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Abstract. The concept of a sampling scale triplet of spacing, extent and support is used to define
the spatial dimensions of a monitoring network or a field study. The spacing is the average distance
between samples, the extent is the size of the domain sampled and the support is the averaging area of
one sample. The aim of this paper is to examine what is the bias and the random error (uncertainty)
introduced by the sampling scale triplet into estimates of the mean, the spatial variance and the integral
scale of a variable in a landscape. The integral scale is a measure of the average distance over which a
variable is correlated in space. A large number of two dimensional random fields are generated from
which hypothetical samples, conforming to a certain sampling scale triplet, are drawn which in turn
are used to estimate the sample mean, spatial variance and integral scale. The results indicate that
the biases can be up to two orders of magnitude. The bias of the integral scale is positively related
to the magnitude of any of the components of the scale triplet while the bias of the spatial variance
is different for different components of the scale triplet. All sampling scale effects are relative to the
underlying correlation length of the variable of interest which is closely related to the integral scale.
The integral scale can hence be used for sampling design and data interpretation. Suggestions are
given on how to adjust a monitoring network to the scales of the variables of interest and how to
interpret sampling scale effects in environmental data.

Keywords: sampling, scale effects, scale triplet, variogram, integral scale, sampling bias, sampling
design

1. Introduction

Scientists in numerous environmental disciplines are interested in the spatial dis-
tribution of a variable in the landscape at a given point in time. The variable of
interest can be sampled at a number of locations and subsequently analysed to es-
timate those statistical characteristics of the variable across the landscape that are
deemed relevant in a particular context. The three statistical characteristics most
relevant to spatial distributions are the mean, the spatial variance and the integral
scale of the variable of interest. The mean is a measure of the average behaviour
within a domain. The spatial variance is a measure of how different the variables
are in space. The integral scale is a measure of the average distance over which a
variable is correlated in space (see, e.g., Skgien et al., 2003). Small integral scales
indicate that the variable varies erratically over short distances while large integral
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scales indicate that the variable varies smoothly over short distances and variabil-
ity starts to get significant at larger distances. This paper focuses on these three
statistical characteristics.

The mean, the spatial variance and the integral scale are of interest in a number
of disciplines within the environmental sciences to represent water quality param-
eters in estuaries (Caeiro et al., 2003); characteristics of biological communities
(Franklin and Mills, 2003; Jurado-Expésito et al., 2004; Nunan et al., 2002; Wallace
et al., 2000), radon concentration in soils (Oliver and Khayrat, 2001), hydraulic
conductivity in aquifers (Gelhar, 1993, p. 292), and soil moisture characteristics
of landscapes (Mohanty et al., 2000; Western et al., 2004), among many other ex-
amples. In these studies the three statistical characteristics are used for a range of
purposes, as parameters for understanding of processes involving hypothesis test-
ing, for quantifying a resource, for compliance, for assisting management decisions
and for risk assessment.

All of these studies have in common that it is rarely possible to sample the
variable of interest exhaustively and with infinite detail. There will always be some
constraints imposed by the measurement procedure and the costs associated with
the sampling. For example, soil moisture can be sampled by time domain reflec-
tometry in situ probes that, typically, provide an estimate of soil moisture in the top
30 cm of the soil over a measurement area of 1 dm? (Western and Bloschl, 1999).
Alternatively, remotely sensed data can be used to provide estimates of surface soil
moisture over an area of, say, 1 ha or more, depending on the sensor that is used
(Entin et al., 2000). Similar measurement areas apply to most environmental mea-
surements. In micro meteorological studies, for example, the effective fetch is the
area over which the sensors on a micrometeorological tower provide information.
It changes with the meteorological conditions and can be on the order of hundreds
of metres in length (Schmid, 2002). Another example are groundwater pumping
tests that integrate information over the depression cone. Here, the measurement
area is on the order of 1 ha, depending on the subsurface characteristics and the
withdrawal rate (Anderson, 1997). All of these examples relate to the sampling
scale that is variably termed grain, footprint or support depending on the discipline
(Bierkens et al., 2000; Bloschl and Sivapalan, 1995).

There are two other scales that are important in the spatial arrangement of
environmental measurements. These are the spacing and the extent. The spacing is
the characteristic distance of two sample locations, i.e., it is small if the samples
are narrowly spaced and large if only a few samples are taken over a given domain.
Soil hydraulic conductivity measurements in dedicated studies may have spacings
of meters (Zehe and Bloschl, 2004) while rain gauges in a region are typically
spaced at tens of kilometres. Water quality and air quality samples, often, have
larger spacings. This is because measurement costs of small spacings are usually
prohibitive, so in many practical cases, the number of samples over a domain is
a function of the budget available rather than based on scientific analyses of what
would be needed to sample the variable of interest accurately. The extent is the
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Figure 1. The sampling scale triplet for the two dimensional spatial case: spacing L, extent L and
support L 4. Modified from Bloschl and Sivapalan (1995).

overall size of the domain sampled. It may range from centimetres to hundreds of
kilometres, depending on the application. The extent is often selected as the area
of interest but sometimes it can be much smaller.

The three scales, spacing, extent and support, have been termed the scale triplet
by Bloschl and Sivapalan (1995). In the two-dimensional case, as is of importance
in environmental monitoring in landscapes, Bloschl (1999) suggested to define
them as characteristic length scales: spacing (L), extent (Lg), and support (L4)
(Figure 1).The spacing can be related to the size of the domain, Agom, and the
number of samples N, the extent to the size of the domain, and the support can be
related to the support area A.

