the estimated sill ĉs*, by the weighted least squares (WLS, green) and maximum likelihood (ML,
blue)methods, and the sample variance s2* (red). (Bottom)Effect of spacingLS* and extentLE* on the estimated correlation length l̂* (WLSgreen,ML
blue) and the integral scale Ĵ* (red). Random sampling (median with 25 and 75% quantiles as error bars). All are for the two-parameter model.
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supports, the effect of reduced sample variance due to
smoothing reduces the estimated sill.

The second row of panels shows the estimates of cor-
relation length and integral scale. For small supports, the
results of all methods are similar to the results of the
one-parameter model. For large supports, the ML esti-
mates are still similar to the estimates from the one-
parameter model. The estimates from the WLS method,
however, increase much faster with increasing support
than those from the one-parametermodel, which is again
related to the fact that only the ratios between sill and
correlation length can be estimated in this case. TheWLS
method estimates larger sills than the ML method, simi-
lar to the case of small extents. For very large supports,
theWLSmethod overestimates correlation lengthsmore
significantly than the ML method.

Three-Parameter Model

Figure 11 shows similar results as Fig. 10 but for a
three-parameter model. Biases in the nugget are only
estimated in the case of 16 samples. This is because of

the relatively large spacing of LS* 5 2.5. The WLS esti-
mates of the nugget have both higher median values and
higher uncertainty than the ML estimates. For 100 sam-
ples and small support there is some uncertainty in the
nugget, which again is related to the spacing (LS* 5 1).
The second row of panels of Fig. 11 shows the esti-
mates of the sill. The results are similar to the results
from the two-parameter model, except that the uncer-
tainty is higher, especially for estimates from 16 samples.
Figure 11 (bottom) shows the estimates of the corre-
lation length together with the integral scale. For 100
and 1024 samples, the results are similar to the results
of Fig. 10, except for small supports where the un-
certainties are larger, especially for the WLS estimates.
For 16 samples, the ML method estimates the correla-
tion length close to the lower limit, while the WLS
method strongly overestimates the correlation length.

Comparison with Expected Biases
Western and Blöschl (1999) presented analytical ex-

pressions for the expected variance and integral scale as

Fig. 7. (Top) Effect of spacing LS* and extent LE* on the estimated nugget ĉ0*, by the weighted least squares (WLS, green) and maximum likelihood
(ML, blue) methods. (Middle) Effect of spacing LS* and extent LE* on the estimated sill ĉs* (WLS green, ML blue) and the sample variance s2*
(red). (Bottom) Effect of spacing LS* and extent LE* on the estimated correlation length l̂* (WLS green, ML blue) and the integral scale Ĵ* (red).
Gridded sampling (median with 25 and 75% quantiles as error bars). All are for the three-parameter model.
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a function of extent, spacing, and support. These are
shown in Fig. 12a (thin black lines) together with the
WLS estimates of the variogram parameters of a two-
parameter model for 100 gridded samples. Figure 12b
shows the corresponding values for the ML estimates.
The estimates of integral scale in both figures are close

to the analytical expectations, while the parametric es-
timates of the correlation lengths differ from these ex-
pectations for both the WLS and ML methods. The
summary also nicely demonstrates that depending on
what component of the scale triplet is changed, the ef-
fect on the sill and the correlation length will differ.

Fig. 8. (Top) Effect of spacing LS* and extent LE* on the estimated nugget ĉ0*, by the weighted least squares (WLS, green) and maximum likelihood
(ML, blue) methods. (Middle) Effect of spacing LS* and extent LE* on the estimated sill ĉs* (WLS green, ML blue) and the sample variance s2*
(red). (Bottom) Effect of spacing LS* and extent LE* on the estimated correlation length l̂* (WLS green, ML blue) and the integral scale Ĵ* (red).
Random sampling (median with 25 and 75% quantiles as error bars). All are for the three-parameter model.

