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Abstract. In this paper catchments are conceptualised as lin-
ear space-time filters. Catchment areaA is interpreted as the
spatial support and the catchment response timeT is inter-
preted as the temporal support of the runoff measurements.
These two supports are related byT ∼Aκ which embodies the
space-time connections of the rainfall-runoff process from
a geostatistical perspective. To test the framework, spatio-
temporal variograms are estimated from about 30 years of
quarter hourly precipitation and runoff data from about 500
catchments in Austria. In a first step, spatio-temporal vari-
ogram models are fitted to the sample variograms for three
catchment size classes independently. In a second step, var-
iograms are fitted to all three catchment size classes jointly
by estimating the parameters of a point/instantaneous spatio-
temporal variogram model and aggregating (regularising) it
to the spatial and temporal scales of the catchments. The ex-
ponential, Cressie-Huang and product-sum variogram mod-
els give good fits to the sample variograms of runoff with di-
mensionless errors ranging from 0.02 to 0.03, and the model
parameters are plausible. This indicates that the first order
effects of the spatio-temporal variability of runoff are indeed
captured by conceptualising catchments as linear space-time
filters. The scaling exponentκ is found to vary between 0.3
and 0.4 for different variogram models.

1 Introduction

Geostatistical methods fall into two groups. The first focuses
on the characterisation of spatial variability and is termed
structural analysis. It provides a representation of the spa-
tial structure of the variables of interest in terms of the var-
iogram and sheds light on the continuity of the processes
involved. In hydrology, structural analysis plays an impor-
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tant role in aquifer assessment and sampling design (e.g.,
James and Freeze, 1993). The second group of geostatisti-
cal methods consists of spatial estimation methods where the
variogram obtained in the structural analysis step is used to
estimate the variable of interest at locations where no mea-
surements are available. Spatial estimation methods based on
geostatistical concepts are widely used in many geosciences
including subsurface hydrology (Renard et al., 2005).

In catchment hydrology, geostatistical concepts have been
used more sparingly. This is because of the nested struc-
ture of catchments which makes geostatistical analyses more
complicated as compared to the usual analysis of point sam-
ples or blocks. However, a number of recent studies have
demonstrated that geostatistical methods can indeed account
for the nested catchment structure. This applies to both the
structural analysis step of understanding the spatial structure
and the spatial estimation step of estimating variables such
as streamflow at locations where no data are available. The
latter addresses the ungauged catchment problem (Sivapalan
et al., 2003). Based on the work of Gottschalk (1993a, b);
Sauquet et al. (2000) presented a spatial estimation method
for annual streamflow. A similar spatial estimation method,
termed TOPKRIGING, was presented by Skøien et al. (2005)
who showed that accounting for the nested catchment struc-
ture improved the spatial estimates of flood frequency over
a method that did not account for nested catchments. Reli-
able variograms are needed for applying this type of spatial
estimation methods.

Runoff is a process that varies in both space and time.
It is therefore appealing to extend the spatial analyses of
Sauquet et al. (2000) and Skøien et al. (2005) to the spatio-
temporal case, i.e. to analyse and estimate runoff as a func-
tion of both space and time. Spatio-temporal variograms
are needed for this. At the same time, spatio-temporal vari-
ograms of runoff may shed light on the nature of hydrolog-
ical variability in space and time. Skøien et al. (2003) anal-
ysed the effect of different catchment sizes on the spatial and

Published by Copernicus GmbH on behalf of the European Geosciences Union.
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Fig. 1. Network of measurement stations in Austria used in this
paper. Precipitation gauges (top); centroids of gauged catchments
(bottom) (small catchments shown as plusses, medium sized catch-
ments as diamonds, large catchments as squares).

temporal variograms of precipitation and runoff. Their re-
sults indicated that variograms of observed runoff were con-
sistent with variograms obtained by aggregating variograms
of hypothetical point runoff. However, their study examined
spatial and temporal variograms independently. It is likely
that the spatial and temporal variabilities of runoff are re-
lated given that it takes longer for water to move through
large catchments than through small catchments. Woods et
al. (1995) analysed catchments in the range of 0.04–50 km2

and found the variance of streamflow to decrease more
strongly with catchment area than what would be expected
for the spatial aggregation of a random process. Woods et
al. (1995) noted that this may be due to the presence of or-
ganisation at large scales that is not present at small scales
but Skøien et al. (2003) suggested that this may be related to
spatio-temporal aggregation effects instead.

It is therefore time to follow the suggestion of Skøien et
al. (2003) to analyse runoff in space and time jointly, and
to examine the joint spatial and temporal aggregation effects
of runoff. As a central concept, we adopt the description of
Woods and Sivapalan (1999), where runoff from a catchment
is represented as the convolution of the local runoff generated
within the catchment within a time period. This is consis-
tent with the filter concept of Skøien et al. (2003) where the
catchment area is interpreted as the geostatistical support of
the runoff measurements. In a joint spatio-temporal analysis
the catchments then operate as space-time filters and runoff

measurements are associated with both a spatial support (the
catchment area) and a temporal support (the response time of
the catchment).

The objective of this paper is to analyse spatio-temporal
variograms of runoff and examine the potential of estimat-
ing these from point variograms of runoff by spatio-temporal
aggregation. For comparison and for testing the aggrega-
tion procedure, spatio-temporal variograms of precipitation
are analysed as well. This study uses a similar data set as
Skøien et al. (2003) but goes beyond their study in two ways.
First, Skøien et al. (2003) analysed the variograms in space
and time separately while, here, a joint analysis is performed
to shed light on the connection of space and time scale vari-
ability. Second, Skøien et al. (2003) used a data set of daily
values while, here, a data set of quarter hourly values is
used. This allows us to perform a more detailed analysis of
the short term characteristics of runoff that are important for
space-time connections.

2 Data

The data used in this paper stem from a comprehensive hy-
drographic data set of Austria. Austria has a varied climate
with mean annual precipitation ranging from 500 mm in the
eastern lowland regions up to about 3000 mm in the western
alpine regions. Runoff depths range from less than 50 mm
per year in the eastern part of the country to about 2000 mm
per year in the Alps. Potential evapotranspiration is on the
order of 600–900 mm per year. Precipitation data from 991
stations for the period 1981–1997 were used in this study
(Fig. 1a). 161 of the stations were recording rain gauges
while the rest were daily raingauges. The daily records were
disaggregated to a time step of 15 min based on the temporal
patterns of the neighbouring stations (Merz et al., 2006). In
order to be able to examine spatial aggregation effects, catch-
ment precipitation was calculated for each time step by ex-
ternal drift kriging interpolation of the point data for a total
of 579 catchments using topographic elevation as an auxil-
iary variable. The catchment precipitation series so obtained
were divided into three size classes (Table 1). Runoff data
from 591 catchments for the period 1971–2000 were used
that all had a time resolution of 15 min. The catchments were
subdivided into three classes according to catchment size –
small (3–71 km2), medium (72–250 km2) and large (250–
131 000 km2) (Fig. 1b). Catchments smaller than 10 km2,
as well as catchments with short records, significant anthro-
pogenic effects or lake effects were excluded from the data
set. This resulted in a total of 488 stream gauges available
for the analysis. Table 1 summarises the data series used in
this paper. The runoff data set consists of a total of 5×108

individual data values.
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Table 1. Data series used in this paper.