Adom
L¢=
s N

LE:VAdom (1)
Li=+vA

When estimating the mean, the spatial variance and the integral scale of the variable
of interest, the spatial sampling scales will have some bearing on the results. The
estimates from a finite number of samples, collected over a finite support area will
be different from the true statistical characteristics of the variable in the landscape
one is interested in because of a number of reasons. If the spacing of the samples
is large relative to the underlying variability, one will not sample the small scale
variability. If the extent of the samples is small relative to the underlying variability,
one will, conversely, not sample the large scale variability. Finally, if the support
of the samples is large relative to the underlying variability, the data will appear
much smoother than the true spatial distribution of the variable of interest. These
effects will result in bias (or systematic error) and uncertainty (or random error) in
the estimates of the mean, the spatial variance and the integral scale.

It is not always clear that estimates may have been biased due to sampling scale
effects. Franklin and Mills (2003), for example, compared a number of studies
of similar microbial communities at different scales. The authors of the original
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studies had suggested that different factors may have contributed to structuring those
communities. Based on a discussion of Rahel (1990), Franklin and Mills (2003)
however suspected that these differences were more likely to reflect viewpoints of
different scales rather than differences in the way communities are organised.

While different spatial sampling strategies have attracted considerable interest
in the literature (e.g. Morrissey et al., 1995; Thompson, 2002; Webster and Oliver,
2001; McDonald, 2003), research on quantifying sampling scale effects on the
statistical characteristics estimated from the data has been more fragmented. The
main contribution probably has been from geostatistics which emerged in the 1950s
focussing, among other things, on how the spatial variance of a variable (such as
the ore grade) changes with the support area or sampling volume (see, e.g., Journel
and Huijbregts, 1978). The methods to estimate the change in variance amount to
filtering the underlying distribution by a linear filter which reduces the variance and
changes the spatial correlation structure. There have been numerous applications
throughout the environmental sciences from soil assessment to the estimation of
extreme rainfall for catchments (e.g. Webster and Oliver, 2001; Sivapalan and
Bloschl, 1998) among many other examples.

The role of the spacing of the monitoring sites has attracted less attention in the
environmental sciences. Russo and Jury (1987) examined the effects of spacing on
estimates of the three statistical characteristics based on Monte Carlo simulations
with synthetically generated random fields. They found that large spacings will
lead to overestimates (i.e. positive biases) of the integral scale and large random
errors. The bias was small as long as the spacing was smaller than half the corre-
lation length. This can be related to the Nyquist frequency in time series analysis
which is the highest frequency of a signal that can be resolved by a given sam-
pling rate (Nyquist, 1924). In a somewhat related study, Beckie (1996) analysed
sampling scales associated with the resolution of a single groundwater field test
and used filter functions to estimate how the unresolved small scale variability of,
say, hydraulic conductivity, changes as a function of the spacing and the support
of the measurements. He found that increasing spacing increases the unresolved
small scale variability, while increasing support decreases it. This is because also
the overall variability decreases as an effect of increasing support.

The effect of the extent of the data on the integral scale of hydraulic conductivity
has been discussed by Gelhar (1993). Figure 6.5 in Gelhar (1993) suggests that the
spatial scale over which hydraulic conductivity is correlated (i.e. the integral scale)
tends to be on the order of 10% of the extent of the domain, irrespective of the type
of underlying aquifer. This is disturbing as it would imply that the integral scales
estimated from the data are mainly controlled by the sampling setup rather than by
the distribution of the variable one is meaning to capture. The findings of Gelhar
(1993) have been corroborated by a number of other studies such as Bloschl (1999)
for the case of snow cover patterns. Di Federico and Neuman (1997) and Cintoli
et al. (2004) suggested that the concept of truncated power variograms can be used
to explain these sampling effects.
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One of the important concepts common to the analysis of sampling scale effects
is that sampling involves some sort of filtering, and observed properties may hence
be heavily biased by the sampling scales (Cushman, 1984, 1987). While a number
of aspects of sampling scale effects have been examined in the literature in various
context, to our knowledge, a coherent analysis for landscapes (i.e. two dimensional
fields) is still lacking. This is the purpose of this paper. Specifically, the aim of this
paper is to examine what is the bias and the random error (or uncertainty) introduced
by the sampling scale triplet (spacing, extent and support) into estimates of the mean,
the spatial variance and the spatial integral scale of a variable in a landscape. The
paper builds on an initial analysis of Western and Bloschl (1999) who used real soil
moisture data to examine sampling scale effects. In contrast to Western and Bloschl
(1999), however, in this paper we use a large number of synthetically generated
random fields from which we take samples at various sampling scales. This allows
us to analyse the biases and random errors of the mean, the variance and the integral
scale in a more controlled manner than is possible with real data.

2. Method
2.1. GENERATING RANDOM FIELDS

We generated a large number of two-dimensional random fields and sampled from
these fields with a spatial arrangement of the samples conforming to a specified
scale triplet of spacing, extent and support. The random field represents the spatial
distribution of the variable of interest and each realisation is one possible outcome
of the sampling. From the samples we calculated the mean, spatial variance and
integral scale, and examined how similar these estimates were to the mean, spatial
variance and integral scale of the underlying population of the random field. The
mean, spatial variance and integral scale of the underlying population are considered
to be the true values and this is what one is intending to estimate to the highest
possible accuracy. Figure 2 illustrates schematically the procedure. The top charts
show the underlying true distribution and the bottom charts show, schematically,
the sampled values for large spacings, small extents and large supports.