Fig. 9. Effect of support LA* on the estimated correlation length l̂*, by the weighted least squares (WLS, green) and maximum likelihood (ML,
blue) methods, and integral scale Ĵ* (red) for gridded sampling (median with 25 and 75% quantiles as error bars), for the one-parameter model.
Vertical line in each panel shows LS* 5 LA*. LE* 5 10, spacing LS* according to Eq. [8].
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DISCUSSION AND CONCLUSIONS
There are two purposes of estimating a sample vario-

gram and fitting a variogram model to the sample vario-
gram. The first is to understand and characterize the
spatial correlation of the variable of interest for which a
theoretical variogram of the population of the random
field is needed. The second purpose is interpolating
the variable of interest within the study area to points
where measurements are unavailable, for which a local
variogram may be sufficient. This paper focuses on the
first application.

The random variable examined in this paper can be
any variable of interest in soil hydrology. The most typi-
cal variables are soil moisture, different kinds of concen-
trations, such as concentration of nutrients, or physical
properties of the soil, such as its thickness, the thickness
of pedological layers, soil density, and texture. In addi-
tion, it is also possible to use geostatistical methods to
characterize spatially the dynamical properties of the
soil, such as the hydraulic conductivities.

These simulations indicate that sampling scales sig-
nificantly influence the results by biasing the estimates.
This is not surprising because similar patterns were found
in analyses of real data, such as those ofGelhar (1993) and
Blöschl (1999), who showed that the estimated correla-
tion lengths tended to be a function of the extent of the
data. The parametric estimates are found to be less biased
than their nonparametric counterparts, which is consistent
with the findings of Russo and Jury (1987).While in many
cases the biases of the parametric estimates are smaller
than those of the nonparametric methods, their uncertain-
ties are generally higher, especially for estimates of the
correlation length. This uncertainty also increases with an

increasing number of parameters. The number of samples
is important in this context, as would be expected. An
increasing number of samples reduce the uncertainty con-
siderably. It is quite clear that correlation lengths cannot
be estimated with any degree of confidence from 16 sam-
ples, since either the spacing is too large or the extent is
too small. The window of unbiased estimates where the
sampling scales are commensurate with the scale of the
underlying variability is nonexistent in the case of 16 sam-
ples. For 100 samples, the variogram is based on almost
5000 sample pairs, but these might be highly correlated.
This is described inmethods of assessing the uncertainty of
variograms (Ortiz and Deutsch, 2002; Pardo-Igúzquiza
and Dowd, 2001). Because of the correlation, variogram
parameters estimated from 100 points may still be highly
uncertain. Webster and Oliver (1992) suggested that the
number of samples should be at least 150, and preferably
225. This suggestion was related to estimates of the local
variograms. It is much more difficult to make such a state-
ment about estimates of the theoretical variogram that
applies to the population of realizations rather than to one
particular study area. The uncertainties not only depend
on the number of samples but also on the sampling scale.
The uncertainties in the variogram parameters are almost
independent of the sample size when the extent is small,
while they strongly depend on the sample size for large
extents. The uncertainty of the parameters also differs
vastly with the number of variogram parameters to be
estimated. One-hundred samples give a small uncertainty
for the correlation length when it is the only parameter to
be fitted and the extent is small. One thousand twenty-
four samples can be too few for properly estimating a
three-parameter variogram model if the extent is large.
The exact range of relatively unbiased and certain es-