Data type Size class Size range Median size Number of Extent of domain Time resolution Period
(km2) (km2) stations (km) (min)

Point precipitation – Point Point 991 700 15 1981–1997

Catchment precipitation Small 3–71 35 193 700 15 1981–1997
Medium 72–236 125 193 700 15 1981–1997
Large 241–131 000 670 193 700 15 1981–1997

Runoff Small 10–71 42 142 700 15 1971–2000
Medium 72–248 119 178 700 15 1971–2000
Large 251–131 000 605 168 700 15 1971–2000

3 Method

3.1 Spatio-temporal sample variograms

Spatio-temporal sample variograms were calculated from the
runoff data separately for the three catchment size classes,
and from catchment precipitation separately for the three
catchment size classes as well as for point precipitation:

γ̂st (hs, ht )=
1

2
m(hs )∑
j=1

nj (ht )

m(hs )∑
j=1

nj (ht )∑
i=1

(z(xj + hs, ti + ht ) − z(xj , ti))
2 (1)

wherehs= |hs | andht are the spatial and temporal lags, re-
spectively,z(xj , ti) is precipitation or runoff at timeti and
spatial locationxj of stationj , m(hs) is the number of pairs
of stations with distancehs , and nj (ht ) is the number of
pairs of points in time with time laght within a spatial or
temporal bin.hs was taken as the distance between the cen-
tres of gravity of the catchments for the cases of runoff and
catchment precipitation and as the station distance for the
case of point precipitation. The spacings of the bins were se-
lected approximately logarithmically (with the exception of
zero lags). The variograms of precipitation were calculated
on the basis of precipitation intensity, those of runoff on the
basis of specific discharge. The physical units of the pre-
cipitation and runoff variograms hence are (mm2

×h−2) and
(m6

×km−4
×s−2) with 1 m6

×km−4
×s−2=12.96 mm2

×h−2.
The space and time units used are kilometres and hours, re-
spectively.

3.2 Spatio-temporal variogram models

Numerous spatio-temporal variogram models have been pro-
posed in the literature. There are two types, separable and
non-separable models. In separable models, the covariance
can be factorised into two components, one component con-
taining time lag only and the other containing space lag only.

Rodŕıguez-Iturbe and Mejı́a (1974) presented an example of
a separable model. Cressie and Huang (1999) proposed a se-
ries of non-separable models. De Cesare et al. (2001) and
De Iaco et al. (2001) extended some of the earlier models
into a product-sum model. Kyriakidis and Journel (1999) re-
viewed spatio-temporal variogram models and discussed ad-
vantages and disadvantages of different model types. Fuentes
(2006) and Mitchell et al. (2005) proposed methods for test-
ing if a process can be modelled by a separable model. They
noted that for some spatio-temporal modelling applications,
the computational burden can be reduced considerably by us-
ing separable models. Cressie and Huang (1999), however,
suggested that non-separable models are necessary for many
natural cases.

Four models are compared in this paper that are all non-
separable: a spatio-temporal exponential model, a model
proposed by Cressie and Huang (1999), the product-sum
model (De Cesare et al., 2001; De Iaco et al., 2001), to all
of which a fractal component was added (Eq. 8), as well as a
pure fractal model. The exponential model is:

γ ′

1st (hs, ht )=a1(1− exp(−((c1ht + hs)/d1)
e1)) (2)

a1 is the sill or the variance for infinite lag,c1 is a scaling
parameter for time,d1 is a spatio-temporal correlation length
ande1 defines the slope of the short distance part of the var-
iogram. The model is consistent with the Taylor hypothesis
which assumes that a constant characteristic velocity exists,
so space and time are interchangeable (Taylor, 1938; Skøien
et al., 2003). Cressie and Huang (1999) derived a number of
models from Bochner’s theorem (Bochner, 1955). We tested
a number of them and focus in this paper on:

γ ′

2st (hs, ht )=a2

(
1−

1

(c2ht+1)(d+1)/2
exp

{
−

b2
2h

2
s

c2ht+1

})
(3)

a2 is the sill,b2 andc2 are scaling parameters for space and
time, respectively, andd is the spatial dimension.

The third model is the product-sum model which is derived
from a covariance model that combines products and sums
(De Cesare et al., 2001; De Iaco et al., 2001):

γ ′

3st (hs, ht )=γ ′

3s(hs)+γ ′

3t (ht )−kγ ′

3s(hs)γ
′

3t (ht ) (4)
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wherek is a parameter.γ ′

3s(hs) and γ ′

3t (ht ) represent the
spatial and temporal variograms, respectively:

γ ′

3s(hs)=a3s(1− exp(−(hs/d3s)
e3s )) (5)

γ ′

3t (ht )=a3t (1− exp(−(ht/d3t )
e3t )) (6)

with parameters similar to Eq. (2). The product-sum model
reduces to the separable model proposed by Rodrı́guez-
Iturbe and Mej́ıa (1974) forα3s=α3t=1/k. The three vari-
ogram models (Eqs. 2, 3, 4) are stationary, i.e., they are finite
for infinite lags. Skøien et al. (2003) showed that daily pre-
cipitation can be regarded as stationary in time, daily mean
runoff is almost stationary in time, while neither of the pro-
cesses can be regarded as stationary in space within the spa-
tial extent of the data set used. The variograms were there-
fore modified to account for non-stationarity in both spa-
tial and temporal directions. Although Skøien et al. (2003)
noted that runoff was almost stationary in time, a small non-
stationary part was found to be necessary for the regularisa-
tion procedure in this paper. For application in spatial (and
spatio-temporal) estimation a variogram needs to be such that
the variance of any linear combinationY of the variablez of

the typeY=

n∑
i=1

αiz(xi, ti) is equal to zero or positive. This

requirement is fullfilled by Eqs. (2, 3, 4). If the variogram is
non-stationary, the following condition has to be fulfilled:

V ar(Y ) = −

∑
i

∑
j

aiajγst

(∣∣xi − xj

∣∣ , ti − tj
)