The main assumptions in generating the random fields were (a) that the fields
were stationary, i.e., the statistical characteristics of the population of the random
field (such as the mean and the variance) were assumed not to change with spatial
location. We also assumed (b) that the univariate distribution of the random field
conforms to a normal distribution with population mean p and population variance
o2. Finally (c) we assumed that the spatial correlation structure of the population
of the random field can be represented by an exponential variogram:

y(h) = o*(1 — exp(—(h/1))) (2)
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Figure 2. Schematic of sampling scale effects. The top row shows the underlying true distribution and
the bottom row is the actual information sampled. Left: With large spacings, the small scale variability
will not be sampled. Centre: With small extents, the large scale variability will not be sampled. Right:
With large supports the samples will appear much smoother than the true spatial distribution.

where A is the correlation length and # is the distance between two points in the
random field (Journel and Huijbregts, 1978). The variogram describes the average
variance between two points separated by distance /. The correlation length is a
measure of the average distance over which a variable is correlated in space. For
the variogram in Equation (2), the integral scale happens to be identical with the
correlation length while for different variograms the integral scale can be smaller
or larger than the correlation length, depending on the shape of the variogram. The
exponential variogram is consistent with a first-order autoregressive or Markov
process (Webster and Oliver, 2001) and is hence the simplest assumption one can
make about the spatial variability of a random field. With these prescribed statistical
characteristics we generated two dimensional random fields using the Turning Band
Method (Mantoglou and Wilson, 1981, 1982) on a square grid of 1024 x 1024
points with grid size of Ax. For each combination of the sampling scale triplet we
generated 1000 realisations.

2.2. SAMPLING

Throughout this paper we use dimensionless sampling scales L, L} and L% , i.e. the
spacing, extent and support scaled by the true correlation length A of the population
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of the random field:
Ls=Lg/A
Ly =Lg/: 3)
L =La/A

In a first analysis we varied spacing and extent jointly. From each of the 1000
realisations for each extent, we took 16, 100 and 1024 samples. For a fixed number
of samples the spacing increases linearly with the extent, similar to Equation (1).

L:=L%/vVN (4)

where N is the number of samples. For these analyses we set the support L% = 0,
i.e. we took point samples from the grid.

In a second analysis we varied the support. The extent was fixed as L}, = 10,
with spacing being a function of the number of samples according to Equation
(4). The support was changed by arithmetically averaging the point values over
(L4/Ax)? points. Again, we took 16,100 and 1024 samples and aggregated an
increasing number of points from the generated field for each sample to represent
the effect of increasing support. We assumed square support areas. In both analyses
we used two monitoring schemes, sampling on a regular square grid and random
sampling.

In all instances with L4 > Lg, measurements will be partly overlapping and
the measurements closest to the border of the domain will also include values from
outside what is defined as the extent of the domain.

We assumed that all sample values were error free, i.e. we only analysed the
biases and random errors (uncertainties) introduced by a less than exhaustive sam-
pling of the underlying distribution. In a real world study, instrument errors will
introduce additional uncertainty.

2.3. ESTIMATION OF MOMENTS AND INTEGRAL SCALE

From the N samples z(x;) at locations x; we estimated the sample mean (Z) and
spatial sample variance (s?) as:

1 N
t= ;z(xi) (5)

and

- )
S2 = m ;(Z(Xi) — Z)2 (6)
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The sample variogram we estimated by the traditional estimator of Matheron (1965):

n(h)

1
p(hy=-—-> D—z(x; +h)]? 7
y(h) 2n(i) 2= [z(x;)—z(x; + h)] (7)
where i = |h| is the spatial lag between two points. The summation over the

number of pairs n(/) is within bins which we chose at logarithmical intervals. The
integral scale of the population is defined as (Taylor, 1921):

szw[l—&};)}dh 8)
0 o
The sample integral scale we estimated from the sample variogram as:
5 NZ [1 P+ ?(h»]Mi ©
i=1 252

where N, is the bin number where y (hy,) = s2. In other words, this is the bin num-
ber for which the sample variogram first intersects a horizontal line 7(h) = s.
If the variogram reached the sample variance between two bins, the exact in-
tersection point was found by linear interpolation. We assumed y(hy) = 0 and
Ah,‘ = h,' — /’l,'_l.

From each of the 1000 realisations for a given combination of the scale triplet,
we estimated the statistical characteristics by Equations (5), (6) and (9). From
the set of estimates we estimated the ensemble mean, i.e. the mean value of the
1000 estimates for each of the three statistical characteristics. We also estimated
the variance around the ensemble mean. The variance around the ensemble mean
represents the random error or uncertainty of the estimates of Equations (5), (6)
and (9) one encounters if only one sample set (i.e. one replica) is available.

We plotted the estimates in Equations (5), (6) and (9) in nondimensional form
scaled by the (true) population characteristics:

Iy

r=— (10)
2

2*_S

s =3 (11)

W J

Jt=— 12
. (12)

If the ensemble mean of the nondimensional mean (Equation (10)) is zero, the
estimates of the mean are unbiased. If the ensemble mean of the nondimensional
variance (Equation (11)) is unity, the estimates of the variance are unbiased. Simi-
larly, if the ensemble mean of the nondimensional integral scale (Equation (12)) is
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unity, the estimates of the integral scale are unbiased. If the variance (or standard
deviation) of the sample estimates around the ensemble mean are small for any of
the statistical characteristics, their uncertainty is small.