Fig. 10. (Top) Effect of support LA* on the estimated sill ĉs*, by the weighted least squares (WLS, green) and maximum likelihood (ML, blue)
methods, and the sample variance s2* (red). (Bottom) Effect of support LA* on the estimated correlation length l̂* (WLS green, ML blue) and the
integral scale Ĵ* (red). Gridded sampling (median with 25 and 75% quantiles as error bars). All are for the two-parameter model. LE*5 10, spacing
LS* according to Eq. [8].
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timates depends on the estimation method, the number of
samples, and the spatial sampling arrangement. This range
is the window where the sampling scales are commensu-
rate with the scale of the underlying variability that is likely
to be used in a sampling setup. A large number of samples
both increases the range of unbiased estimates and reduces
the uncertainty within this range. The parametric esti-
mates are generally unbiased for nondimensional extents
LE* . 2 and nondimensional spacings LS* , 3. Unbiased-
ness can also be achieved for larger spacings if the samples
are taken at random locations. For a nested sampling ar-
rangement one would also expect a wide range of un-
biased estimates.

To make an a priori assessment of the suitability of a
planned sampling setup, knowledge of the true correla-
tion length or integral scale is required, as the analyses
as conducted in this paper are based on sampling scales
normalized by the true correlation length of the under-
lying process. There are a number of options to obtain
such estimates. The first is an exploratory sampling along
a transect or in a nested sampling arrangement to obtain
initial estimates of the correlation length. The second is
to use values from the literature of similar studies. Third,
process reasoning can be used to obtain an educated

guess of the correlation lengths of the variables of in-
terest in landscape soil processes. Seyfried and Wilcox
(1995) proposed a framework of inferring correlation
lengths from geological and physicals features that are
important for hydrological modeling at different scales.
Visual examination of outcrops and other soil-related fea-
tures in the landscape can be a valuable guide for ob-
taining an order of magnitude of the scale at which soil
processes operate in a particular environment.

It is in some cases possible to correct for the bias ef-
fects of the scale triplet. If the spacing is small, the extent
is large, and the support is small, then the biases will be
small. As the spacing gets larger, the extent smaller, and
the support larger, the biases will increase. If the com-
ponents of the scale triplet do not differ too much from
the unbiased case, estimates of the biases of the variance
and the correlation length can be back-calculated from
the results of the simulations study in this paper. This is
illustrated inWestern and Blöschl (1999) and Skøien and
Blöschl (2005). The uncertainty of these back-calculation
methods increases with increasing spacing, decreasing
extent, and increasing support. For the case of large
supports it has also been suggested that one numeri-
cally back-calculates the point variogram by regulariza-

Fig. 11. (Top) Effect of support LA* on the estimated nugget ĉ0*, by the weighted least squares (WLS, green) and maximum likelihood (ML, blue)
methods. (Middle) Effect of support LA* on the estimated sill ĉs* (WLS green, ML blue) and the sample variance s2* (red). (Bottom) Effect of
support LA* on the estimated correlation length l̂* (WLS green, ML blue) and the integral scale Ĵ* (red). Gridded sampling (median with 25 and
75% quantiles as error bars). All are for the three-parameter model. LE* 5 10, spacing LS* according to Eq. [8].
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tion methods, which can deal with more general cases
than addressed here (Mockus, 1998; Skøien et al., 2003;
Kyriakidis, 2004). In this analysis it has been assumed
that the variable of interest aggregates linearly; that is,
the value over a support area is simply the arithmetic
average of the point values within this support area.
Some of the variables of interest in soil hydrology do
indeed aggregate linearly, such as soil moisture and
soil thickness. Other variables, such as hydraulic con-
ductivities, do not. More complicated aggregation rules
exist for these parameters. These are dealt with in the
abundant literature on upscaling and effective param-
eters (e.g., Blöschl and Sivapalan, 1995; Hopmans and
Schoups, 2005). The support effects of this paper will in

this case only be an approximation of the real sup-
port effects.
The different estimation methods examined here have

different characteristics. The non-parametric estimates
are in most cases associated with the lowest uncertain-
ties. They are on the other hand highly biased. TheWLS
method provides visually satisfying fits to the sample
variograms. The uncertainty, however, tends to be large
and increases with the number of variogram parameters
to be estimated. TheWLS method performs slightly bet-
ter than theMLmethod for 16 samples. TheMLmethod
is computationally more demanding for large sample
sizes because, for n data an n3nmatrix has to be inverted
for each iteration. The ML method gives better results