≥ 0 (7)

with
n∑

i=1
αi=0.−γst (hs, ht ) is then by definition said to be

a “conditional positive definite function” (Journel and Hui-
jbregts, 1978; Cressie, 1991). To ensure conditional positive
definiteness of−γst (hs, ht ), it is common to specify the var-
iogram as a sum or a product of models that are known to
have this property. We have therefore added spatial and tem-
poral fractal components that are positive definite to the three
variogram modelsγ ’ st of Eqs. (2, 3, 4):

γst = γ ′
st + ash

α
s + ath

β
t (8)

whereas andat are parameters that adjust the level of the
fractal part, andα andβ are the spatial and temporal fractali-
ties, 0<α<2 and 0<β<2. Although this model ensures con-
ditional positive definiteness, the non-stationary part (Eq. 8)
does not include space-time interactions. In addition to the
three variogram models, we examined a pure fractal model
for comparison (Eq. 12 below). In summary, the following
variogram models were used in this paper:
Exponential model:

γ1st (hs, ht ) =

a1(1 − exp(−((c1ht + hs)/d1)
e1)) + ash

α
s + ath

β
t (9)

Cressie-Huang model:

γ2st (hs, ht ) = a2

(
1 −

1

(c2ht + 1)(d+1)/2
exp

{
−

b2
2h

2
s

c2ht + 1

})
+ash

α
s + ath

β
t (10)

Product-sum model (using Eqs. 5 and 6):

γ3st (hs, ht ) =

γ ′

3s(hs) + γ ′

3t (ht ) − kγ ′

3s(hs)γ
′

3t (ht ) + ash
α
s + ath

β
t (11)

Fractal model:

γ4st = ash
α
s + ath

β
t (12)

3.3 Spatio-temporal regularisation

3.3.1 Concept of catchments as space-time filters

Measurements are strongly affected by the measurement
scale. Bl̈oschl and Sivapalan (1995) formulated the mea-
surement scale as a scale triplet: the distance between mea-
surements (spacing); the size of the region over which mea-
surements are available (extent); and the area or volume that
each measurement represents (support). Skøien and Blöschl
(2006a) and Skøien and Blöschl (2006b) performed coher-
ent studies of measurement scale effects on parametric and
non-parametric estimates of spatial correlation, respectively.
As the support increases, the variable of interest becomes
increasingly smoother. Because of this, the variance (and
hence the sill of the variogram) decreases and the correlation
lengths increase.

In this paper, we interpret the catchment area as the spa-
tial support of the runoff measurements and conceptualise lo-
cal runoff as a point process following Woods and Sivapalan
(1999) and Skøien et al. (2005). In a joint spatio-temporal
analyses both the spatial and the temporal supports need to
be taken into account. In this paper, we therefore interpret
the response time of a catchment as the temporal support.
Runoff at the catchment outlet is then assumed to be some
sort of aggregated value of local runoff over the catchment
area (spatial support) over the catchment response time (tem-
poral support).

The concept starts with local runoff or rainfall excess,R(x,
y, t). To account for routing on the hillslopes and in the
channels within the catchment, a weighting functionu(x, y,
t) is introduced which allows to combine local instantaneous
runoff into runoff at the catchment outlet,Qi :

Qi(t) =

∫∫
Ai

t∫
t−Ti

R(x, y, τ )u(x, y, τ )dτdxdy (13)

whereAi is the area of catchmenti, Ti is the time interval that
influences the output,x andy are the space coordinates,t is
time andτ is the temporal integration variable. The weight-
ing functionu(x, y, t) represents the routing processes within
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the catchment and varies in space. For example, runoff gen-
erated close to the outlet or close to the streams will reach the
outlet faster than runoff generated further away. Also,u(x,
y, t) will be a function of catchment characteristics such as
hill slope orientation, catchment slope and soil types.u(x,
y, t), for a certain point in space, also changes with time
as the flow velocities change with changes in the catchment
state. As an approximation, we assume in this paper that, for
a given catchment, the weighting function is constant within
the integration limits both in space and time, i.e.,ui=1/Ti .
For a constant weighting function, Eq. (13) becomes a linear
filter or a convolution integral. In time, the weighting func-
tion is equivalent to a unit hydrograph that is constant be-
tween 0 andTi and zero elsewhere. In space, the weighting
function is constant within the catchment area and zero else-
where which is consistent with the assumptions of Sauquet
et al. (2000) and Skøien et al. (2003). The specific runoff at
the catchment outlet (runoff divided by catchment area) then
becomes:

qi(t) =
1

AiTi

∫∫
Ai

t∫
t−Ti

R(x, y, t − τ)dτdxdy (14)

The runoff routing process is hence conceptualised as a linear
space-time filter in this paper. For simplicity, we assume that
the filter kernel in space is a square with areaAi (catchment
size), and in time the filter kernel is a block unit hydrograph
with time baseTi as mentioned above. We assume a simple
relationship between catchment response time and catchment
area:

Ti = µAκ
i (15)

whereµ andκ are parameters to be estimated from the data.
For κ>0 the response time increases with catchment size.
Eq. (15) embodies the space-time connections of the rainfall-
runoff process from a linear filter perspective. Note that
Eq. (15) applies to runoff. For comparison, we also analysed
catchment precipitation for which we used the same aggre-
gation procedure in space but a constant temporal support of
Ti=15 min, as consistent with the raingauge data.

In a geostatistical framework, the linear aggregation of
Eq. (14) is represented by the second moments. A point
variogram of runoff represents the second moment of lo-
cal, instantaneous runoff. From the point variogram with
zero support in space and zero support in time (i.e. instan-
taneous) one can estimate variograms that are valid for fi-
nite support areas and finite support times by a procedure
that is usually referred to as regularisation (Journel and Hui-
jbregts, 1978). Conversely, it is possible to back-calculate
the point/instantaneous variogram from variograms based on
finite supports (Skøien et al., 2003). The point variograms
are the basis of spatial estimation methods such as those of
Sauquet et al. (2000) and Skøien et al. (2005). In addition,
the point variogram sheds light on the spatio-temporal struc-
ture of instantaneous runoff generated at the local scale.

Fig. 2. Schematic of variance estimation between two catchments 1
and 2 and a range of time lags. Thin arrows represent some of the
spatio-temporal pairs of data points.