In addition, we considered an alternative case, we term “single realisation case”,
in which we normalised the estimates differently. For each realisation independently
we compared the estimated sample mean and sample variance with the mean and
the variance of the entire random field of the same realisation. This is the case
where we are interested in the statistical characteristics of one realisation, not the
population characteristics. The equations corresponding to Equations (10-12) but
for the single realisation case (denoted by subscript R) are then:

—x Z — Zdom

Th=—— (13)
2
2= (14)
sdom
Jh = J (15)
R jdom

where the subscript dom refers to estimates based on exhaustive sampling over the
domain of size Agom (Equation 1).

An application of this case is the estimation of the spatial average, variance
and integral scale of precipitation for a certain event, or the concentration of a
nutrient in a particular area at one point in time. For each realisation we subtracted
the realisation mean from the estimated mean. The average of these deviations
over the ensemble (according to Equation 5) will show if the estimates are biased
compared to the realisation mean, while the variance of these deviations (according
to Equation 6) will give the uncertainty of such an estimate. A similar procedure
was followed for variance, except that we divided the estimated variance by the
realisation variance to normalise it. The integral scale estimated from the samples
we normalised by the realisation integral scale, i.e. the integral scale estimated from
all points of the generated field of the same realisation.

It should be noted that, for a given sampling scale triplet, the choice of estimation
methods for the statistical characteristics may affect the results to some degree. We
have chosen one of the more commonly used methods. A comparison of methods is
beyond the scope of this paper and some guidance on the performance of different
methods is given in Cressie (1991).

2.4. ANALYTICAL EXPRESSIONS FOR BIAS AND RANDOM ERROR

For comparison with the sampling analyses from the random fields we present
analytical expressions for the bias of the mean, spatial variance and integral scale
as a function of the scale triplet taken from Western and Bloschl (1999). In their
derivation they made a number of simplifying assumptions which can be tested
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here. Among other things they suggested that it is possible to superpose the effects
of the spacing, extent and support on the estimation biases. The equations used are
summarised in Appendix A. Expressions for the random error or uncertainty of the
estimates are given in Appendix B for the mean as a function of the spacing and
extent as well as for the variance for statistically independent samples.

3. Results
3.1. ESTIMATION OF THE POPULATION CHARACTERISTICS

3.1.1. Spacing

Figure 3 shows the results for the case where spacing is large relative to the under-
lying correlation length A. The monitoring scheme is gridded sampling and three
cases of 16, 100, and 1024 samples are considered. The charts in the top row of
Figure 3 indicate that large spacings do no introduce biases into the mean. For large
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Figure 3. Effect of large spacings L on the sample mean z*, spatial variance s%" and integral scale J*

for gridded sampling. The circles show the ensemble mean and the error bars represent the standard
deviation around the ensemble mean. The lines in the charts show Equations (A20), (A21) and (A15).
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spacings relative to the underlying correlation length A, LS > 3, the uncertainty of
the mean (shown as error bars in the figures) does not change with spacing. This is
because the samples are practically uncorrelated. The expression in Equation A20
for uncorrelated samples provides a close match to the uncertainties of the sam-
pling analysis as shown in Figure 3. For small spacings, the uncertainties increase
with decreasing spacings which is, however, related to small extents and will be
discussed in Section 3.1.2. The uncertainty of the mean decreases with increasing
number of samples in all cases as would be expected.

The estimates of the spatial variance (Figure 3, second row) are unbiased at
large spacings, similar to the estimates of the mean and, again, the expression in
Equation (A21) provides a close match. The sampling properties of uncorrelated
random variables are very well defined as would be expected.

The estimates of the integral scale (Figure 3, bottom row) are biased as a function
of spacing and are increasingly overestimated with increasing spacings. For 16
samples, there is only a very short range of spacings (L5 ~ 2) where the integral
scales are unbiased. For a larger number of samples this range increases. The
uncertainties associated with the integral scales (error bars in Figure 3) are relatively
small which indicates that the integral scale can be estimated with good confidence
but the biases are large. The expression in Equation (A15) closely follows the results
of the sampling analysis which indicates that the scale effects of the spacing can
be well predicted.

Figure 4 shows the same information as Figure 3, but here the monitoring scheme
was random rather than gridded. The results for the mean and spatial variance are
similar to the gridded scheme but those for the integral scales are different. The
uncertainties of the estimates are considerably larger than for gridded sampling.
On the other hand the biases are much smaller. For a large number of samples
(N = 1024) the estimates of the integral scale are almost unbiased over a wide range
of spacings. As indicated in Figure 4 (bottom row), Equation (A15) overestimates
the biases. This is because Equation (A15) applies to gridded rather than random
sampling.

3.1.2. Extent

Figure 5 shows the results for the case where the extent is small relative to the
underlying correlation length A. For comparison we have extended the graphs to
large extents which imply large spacings for a given number of samples. The top row
in Figure 5 shows that the mean is unbiased. The uncertainty, however, increases
drastically with decreasing extent. In the limit of very small extents the uncertainty
is unity. This is the standard deviation of the underlying field which means no
information on the underlying distribution is obtained from such a monitoring
scheme. On the other hand, the case for large extents shown in Figure 5 top row
implies large spacings (e.g., with 100 samples, an extent of 100 implies a spacing
of 10). It is interesting that the uncertainties introduced by small extents (when only
a small fraction of the landscape is sampled) are much larger than those introduced
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Figure 4. Same as Figure 3 but for the case of random sampling.

by large spacings (where in the limit the data are uncorrelated). For the case of
small extents all samples are heavily correlated and very little is learned about the
variability of the population. This behaviour is also borne out by the expressions in
Equation (A18).