Fig. 12. Estimated sill and correlation length from(a) the weighted least squares (WLS) method (green) and (b) the maximum likelihood (ML)
method (blue), together with variance and integral scale (red). The thin black lines correspond to the analytical expectations. All are for the two-
parameter model, with 100 gridded samples.
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for randomly distributed samples with large spacings,
but does not seem to be significantly better than the
WLS method for other sampling scale combinations. In
addition, estimated variograms tend to be too flat for
small extents. Our results are consistent with analyses
performed by Zimmerman and Zimmerman (1991, p.90)
who noted that ‘‘’krigers’ will sacrifice little by using the
easy-to-compute OLS [Ordinary Least Squares] or …
WLS … estimators, rather than the REML [Restricted
Maximum Likelihood] estimators.’’ Lark (2000) also
compared ML estimates with estimates from fitting a
theoretical variogram to the sample variogram. He con-
cluded that ML estimates were often advantageous for
short extents but this was not the case for large extents
and large nuggets. For a certain experimental setup, he
showed that an ML estimate from 60 samples provided
an equally good fit to the underlying variogram as a
theoretical model fitted to the sample variogram using
90–120 samples. Lark (2000) also concluded that a po-
tential advantage of theMLmethod is lost when the data
are contaminated with outliers, as most real data sets are.

Different opinions exist in the literature on whether
variograms should be estimated automatically or hand-
fitted. Webster and Oliver (2001) argued for automatic
calibration, but suggested that the estimated variogram
should be visually examined as well. However, a number
of authors have argued in favor of visually fitting (AI-
GEOSTATS, 2004). We used automatic fitting methods
here because of the large number of variograms to be
analyzed, and to allow a more objective interpretation
of the results. On the other hand, the more complex the
correlation structure, the more difficult it will be to visu-
ally fit a variogram. Visually fitting a variogram with few
parameters such as that of Eq. [4] in one dimension is a
simple task, but ismore complicated if nested variograms
and more dimensions are analyzed.

For small extents, typically where LE* , 1, strong
trends will appear in the data. One could argue that for
these cases a trend should be modeled explicitly and the
geostatistical analysis should be performed on the re-
siduals. There are several reasons why we have chosen
to estimate the variogram directly from the data. First,
we were interested in the population characteristics, and
apparent trends are indeed a feature of the population
characteristics for short extents. Second, there is no ob-
jective way of ascertaining whether there is a trend in
the data or the strength of it (Leuangthong and Deutsch,
2004). Third, it would raise a range of questions beyond
the purpose of this paper. Fourth, although in this paper
it was clear that the variable was nonstationary within
the extent of the data when extents were short, this is
not always the case for real data. This point has been
nicely illustrated by Gelhar (1993, p. 295), who pre-
sented the same variogram plotted on linear-linear and
log-log scales. The former looks stationary, while the
latter indicates that the variable is nonstationary. Di
Federico and Neuman (1997) and Cintoli et al. (2005)
suggested that the concept of truncated power vario-
grams can be used to explain these sampling effects.

In vadose zone applications at the landscape scale,
there are a range of variables that are of interest, includ-

ing soil water content, concentrations of chemical or
biological tracers, as well as hydraulic soil characteristics.
In examining these variables, it is a key concept that
sampling always involves some sort of filtering (Cush-
man, 1984, 1987). It is important to take these filtering
aspects into account when interpreting both observa-
tions and model estimates of these variables. The major
implication of this study for soil hydrology is that sam-
pling scales will likely have an important effect on the
variogram parameters estimated from vadose zone data
at the landscape scale. Sampling scales will introduce
biases and random errors if these scales depart from the
scales of the underlying process. Their magnitude is
controlled by the sampling scale triplet relative to the
scale of the underlying process.
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