3.3.2 Implementation

The variogram value, given a certain distance, represents the
expected variance of a process within an extent equal to this
distance. If a variable is linearly aggregated, each measure-
ment is the average of the point process within the support
of the measurement. If we assume that the variance of catch-
ment runoff is both dependent on the spatial and temporal
supports (A andT , respectively, dropping the index), for two
catchments of equal size the spatial regularisation technique
of (Cressie, 1991, 66) can be extended to:

γst (hs |a, ht |T ) =

1

A2T 2

∫
A

∫
A

∫
T

∫
T

γst (|r1 + hs − r2|, |τ1 + ht − τ2|) dr1dr2dτ1dτ2−

1

A2T 2

∫
A

∫
A

∫
T

∫
T

γst (|r1 − r2|, |τ1 − τ2|) dr1dr2dτ1dτ2

(16)

whereγst (r, τ ) is the spatio-temporal variogram of the in-
stantaneous point process,hs is the separation vector be-
tween two catchments (with space laghs= |hs |), ht is the
time lag anda is the side length of the square that approxi-
mates a catchment, i.e.,a=

√
A. The catchment sizeA has

been taken as the median catchment size for all catchments
of a given size class (Table 1). Eq. 16 indicates that the reg-
ularised variogram value between two catchments of sizeA

with response timeT is the variance integrated in time and
space between the two catchments, minus the integrated vari-
ance within one catchment. This concept is illustrated in
Fig. 2. Each catchment is visualised as a spatio-temporal
“volume” separated by spatio-temporal distances.

The number of integrals has been reduced here by using
the distribution function of spatio-temporal distances within
and between catchments in a similar way as Western and
Blöschl (1999) and Skøien et al. (2003) but extended to space
and time:
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γ (hs |a , ht |T ) =

ht+T∫
ht−T

R max∫
0

γst (r, τ )f2st (r |(hs, a) , τ |(ht , T ) )dτdr−

T∫
−T

R max∫
0

γst (r, τ )f1st (r |(hs, a) , τ |(ht , T ) )dτdr (17)

f1st (r |a , τ |T ) is the probability density function
(pdf) of distances in space and time within a catch-
ment with spatial supporta and temporal supportT .
f2st (r |(hs, a) , τ |(ht , T ) ) is the pdf of distances in space
and time between points in two catchments with a centre-to-
centre distancehs in space andht in time. Rmax is a practical
integration limit. We can assume the distances in space and
time to be independent, so thef1st andf2st can be separated
into spatial and temporal parts:

γst (hs |a , ht |T ) =

ht+T∫
ht−T

R max∫
0

γst (r, τ )f2s(r |(hs, a) )f2t (τ |(ht , T ) )dτdr−

T∫
−T

R max∫
0

γst (r, τ )f1s(r |a )f1t (τ |T )dτdr (18)

f1s andf2s are the pdfs in space which have been evaluated
as in Western and Blöschl (1999) and Skøien and Blöschl
(2006ab).f1t andf2t are the pdfs of the temporal distances,
within and between catchments, respectively, which for a
block unit hydrograph are:

f1t (τ |T ) =

{ 1
T

(
1 −

τ
T

)
τ > 0

1
T

(
1 +

τ
T

)
τ ≤ 0

(19)

and:

f2t (τ |(ht , T ) ) =
(1 −

ht

T
+

τ
T

)/(ht −
h2

t

2T
+

T
2 ) 0 ≤ τ < ht , 0 < ht < T

(1 +
ht

T
−

τ
T

)/(ht −
h2

t

2T
+

T
2 ) ht ≤ τ < ht + T , 0 < ht < T

T −ht+τ

T 2 ht − T ≤ τ < ht , ht ≥ T
T +ht−τ

T 2 ht ≤ τ ≤ ht + T , ht ≥ T

(20)

3.4 Parameter estimation of variograms

The analyses are organised into two parts. In the first part,
variogram models are fitted to the sample variograms of the
small, medium and large catchment size classes indepen-
dently (Sects. 4.1 and 4.2). In the second part, one point
variogram model is fitted jointly to the three catchment size
classes based on regularisation (Sects. 4.3 and 4.4).

In the first part we used a version of the weighted least-
squares (WLS) method (Cressie, 1985) to estimate the pa-
rameters of the variogram models by minimizing the objec-
tive function:

8 =
1

ns∑
i=1

nt∑
j=1

w(i, j)

ns∑
i=1

nt∑
j=1

w(i, j) ·

[
γ̂st (hsi, htj )

γst (hsi, htj )
− 1

]2

(21)

where γ̂st (hsi, htj )is the sample variogram for one of the
three catchment size classes or that of point rainfall (Eq. 1),
γst (hsi, htj )is one of the variogram models (Eqs. 9–12),hsi

andhtj are the spatial and temporal lags, andns andnt are
the number of bins in space and time.w(i, j) is the weight of
each bin, with the indicesi andj in spatial and temporal di-
rections, respectively. We used the square root of the number
of pairs in each bin as the weight, except that we increased
this weight by a factor of 10 forhsi=0 andhtj=0. These
lags represent the marginal variograms in space and time. In
a spatio-temporal estimation procedure, the marginal vari-
ograms will be important. As the bins on the margins only
constitute approximately one tenth of the total number of
bins in the spatio-temporal variograms, the increased weights
balance the importance of the margins with the rest of the
variogram. The SCEUA-method (Duan et al., 1992) was
used to search for the best parameter set. The search was
carried out ten times for each model type and catchment size
class with different starting values, to reduce the probabil-
ity of finding local minima. The variogram models associ-
ated with the smallest objective function of the ten trials are
shown. The procedure was repeated for each catchment size
class (including point precipitation), each variogram model
and for precipitation and runoff separately.

In the second part, the parameters of a point variogram
were estimated instead. For a certain point variogram, we es-
timated spatio-temporal variograms for the three catchment
size classes by regularisation (Sect. 3.3). These regularised
variograms were jointly compared to the sample variograms
of the three catchment size classes. The same objective func-
tion was used as above, but the summation was over all catch-
ment size classes. Regularised variogram models associated
with the smallest objective function of ten trials are shown.
The procedure was repeated for each variogram model and
for precipitation and runoff separately. The parametersκ and
µ of Eq. (15) were also simultaneously fitted by this pro-
cedure, separately for each variogram model. The response
time of the catchments is hence a result of the fitting proce-
dure.

The scales of the diagrams of the spatio-temporal vari-
ograms are scaled linearly in terms of the bin spacing. As the
bins have been selected approximately logarithmically (with
the exception of zero lags) the axes are close to logarithmical.