The second row in Figure 5 shows that the variance is significantly biased for
small extents. Once L}, < 10 the variance is underestimated and this bias does not
depend on the number of samples. Equation (A9) gives a good prediction of the bi-
ases although at very small extents Equation (A9) slightly underestimates the biases.

The bottom row in Figure 5 indicates that the integral scale is heavily biased
for small extents. The underestimation can be almost two order of magnitudes. It
is interesting that the underestimation occurs for L} < 10. This means that the
monitoring domain needs to be at least 10 times the underlying correlation length
for not introducing extent biases. For larger extents there is some overestimation
but this is a spacing effect as discussed above. For all cases, the uncertainty of the
estimated integral scale is small in spite of the very large biases. The lines shown in
the bottom row in Figure 5 are a product of Equations (A12) and (A15) to account
for extent and spacing effects simultaneously. They closely represent the sampling
results.
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Figure 5. Effect of small extents L7 on the sample mean z*, spatial variance s and integral scale J*

for gridded sampling. The circles show the ensemble mean and the error bars represent the standard
deviation around the ensemble mean. Lines in the charts show Equations (A18), (A21),( A9), and the
product of Equations A12 and A15.

For the case of small extents, the biases and uncertainties of the estimators are
independent of the spatial arrangements of the samples within the domain. Random
sampling hence produces very similar results as those in Figure 5 so they are not
shown here.

3.1.3. Support

Figure 6 shows the results for the case where the support is large relative to the
underlying correlation length A. The first row in Figure 6 indicates that the estimates
of the mean are unbiased. The uncertainties of the mean do not change with the
size of the support. This may seem counter intuitive as one would perhaps expect
the uncertainty of the mean to decrease with increasing support. The reason for the
uncertainty not to change with support is that this case examines estimation of
the mean of the population rather than that of a single realisation (shown later).
Most of the uncertainty comes from the variability between different realisations
(what Journel and Huijbregts, 1978, p. 192, terms fluctuation variance). The un-
certainty due to not exhaustively sampling a single realisation is however much
smaller. A comparison of Figure 6, top row, suggests that this is indeed the case as
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Figure 6. Effect of large supports L* on the sample mean Z*, spatial variance s> and integral scale
J* for gridded sampling. The extent is L% = 10 in all cases. The circles show the ensemble mean and
the error bars represent the standard deviation around the ensemble mean. Lines in the charts show
Equations (A2) and (A8). The vertical lines show L% = L%, i.e. the support where the domain is fully
covered by the samples.

the uncertainty does not decrease with increasing number of samples (and hence
decreasing spacing). The magnitude of the uncertainty is controlled by the extent
of the data chosen for these cases (L% = 10, see Figure 5).

The variances (Figure 6, second row) are, however, significantly biased. They are
underestimated once the support exceeds about one third of the underlying correla-
tion length. The vertical lines in Figure 6 show the support values where L% = L7,
i.e. the domain is fully covered by the samples. For larger supports, the samples
overlap which introduces particularly large biases. The uncertainties of the vari-
ances are not very large and there is a slight tendency for decreasing uncertainty with
increasing number of samples. Equations (A2) and (A3) are close to the sampling
results although they slightly underestimate the variances for large supports. This is
because Equations (A2) and (A3) have been derived for non-overlapping samples.

The third row in Figure 6 shows moderate biases of the integral scale as a result
of large supports. Again, once the samples overlap, the integral scales are overesti-
mated. For 16 samples, there is a spacing effect which results in an overestimation



SAMPLING SCALE EFFECTS IN RANDOM FIELDS

SUMMARY - GRIDDED - POPULATION

1 7"‘| T UL | 1_!"'| T T """7‘ 1 N T 7
o0 oo MM =<t ]
§ oUdlITissnsse o 11 o LTI ITITTITIIN:
£ (1Tt HHI TTTIITITITTIINTT
05 F 05| 4 05 -
16 | il -1 A -1 Lol u ol
1 10 0.1 1 10 0.1 1 10
1 ilglm,‘*nln‘gngzzzm 1 qu o iy 1k S - IHE
g i ]
801k 01 £ 4 01 ;
2 E i
001 ¢ o 0.01 L . 4 001 ¢
1 10 0.1 1 10 0.1 1 10
10 [ 1T T
) E E
© C r T
E) 1 1 E ¥Y¥ ¥y =X
s i i
,i}’ 0.1 01 L y
0.01 Lot i 0.01 Bl i ol 001 Law
1 10 0.1 1 10 0.1 1 10

Spacing

Extent

Support

Figure 7. Effect of the sampling scale triplet on the sample mean z*, spatial variance s>* and integral
scale J* for 100 gridded samples. The circles show the ensemble mean and the error bars represent
the standard deviation around the ensemble mean.

for all supports. Equation (A8) does not account for these spacing effects. For large
supports, Equation (A8) overestimates the bias compared to the results of the sam-
pling analysis. This is a border effect in the sampling analysis as the largest distance
between the centres of the samples will be the size of the domain.

3.1.4. Summary of Scale Triplet Effects

For comparison the results for the sampling scale effects are summarised in Figure 7.
It is interesting that the uncertainties in the mean are largest for small extents as
compared to other scale effects. The biases in the variance are large both for small
extents and large supports. The integral scale will always be biased and the bias is
closely related to the magnitude of any of the scales of the scale triplet.

3.2. ESTIMATES OF SINGLE REALISATIONS

3.2.1. Spacing
Figures 8—11 present the scale effects for the analyses where we are interested in
the statistical characteristics of one single realisation (Equations (13) to (15)), not
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Figure 8. Effect of large spacings L on the sample mean Z}, spatial variance 5% and integral scale
J % for gridded sampling. This is the case where the interest resides in the statistical characteristics
of a single realisation, not the population characteristics. The circles show the ensemble mean and
the error bars represent the standard deviation around the ensemble mean. Lines in the charts for the
integral scale show Equation (A15).

the population characteristics. Figure 8 gives the results for the case where spac-
ing is large relative to the underlying correlation length A. The mean is unbiased
(Figure 8 top row), similarly to the population case in Figure 3. The estimation
uncertainty of the mean increases with the spacing which is the exact opposite
of the population result in Figure 3, top row. For large spacings (relative to the
underlying correlation length) the samples are uncorrelated, so the estimates for
the single realisation are no better than the estimates for the population (in both
cases 0.25 for 16 samples, for example, as given by Equation (A20)). On the other
hand, as the spacing decreases (relative to the underlying correlation length) the
correlation of the samples increases. While this increases the estimation uncer-
tainty of the population (Figure 3) it decreases the estimation uncertainty of the
realisation (Figure 8). In the limit, if the samples are perfectly correlated, there
will be no uncertainty introduced from missing out on the locations between the
samples.



SAMPLING SCALE EFFECTS IN RANDOM FIELDS

EXTENT - GRIDDED - SINGLE REALISATION

16 samples 100 samples 1024 samples
0.2 T — 0.2 e 0.2 o
0.1 - TT 1 0.1 = 01 .
c
& 0 boesssns 11l I 4 ) bescccessossons 555
o O X 0 xR 0
g xmuu
-0.1 1 -0.1r = -0.1r =
-0.2 4 -02 - -02r =
il MR | Lo til il raul Il
0.1 1 10 0.1 1 10 0.1 1 10
al T T T T &l T
1 boassunsdsddddsssd 1 EEETTD 1
° PYTYTTYTITH
(5] ]
C i
8
IS
>
0.1 L L 0.1 bl — ol i 0.1 beml— ol
0.1 1 10 0.1 1 10 0.1 1 10
10 ET T T E| 10 ETTT T vy 10 ETTT T Ty
o ] i ] i ]
g ]
? 1 4oooocessssiiid d 1 toonrsosssoe P 1
IS E : E
5 3
9 ] L ] L ]
c
T 01F 4 01¢ 4 01F =
Bl MR | L and Euivual Lol woaa Eivual Lol woaaand
0.1 1 10 0.1 1 10 0.1 1 10
extent extent extent

Figure 9. Same as Figure 8 but for the case of small extents L}..

The second row in Figure 8 indicates that the variance is, again, unbiased. For
large spacings, the samples are uncorrelated and the results are identical to those
in Figure 3.

The third row in Figure 8 shows that the integral scale for the single realisation
case is biased in a similar way as in the population case. For large spacings, the inte-
gral scale is substantially overestimated. The bias is predicted well by Equation 15.

3.2.2. Extent

Figure 9 shows the results for the case where the extent is small relative to the
underlying correlation length A, again in the single realisation mode. Small extents
(relative to the underlying correlation length) imply that the samples are highly
correlated or, equivalently, that the variable varies very smoothly over the domain
sampled. Because of this, the difference between the sampled values and the entire
underlying random field (considered as the truth here) is small in all instances.
If this is the case, all statistical characteristics will be essentially unbiased (as
compared to each realisation) and the uncertainty is always very small which is
indeed the case in Figure 9 for small extents. In other words, in the limit of very
small extents (relative to the underlying correlation length), everything is known
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Figure 10. Same as Figure 8 but for the case of large supports L. The extentis L}, = 10 in all cases.
Lines in the charts show Equations (A2) and (A8). The vertical lines show L% = L%, i.e. the support
where the domain is fully covered by the samples.

about the underlying distribution (of the one realisation) from a limited number of
samples. This is in stark contrast to Figure 5 where in the limit of very small extents
nothing is known about the underlying distribution (of the population) no matter
how many samples are taken.

3.2.3. Support

Figure 10 shows the results for the case where the support is large relative to
the underlying correlation length A. The mean is unbiased (Figure 10 top row).
The uncertainty of the mean decreases with the number of samples. This is a
result of the spacing as the extent was held fixed to L} = 10 in all cases, which
implies smaller spacings for a larger number of samples. There is an interesting
dependence of the uncertainty of the mean on the support. For small supports,
the uncertainty decreases with increasing support until L = L%. This is because
an increasingly larger fraction of the domain of interest will be covered by the
samples. For L = L% (indicated by the vertical line in Figure 10) the domain is
fully covered by the samples, so there is no uncertainty involved in the estimation
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Figure 11. Effect of the sampling scale triplet on the sample mean Z%, spatial variance s3* and

integral scale J % for 100 gridded samples. This is the case where the interest resides in the statistical
characteristics of a single realisation, not the population characteristics. The circles show the ensemble
mean and the error bars represent the standard deviation around the ensemble mean.

of the mean. However, as the support increases further, the samples will overlap
and the uncertainty starts to increase. This is because some parts of the domain will
be more frequently sampled than others and because a part of the support area will
lie outside the domain Agop,.

The second and third rows in Figure 10 show similar results as their counterparts
of the population case in Figure 6. The biases are essentially identical. However,
there are minor differences in the uncertainties. The uncertainties of the variance
in Figure 10 are slightly smaller than those in Figure 6. This is because of different
spacing effects. On the other hand the uncertainties of the integral scale in Figure
10 are slightly larger.