4 Results

4.1 Separately fitted variograms of precipitation

The left column of Fig. 3 shows the spatio-temporal sam-
ple variograms of point and catchment precipitation, sorted
by catchment size class. The total variance of precipitation
is similar in time and space within the spatial and temporal
extents of the data set (300 km, 1000 h shown here). The
variogram values increase with increasing spatial and tem-
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Fig. 3. Spatio-temporal variograms of catchment precipitation. Sample variograms (left column) and independently fitted variogram models
(columns 2–5). The rows relate to different catchment size classes (small, medium, large) including point precipitation in the top row. The
horizontal axes are space lag, the vertical axes are time lag.

poral distances which indicates the presence of spatial and
temporal correlations as would be expected. There is a re-
duction in the variogram values as one moves from points
to larger catchments which reflects the smoothing as a re-
sult of an increasing support. Columns two to five of Fig. 3
show the spatio-temporal variogram models that have been
independently fitted to the sample variograms. For all mod-
els, with the exception of the fractal model, the visual fits
are very good and the differences between the models are
small. Fig. 4 shows the margins of the sample variograms
and the fitted variogram models for precipitation. The mar-
gins of a spatio-temporal variogram are equivalent to the spa-
tial and temporal variograms. The sample variograms are
represented by points, while the fitted variograms are repre-
sented by lines. For a certain catchment size class, points
and lines are of the same colour. All models, except for the
fractal model, provide close fits. The shortest spatial lags
show some differences between the models as this is where
the models have been extrapolated beyond the data. Table 2
gives the values of the objective function for each variogram

model and catchment size class as well as the average over
the three size classes. We have also included the number
of parameters to be fitted, including the two parameters of
Eq. 15. The table indicates that the product-sum model can
be best fitted to the sample variograms of precipitation. It
should be noted that the product-sum model has the largest
number of parameters, so the good fits may be both a result
of a suitable model structure and the large number of degrees
of freedom.

4.2 Separately fitted variograms of runoff

The left column of Fig. 5 shows the spatio-temporal sam-
ple variograms of runoff, sorted by catchment size class.
The variograms indicate that there is a higher variance in
space than there is in time within the spatial and tempo-
ral extents of the data set. The spatio-temporal variograms
increase monotonously with spatial and temporal distances.
There is a much stronger variance reduction effect between
the variograms of the different catchment size classes than
for precipitation. It is obvious that the catchment size has
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Fig. 4. Temporal (left) and spatial (right) margins of the spatio-temporal variograms of catchment precipitation as in Fig. 3. Sample
variograms are shown as points, fitted variogram models as lines.

Table 2. Objective function (Eq. 21) for the variogram models of precipitation fitted independently to spatio-temporal sample variograms
for small, medium and large catchment size classes. Average refers to the average of the objective functions from the three catchment size
classes. The number of parameters fitted consists of the parameters of the point variogram models and the two parameters of Eq. 15.

Variogram model Point Small Medium Large Average Number of
catchments catchments catchments parameters

Exponential model 0.0036 0.0132 0.0122 0.0123 0.0126 10
Cressie-Huang model 0.0121 0.0122 0.0125 0.0062 0.0103 9
Product-sum model 0.0036 0.0094 0.0062 0.0042 0.0066 13
Fractal model 0.0992 0.1285 0.1310 0.1307 0.1301 6

an efficient smoothing effect. Columns two to five of Fig. 5
show the variogram models that have been fitted separately
for each catchment size class. All models can be fitted well
to the sample variograms, with the exception of the fractal
model, and the differences between the models are small.
Figure 6 shows the margins of the sample variograms and

the fitted variogram models. The figure shows in more detail
the much stronger variance reduction from smaller to larger
catchments than that of precipitation. Table 3 gives the val-
ues of the objective functions for the fitted variogram mod-
els. The product-sum model offers a slightly better fit than
the exponential and the Cressie-Huang models.
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Fig. 5. Spatio-temporal variograms of runoff. Sample variograms (left column) and independently fitted variogram models (columns 2–5).
The rows relate to different catchment size classes (small, medium, large). The horizontal axes are space lag, the vertical axes are time lag.

Table 3. Objective function (Eq. 21) for variogram models of runoff fitted independently to spatio-temporal sample variograms for small,
medium and large catchment size classes. Average relates to the average of the objective functions for the three catchment size classes.

Variogram model Small Medium Large Average
catchments catchments catchments

Exponential model 0.0094 0.0095 0.0151 0.0113
Cressie-Huang model 0.0135 0.0209 0.0216 0.0186
Product-sum model 0.0082 0.0083 0.0110 0.0092
Fractal model 0.0851 0.0878 0.0982 0.0904

4.3 Jointly fitted variograms of precipitation

Figure 7 shows the results of jointly fitting the variograms of
precipitation to the three catchment size classes. The vari-
ograms in the left column are again the sample variograms.
The letters on the left side of the figure relate to the respective
rows and denote estimation (E), verification (V) and fitting
(F). The sample variograms of rows three, four and five have
been used for the fitting of the models in columns two to five.
With the exception of the fractal model, there are only small
visual differences between the fitted variograms. The sam-
ple variogram of row two (point data of precipitation with
a temporal support of 15 min) can be used for verification.
For this case, the differences between the models are slightly
larger than for the fitting but the models are still rather close
to the sample variogram, again with the exception of the frac-

tal model. The top row of Fig. 7 shows the back-calculated
point variograms valid for zero temporal and zero spatial sup-
ports, i.e. instantaneous point variograms. These do differ
between the variogram models with the fractal and Cressie-
Huang models giving larger sills than the other models. The
exponential and product sum models are rather similar.

The margins of the variograms of Fig. 7 are shown in
Fig. 8. The margins more clearly show that the overall fits
are good to very good. The margins of the fractal model are
less biased than the rest of the spatio-temporal variogram, es-
pecially along the spatial axis. As all catchment size classes
have the same temporal support (15 min) the fractal model
does not estimate any temporal variance reduction with in-
creasing catchment size. The temporal variograms indicate
that the Cressie-Huang and product-sum models slightly un-
derestimate the temporal variance of point precipitation with
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Fig. 6. Temporal (left) and spatial (right) margins of the spatio-temporal variograms of runoff as in Fig. 5. Sample variograms are shown as
points, fitted variogram models as lines.

Table 4. Objective function (Eq. 21) for regularised variograms of
precipitation fitted jointly to the spatio-temporal sample variograms
for small, medium and large catchment size classes, denoted as ”to-
tal”. Point refers to the objective function for point precipitation
with 15 min temporal support which is the verification case.

Variogram model Total (fitted) Point (verification)

Exponential model 0.0113 0.0098
Cressie-Huang model 0.0145 0.0191
Product-sum model 0.0094 0.0304
Fractal model 0.1210 0.2549

a temporal support of 15 min. The exponential model per-
forms best on the margins.