3.2.4. Summary of Scale Triplet Effects

For comparison, the results of the sampling scale effects are summarised in Figure
11 for the analyses where we are interested in the statistical characteristics of one
single realisation. The main difference to the population case in Figure 7 is that
small extents neither introduce biases nor uncertainties. This is simply because in
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the single realisation mode we are not interested in what happens outside the domain
sampled while in the population mode we are indeed interested in the population,
including the distribution outside the domain sampled. The sampling effect of large
spacings on the mean is related. For large spacings, the samples are uncorrelated, so
they yield increasingly smaller uncertainties in the populations case (Figure 7) but
increasingly larger uncertainties if one is interested in one single realisation only
(Figure 11). The spacing and support effects on both the variance and the integral
scale of the single realisation case are similar to those of the population case. The
biases in the variance are large for large supports. The integral scale will be biased
for large spacings and large supports and the bias is closely related to the magnitude
of these two scales.

4. Implications for Environmental Monitoring
4.1. IMPORTANCE OF SAMPLING SCALE EFFECTS

The sampling analyses in this paper have shown that there may exist enormous
biases in the three statistical characteristics examined here, the mean, the spatial
variance and the integral scale, which result from sampling scale effects. Even in
the absence of instrument error the biases can be up to two orders of magnitude
for the cases considered here. Also, the uncertainty or random error can be very
significant.

The findings in this paper are consistent with previous work. The biases are
similar to those of Western and Bloschl (1999) of their analysis of soil moisture
datain a catchment although this paper analyses the scale effects in a more controlled
manner. Also, this paper gives more precise estimates of the uncertainties involved
as the synthetic sampling analysis allowed multiple realisations to be drawn. Similar
to Russo and Jury (1987) the results of this paper suggest that large spacings,
relative to the underlying correlation length, tend to overestimate the integral scale.
Similar to Gelhar (1993) the results found here suggest that small extents of the
domain result in overestimates of the integral scale. The biases in the variance due
to large supports are consistent with those given in the geostatistical literature. It is
interesting that the biases of the integral scale are closely related to the magnitude
of any of the components of the scale triplet where in most cases large sampling
scales result in an overestimation of the integral scales. Intuitively, this is because
of dimensional reasons as both the integral scale and the sampling scale are related
to units of length. In most cases, the expressions given in Appendix A predict the
biases estimated by the sampling analysis well. In examining these sampling biases,
however, there are a lot of subtleties involved.

For typical monitoring scales, the results of this paper suggest that usually
there is bias due to more than one of the components of the scale triplet. Each
of the components produces a scale effect of its own which, for some statistical
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characteristics, are similar (such as the integral scale) but for others are different,
and the resulting bias is the combination of all three effects. This mixing of the
effects of spacing, extent and support is not always obvious. Qi and Wu (1996), for
example, examined the effect of support on three spatial autocorrelation indices,
i.e., the Moran Coefficient, the Geary Ratio and the Cliff-Ord statistic based on
topographic and biomass data of the Malaysian Peninsular. They observed an overall
decline in spatial autocorrelation with increasing support but this was more likely
an effect of the spacing of adjacent units increasing at the same time. In a number
of monitoring systems, such as remote sensing data, changing (or selecting) grid
size usually involves a change of both spacing and support, so the grid size effect
on the statistical characteristics is a combination of spacing and support effects.
The comparison of the synthetic resampling analysis with the analytical results
suggested that it is indeed possible to superpose the effects of spacing, extent and
support to good accuracy (e.g. Figure 5) to get an overall assessment of the total
magnitude of the biases involved.

The results in this paper showed that the sampling scale effects can be very
important but it is not only the sampling scale triplet that controls the biases and
uncertainties it is also whether one is interested in population statistics or the statis-
tics of one single realisation. The former case is where one is interested in the mean
value of, say, concentration over a very large area, i.e. the population mean. In this
case it is the small extent that introduces the largest uncertainties into estimates of
the mean. For the case of small extents all samples are heavily correlated and very
little is learned about the variability of the population. Gelhar (1993, p. 40) and
Priestley (1981, p. 319) describe how the number of effective independent samples
will be reduced when the samples are correlated. The uncertainties decrease with
increasing spacing as the samples become less correlated and hence contain more
information about the population. This means that the estimates are quite accurate
inside the domain but if one extrapolates further away (in the case of small extents)
the results will be highly uncertain as the data represent only a small fraction of the
entire population. On the other hand, the second case, termed single realisation case
in this paper, is where one is interested in the characteristics (e.g. the mean) of, say,
precipitation for a certain event, or the concentration of a nutrient in a particular
area at one point in time where the extent is the same as the size of the domain of
interest. In this case very little uncertainty is introduced by extent effects and the
spacing effect on the mean is the exact opposite of that in the population case. The
uncertainties increase with increasing spacing as the underlying pattern becomes
less smooth and hence more erratic. Because of the magnitude of the sampling scale
effects there are important ramifications for sampling design and data analysis.

4.2. IMPLICATIONS FOR SAMPLING DESIGN

The most direct implication probably is the importance of adjusting the sampling
design to the scale of the underlying processes one is intending to capture. Stommel
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(1963) compares the process of sampling to a fish net and notes that a single
net does not catch fish of all sizes. Quite obviously, if one is interested in small
scale processes the sampling scales need to be adjusted to smaller scales, and the
opposite is true for large scale processes. Informally, the monitoring network is
often adjusted to the scales of the variables one is interested in e.g. Hatcher et al.
(1987), and Seyfried and Wilcox 1995) but it is also possible to formalise this.
The variable to gauge the scale of the underlying (true) variability used here is the
correlation length. The correlation length is closely related to the integral scale.
For an exponential variogram as has been used here, the integral scale and the
correlation length are identical. For different variograms they differ but are usually
of the same order of magnitude. In this paper, it was possible to normalise the
scale effects by the correlation length, i.e. all scale effects were a function of the
scale of each component of the scale triplet (spacing, extent and support) relative
to the underlying correlation length. If one uses the correlation length as the main
measure of the spatial variability of the underlying processes one has to design the
spatial arrangement of the monitoring network relative to the correlation length. A
sampling design that is commensurate with the scale of the underlying variability
would then involve the following questions:

— What are the processes that are to be monitored?