Table 4 shows the values of the objective function for the
fitted variogram models. The product-sum model offers a

slightly better fit than the exponential and the Cressie-Huang
models but for the verification case (point precipitation with
temporal support of 15 min) the exponential model is the best
model. The objective function for the goodness of fit (small,
medium, large catchment sizes classes) is around 0.01 (with
the exception of the fractal model) which is similar to the
separate fitting (Table 2). This indicates that the regularisa-
tion is fully consistent with the catchment precipitation data.
Note that the joint fitting (Table 4) has only one third of the
free parameters of the separate fitting. This comparison tests
the assumptions of regularisation in space, i.e., the approx-
imation of the catchments by squares with an area equal to
the median of each size class. It is clear that this approxima-
tion is sufficiently accurate for the purposes of regularisation.
In the verification case (Table 4, right column) the errors are
somewhat larger (0.01–0.03 depending on the model, exclud-
ing the fractal model) but in absolute terms this is still a small
number.

Hydrol. Earth Syst. Sci., 10, 645–662, 2006 www.hydrol-earth-syst-sci.net/10/645/2006/
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Fig. 7. Spatio-temporal variograms of catchment precipitation. Sample variograms (left column) and jointly fitted variogram models
(columns 2–5, rows 3–5). Row 2 (point precipitation, temporal support of 15 min) has not been used in the fitting and is used for veri-
fication. Top row shows the back-calculated variograms for zero spatial and temporal supports (instantaneous point precipitation). Letters
“E”, “V” and “F” stand for estimation, verification and fitting, respectively. The horizontal axes are space lag, the vertical axes are time lag.

4.4 Jointly fitted variograms of runoff

Regularised spatio-temporal variogram models were fitted to
the sample variograms of runoff jointly for all catchment
size classes and are shown in rows two to four of Fig. 9.
There are only minor differences between the regularised
variograms from the different models, and they are all sim-
ilar to the sample variograms. The exception is the fractal
model which cannot be fitted as well. It should be noted that
this is the model with the smallest number of parameters, so
a poorer fit would be expected. The point variogram mod-
els back-calculated by the procedure (Fig. 9, top row) exhibit
significantly shorter spatial correlation lengths than any of

the catchment scale variogram models. The point variogram
models differ in terms of their sills (i.e. the overall levels).
Similar to precipitation, the Cressie-Huang and fractal mod-
els have the largest sills. It is clear that there is substantial
uncertainty associated with these variograms. However, for
practical applications this may not be important if the spatio-
temporal estimation of runoff is applied to catchments of a
size range similar to that used here, as the regularised vari-
ograms based on these point variograms are all very similar.

Figure 10 shows the margins of the sample variograms
and the fitted regularised models for runoff. There are only
small differences between the exponential, Cressie-Huang
and the product sum models. The temporal margins are al-
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Fig. 8. Temporal (left) and spatial (right) margins of the spatio-temporal variograms of catchment precipitation as in Fig. 7. Sample
variograms are shown as points, jointly fitted variogram models (small, medium, large catchment size classes) as well as estimated variogram
models (point 15 min, point instantaneous) as lines.

Table 5. Objective function (Eq. 21) for regularised variograms of
runoff fitted jointly to the spatio-temporal sample variograms for
small, medium and large catchment size classes.

Variogram model Total

Exponential model 0.0269
Cressie-Huang model 0.0227
Product-sum model 0.0257
Fractal model 0.1544

most perfectly modelled, while there are minor deviations
between the spatial sample variograms and the estimated var-
iograms. The point variograms are shown in light blue. For
the fractal model, the point variogram is larger than the range
shown. Table 5 indicates that the variogram models give

almost equally good fits with the exception of the fractal
model. The objective functions of the exponential, Cressie-
Huang and product sum models range between 0.02 and 0.03.
This is larger than those of the separately fitted variograms
(around 0.01 in Table 3) which is likely related to the simpli-
fications of the analysis including the assumptions on the unit
hydrograph and the general assumption of linearity. How-
ever, the absolute values of the objective functions for the
three models are still very small indicating overall excellent
consistency.

All variogram models have been fitted ten times with dif-
ferent starting values which produced somewhat different pa-
rameter sets. This is because of local minima in the objective
function. For the presentation we have selected the param-
eter sets with the smallest objective functions. To illustrate
the uncertainty around these best fits we selected, for each
model, the five best parameter sets and computed the aver-
age and the coefficient of variation (CV) for each parameter.
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Fig. 9. Spatio-temporal variograms of runoff. Sample variograms (left column) and jointly fitted variogram models (columns 2–5, rows
2–4). Top row shows the back-calculated variograms for zero spatial and temporal supports (instantaneous point runoff ). Letters “E” and
“F” stand for estimation and fitting, respectively. The horizontal axes are space lag, the vertical axes are time lag.

The CV is a measure of the uncertainty of the parameters.
These statistics are shown in Table 6, together with the val-
ues of the corresponding objective functions. Overall, the
uncertainty depends on the parameter estimated. For some
parameters, the uncertainty is very small (e.g.d1) but for
other parameters the uncertainty is substantial. These dif-
ferences are related to the sensitivity of the shape of the var-
iogram to individual parameters. The parameters with the
smallest sensitivity have the largest uncertainty but this may
not be important for spatio-temporal estimation. It was more
difficult to find suitable parameter sets for the product-sum
model than for the other models. This is because it is the
model with the largest number of parameters. In order to ob-
tain suitable parameters, the parameter search was initiated
with parameter sets found in previous optimisation runs. Be-
cause of the presence of local minima this tends to reduce the
variability of the estimated parameters. The CV values of the
parameters of the product-sum model in Table 6 hence tend
to be smaller than those of the other models. A parameter
that is of particular interest is the exponent in the relation-
ship between space and time supports,κ. The uncertainty

of this parameter ranges between 1 and 38% depending on
the model. The order of magnitude ofκ is hence a mean-
ingful estimate. With the exception of the fractal model, for
which the fitting was not very good, theκ values of the dif-
ferent models are similar and range between 0.3–0.4. The
parameters of the non-stationary parts (as , at , α andβ) are
not well constrained as they are controlled by the large time
scale and space scale variability present in the data. For the
exponential and Cressie-Huang models, the levels (or sills)
of the point variograms are defined by parametersa1 anda2,
respectively. Thea2 value is significantly larger thana1 re-
flecting the larger sills of the Cressie-Huang model as illus-
trated in Figs. 9 and 10.

5 Conclusions

5.1 Sample variograms

A comparison of the spatio-temporal variograms of runoff
and precipitation indicates that, for a given catchment size
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Table 6. Statistics of the objective function (φk) of the joint fitting of the runoff variograms; estimated parameters of the space-time
relationship of the supports (µ, κ); and estimated parameters of the point runoff variogram (remaining lines). CV is a measure of the
uncertainty of the estimates.

Exponential model Cressie-Huang model Product-sum model Fractal model

Average CV Average CV Average CV Average CV

φk 0.0293 0.0786 0.0281 0.1176 0.0258 0.0158 0.1548 0.0020
µ 1.8670 1.0422 2.5991 0.6058 2.0108 0.3027 0.3582 0.0710
κ 0.4193 0.3841 0.3440 0.2777 0.3065 0.1298 0.7936 0.0123
as 0.0000 1.2773 0.0007 0.9102 0.0000 0.1613 0.0840 0.5811
at 0.0024 1.4488 0.0005 1.0493 0.0001 0.4936 0.0277 0.6813
α 0.5909 0.2939 0.2287 1.0096 0.6718 0.0385 0.0050 0.5056
β 0.1245 0.9893 0.0972 0.4798 0.1847 0.3471 0.0076 0.5847
a1 0.0131 0.1046
c1 0.0295 0.3589
d1 1.0298 0.0198
e1 1.6427 0.0548
a2 0.0256 0.2456
c2 0.1755 0.3966
d2 1.2517 0.0976
a3s 0.0070 0.0773
a3t 0.0070 0.0798
d3s 1.6841 0.0805
d3t 31.6109 0.1490
e3s 1.6814 0.0090
e3t 0.5550 0.1742
k 142.8483 0.0780

class, the variograms are fundamentally different. The left
column of Fig. 5, as compared to the left column of Fig. 3,
suggests that the plots of the runoff variograms are much
more elongated in the time direction indicating that the time
correlations of runoff are much more persistent than those
of precipitation. Obviously, this is because of the time de-
lays as rainfall passes through the catchment system. This
is an effect of the catchment operating as a filter to the at-
mospheric forcing, with the time scale of the filter being di-
rectly related to the concentration time of the catchment. The
contour lines of the variogram values give an indication of
the characteristic velocities (Skøien et al., 2003). For pre-
cipitation of all catchment classes, a typical pair of length
and times scales is 70 km and 2 h which suggests a typical
characteristic velocity of 10 m/s. This is similar to the char-
acteristic velocities found in Skøien et al. (2003) and con-
sistent with the schematic of space time scales of Blöschl
and Sivapalan (1995). For runoff, again for all catchment
size classes, typical pairs of length and times scales are 2 km
and 2 h, 20 km and 20 h, and 50 km and 100 h. This trans-
lates into typical characteristic velocities of 0.27, 0.27 and
0.14 m/s, respectively. These characteristic velocities are
somewhat faster than those found in Skøien et al. (2003),
which may be related to the higher temporal resolution of the
data. The data resolve the event scale in more detail, hence

one would expect the estimated scales to be associated with
events. The slower characteristic velocities with increasing
catchment size are likely related to the larger groundwater
contribution in larger catchments.

Independently fitting variogram models to each catchment
size class gave excellent to good fits for all the variogram
models considered here with the exception of the fractal
model. The product-sum model was generally better than
the other models for both runoff and precipitation. The dif-
ferences in the goodness of fit may be partly related to the
degrees of freedom; the fractal model has the smallest num-
ber of parameters, the product-sum model the largest num-
ber of parameters. The objective function is dimensionless,
so a comparison of precipitation and runoff is meaningful.
The objective functions for runoff and precipitation are sim-
ilar (both around 0.01 in Tables 2 and 3) indicating that the
variogram models can be fitted equally well to runoff and
precipitation.

The variograms change as one moves from small to
medium sized and large catchments. The catchment scale
effects are significantly larger for the case of runoff than for
precipitation, i.e., in the case of runoff the variance reduction
with catchment area is much larger (Figs. 3 and 5). Also, the
temporal correlations increase more strongly with catchment
area which, again, is related to the travel time of water in the
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Fig. 10. Temporal (left) and spatial (right) margins of the spatio-temporal variograms of runoff as in Fig. 9. Sample variograms are
shown as points, jointly fitted variogram models (small, medium, large catchment size classes) as well as estimated variogram model (point
instantaneous) as lines.

catchments. The stronger time aggregation effects of runoff,
as compared to precipitation, may explain the stronger vari-
ance reduction with spatial scale than that predicted by spa-
tial aggregation, found by Woods et al. (1995).

5.2 Space-time regularisation

The regularisation of precipitation is used here for two
purposes; to separate the spatial aggregation effects (mov-
ing from point rainfall to catchment rainfall) from spatio-
temporal effects that involve runoff routing; and to test the
spatial aggregation procedure, in particular the assumption of
approximating catchments by squares and the use of a con-
stant catchment size equal to the median in each size class.
The comparison of back-calculated point precipitation (zero
spatial support, 15 min temporal support) in Fig. 7, second
row suggests that the assumptions are indeed appropriate for
the data set used here, so the spatial regularisation of runoff,

that uses the same procedure, is also valid. The objective
functions of the joint fitting (Table 4) are close to the aver-
age objective functions obtained by the separate (direct) fit-
ting (Table 2), i.e., around 0.01 in both cases (exponential,
Cressie-Huang and product-sum models). This further cor-
roborates the validity of the regularisation procedure.

For the case of runoff, however, the objective functions of
the joint fitting (Table 5) are larger than those of the sepa-
rate fitting (Table 3). For the joint fitting, the errors of the
exponential, Cressie-Huang and product-sum models range
between 0.02 and 0.03, depending on the model, while they
are around 0.01 for the separate fitting. This means that, for
runoff, the space-time aggregation effects of catchments are
not fully consistent with the assumptions made here. Specif-
ically, the simplifications include the assumptions of a block
unit hydrograph, the general assumption of linearity and, per-
haps most importantly, a single relationship between catch-
ment size and catchment response time. However, the overall
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magnitude of the objective functions are still very small (i.e.,
errors of 0.02–0.03) indicating that the first order effects of
the spatio-temporal variability of runoff is indeed captured
well by conceptualising catchments as linear space-time fil-
ters. The stronger time aggregation effects of runoff, as com-
pared to precipitation, have been represented by a relation-
ship between spatial and temporal supports (Eq. 15) which
seems essential in representing the change of spatio-temporal
runoff variograms with changing catchment size.

For precipitation, we found that the point scale product-
sum model provided slightly better variograms than the other
models in terms of the goodness of fit to the small, medium
and large catchment size classes but there was no advantage
over the other models in the verification case of 15 min point
precipitation. The fit of the fractal model was poorest but
it was the model with the smallest number of parameters.
There are two reasons for the poor fit of the fractal model.
The obvious one is the smallest number of parameters among
all variogram models, so the fractal model has the least flex-
ibility. The other, probably equally important, reason is the
lack of space-time interaction of the spatio-temporal fractal
variogram, i.e., the fact that the partial derivatives of the var-
iogram ∂γ

∂ht
and ∂γ

∂hs
only depend onht andhs , respectively.

This lack of space-time interaction also concerns the frac-
tal part of the other variograms, but to a lesser degree, as
it only relates to a component of the entire variogram. For
runoff, the goodness of fit of the exponential, Cressie-Huang
and product-sum models was good (0.02–0.03) suggesting
that all three models are suitable for the spatio-temporal es-
timation of runoff in the study area. Because of the small
differences between the models, the choice of model could
be based on computational convenience. It is interesting that
the product-sum model reduces to a separable model with
the fitted parameters, i.e.a3s=a3t=0.0070 andk=142, which
is very close to the condition for the product-sum model to
reduce to the separable model of Rodrı́guez-Iturbe and Mejı́a
(1974). Separable models are computationally more conve-
nient for some applications (Fuentes, 2006). The spatial var-
iogram fits in this paper (Fig. 10 right column) are as good as
or better than those of Skøien et al. (2003) (their Fig. 6b) who
used spatial aggregation only. In addition, we can represent
the temporal aggregation effects well (Fig. 10 left column).

5.3 Interpretation of point variograms of runoff

The point variograms of runoff, i.e. the variograms for a lo-
cal runoff generation process with zero spatial and temporal
supports, differ between the models. The fractal model gives
the highest point variogram. This model, however, should be
treated with caution as the model fits are not very good. For
the Cressie-Huang model, the overall level or sill is higher
than for the exponential and product sum models. The point
model has been estimated from catchment size classes of 42,
119 and 605 km2. These are the spatial supports. The associ-
ated temporal supports are, depending on the model (Eq. 15,

Table 6), approximately 7, 11 and 20 h. This means that
the back-calculation procedure involves substantial extrap-
olation to smaller scales, so the differences between the var-
iogram models are not surprising. The shapes of the three
point models are, however, not too different (Fig. 10 and
Fig. 9 top row). It should also be noted that for estimation
purposes one is usually interested in catchment sizes that
are not much smaller than the smallest catchments consid-
ered here, e.g., 1 km2. For these catchment sizes, the vari-
ograms are much more similar. For the practical application
of spatio-temporal estimation methods in catchment hydrol-
ogy the differences in the point variograms may hence not be
important.

The correlation lengths of the back-calculated point vari-
ograms of runoff are on the order of a kilometre or less, while
the small catchments showed correlation lengths of around
10–20 km (Fig. 10 right column). Skøien et al. (2003) found
a similar value of 0.7 km for point variograms of runoff. The
short correlation lengths are plausible as local runoff will
likely vary much over short spatial scales because of the vari-
ability of local infiltration and soil moisture characteristics
(Western et al., 2002, 2004). It is also of interest to com-
pare the sills or overall levels of the point precipitation and
point runoff variograms. For the exponential, Cressie-Huang
and product sum models of point/instantaneous precipitation
the sills in space are 0.04, 0.15 and 0.06 mm2

×h−2, respec-
tively (Fig. 8 right column). The corresponding values for
runoff (Fig. 10 right column, with units adjusted) are 0.14,
0.26 and 0.12 mm2×h−2, respectively. This means that the
local variability of runoff is between twice and three times
the variability of local rainfall. This is plausible as temporal
and spatial soil moisture variability contributes to making lo-
cal runoff more variable than rainfall. In time, local runoff
is more coherent than rainfall (Fig. 10 left column as com-
pared to Fig. 8 left column). This, again, is plausible because
of the memory induced by soil moisture and local ponding.
The non-stationary (fractal) parts of the variograms are more
difficult to interpret. The parameters differ between the vari-
ogram models which is likely a result of the interdependence
of the parameters of the fractal part and the other parameters
of the variogram models. As the levels of the stationary parts
of the point variograms differ, so will the non-stationary parts
in the different models.

5.4 Catchments as space-time filters

The high temporal resolution of the data used here (15 min)
allowed us to analyse the connections of space-time vari-
ability in more detail than has been possible in Skøien et
al. (2003) who used daily data. A time step of 15 min re-
solves individual events even in the small catchment class.
The kernel or space-time filter characteristics shed light on
the space-time scaling behaviour of the rainfall-runoff trans-
formation (Eq. 15). The parameter that is of particular in-
terest is the exponent of the relationship between space and
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time supports,κ. With the exception of the fractal model, for
which the fitting was not very good, theκ values of the dif-
ferent models are similar and range between 0.3–0.4. With
a µ value of around 2, this range ofκ gives response times
of about 5 h and one day for catchments of 10 and 1000 km2

area, respectively. These are plausible event response times
for the catchments considered here and are shorter than the
low flow recession time scales to be expected in the catch-
ments. The estimated response times seem to reflect large
events with relatively short response times, as these events
are associated with large absolute differences in the data set
and hence contribute most to the second statistical moment.
The estimated range ofκ represents the average scaling char-
acteristics of catchments within the study region. Obviously,
for an individual catchment, the response time may deviate
significantly from the general relationship of Eq. (15). Fig-
ure 3 of Merz and Bl̈oschl (2003), for example, shows a map
of the deviations from such a general relationship based on
an exponent ofκ=0.35. However, interpreted as an ensemble
average, the range found here is fully consistent with anal-
yses of observed runoff response in numerous catchments
(e.g. Fig. 11.4 of Anderson and Burt, 1990; Pilgrim 1987;
Corradini et al., 1995). Similarly, typical values used in re-
gional modelling studies are within this range. For example,
Blöschl and Sivapalan (1997) used an exponent ofκ=0.35
in analysing the spatial scaling behaviour of flood frequency.
The consistency suggests that the concept of catchments as
space-time filters is indeed meaningful. It should be noted
that, if known, the deviations of catchment response times
from a general relationship could be included in the space-
time filter framework proposed here.

Spatio-temporal point variograms of runoff as derived
in this paper could be used in spatio-temporal estimation
models similar to the TOPKRIGING approach of Skøien
et al. (2005). Initial analyses (Skøien and Blöschl, 2005)
have demonstrated the feasibility of such an approach for es-
timating runoff time series in ungauged catchments. This
method would be particularly useful for filling in missing
data of streamflow records based on the records in neighbour-
ing catchments. Clearly, the approach would be expected to
work best if the density of the stream network is high as is the
case in Austria. If fewer stream gauges are available the var-
iograms will not be as well defined (see Skøien and Blöschl
(2006a, b) for sampling issues) while knowledge about the
physical characteristics of the catchment and climate sys-
tems will become relatively more important. We have treated
the precipitation variograms separately from the runoff vari-
ograms in this paper. Another extension of the work reported
here would be to combine these two analyses. This could be
based on similar concepts as those proposed by Woods and
Sivapalan (1999).
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