— What are the spatial scales of these processes (measured by the integral scale)?

— What are the spacing, extent and support of the monitoring network that give
small biases and uncertainties for the statistical characteristics one is interested
in, given the constraints on costs and hence number of samples?

As a rule of thumb, the extent should be significantly larger than the correlation
length (for the population case), the spacing should be smaller than the correlation
length and the choice of the support depends on the statistic one is interested
in. Large supports are an advantage for the single realisation case but produce
significant biases in the population case.

While these steps appear logical, to some degree, this is a Catch-22 situation.
One needs to know the integral scale to estimate the correlation length for the
sampling design but would need the sampling results to estimate the integral scale.
To break the loop one can, however, use the integral scales from other studies one
expects to exhibit similar spatial variabilities, particularly, studies where a large
number of samples are collected and hence are spatially representative (e.g. Skgien
et al., 2003).

In the planning of the monitoring network it is not only the average spacing
(or number of sampling points over a given area) that is important but also the
spatial sampling arrangement (see, e.g., Thompson, 2002). Depending on whether
grid sampling or random sampling schemes are selected, the distribution of dis-
tances between pairs of points is different. Random sampling includes distances
significantly smaller than the (average) spacing, so the small scale variability can be
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better resolved. The biases associated with larger spacings in estimating the integral
scale are hence smaller (Figure 4). However, this is at the cost of larger uncertain-
ties. Nested sampling (Webster and Oliver, 2001), as an alternative, allows for still
smaller distances between points, so one would expect still smaller biases, but it
hinges on the assumption that the variability is spatially stationary, i.e., the small
area that is sampled in more detail is representative of a larger area that is sampled
more sparsely. Bellehumeur and Legendre (1998) discuss the issues of stationarity
in nested sampling and Stenger et al. (2002) provide an example of the impacts of
non-stationarity with nested sampling. From a statistical perspective, stationarity
can be tested for but the issue is not a purely statistical one. Ultimately it is the
environmental processes one wants to capture and they need to be representative
for nested sampling to make sense.

A similar issue of representativeness applies to the case of small extents. Small
extents cause large uncertainties in all statistical characteristics examined here. If
one seeks to increase the generality of the results of a study, one therefore needs to
increase the extent as pointed out by Hewitt ef al. (1998). On the other hand, it is
not wise to increase the extent beyond what can be assumed to be the same process.
Haugen (1978) describes how the certainty of estimated moments of turbulence
motion increases with the temporal extent of the measurements but will be affected
by the diurnal cycle if the extent is too long. Wiens (1989) examined the temporal
and spatial extents of measurements at the same time, and argued that it is easy to
be overly confident in the sampling results as lack of representativeness can cause
serious biases. In the case the interest resides in a single realisation (nutrients over
one area at one point in time, for example) sampling design is usually such that the
sampling spans the entire domain, i.e. the extent is equal to the size of the domain of
interest which, in the light of the results of this paper, obviously is a prudent choice.

In selecting the support of a monitoring scheme, larger supports may be an
advantage if one is interested in estimating the mean for the single realisation
case. The support depends on the choice of instrument. Remote sensing sensors
usually have rather large supports while in situ samples are rather small. There are,
however, a large number of other factors that need to be considered when selecting
an instrument, both technical (such as accuracy) and logistical, so the sampling
support may not be the main consideration in choosing an instrument. A similar
effect as large supports can be obtained by taking multiple point measurements over
a small area and then averaging them which filters out fine-scale heterogeneity one
may not be interested in Root and Schneider (1995). This may also filter out some
of the measurement error, which however is beyond the scope of this paper.

The number of samples is, of course, the most important issue in spatial sampling
design. The costs associated with the monitoring usually are strongly positively
correlated with the number of samples and the uncertainties of the estimates are
strongly negatively correlated so there are tradeoffs involved (see, e.g., Lopes, 1996;
Faures et al., 1995). The results of this paper suggest that for the realisation mean,
spatial variance and integral scale, an increasing number of samples will in most
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cases reduce the estimation uncertainty. The exception is the case of small extents,
relative to the underlying variability, where the biases and uncertainties do not
depend on how many samples are taken within the extent of the sampling domain.
Uncertainties in extrapolating beyond the sampling domain cannot be compensated
by a larger number of samples within the domain.

4.3. IMPLICATIONS FOR DATA ANALYSIS AND INTERPRETATION

As the sampling scales are likely to affect the measurements of a variable, even if the
sampling design has been selected commensurate with the underlying variability,
it can be difficult to compare measurements from different sources with each other.
Theocharopoulos e al. (2001), for example, in a comparison of soil pollution
sampling guidelines within the European Union pointed out that differences in the
guidelines of individual countries caused problems in the objective definition of
pollution, in the reproduction of the sampling by different teams, and in defining
threshold values throughout the European Union. In a similar vein, Western et al.
(1998) reviewed field studies of soil moisture around the world and concluded that
the spatial statistical characteristics of soil moisture found in these studies were
more closely related to the sampling scales than to the environmental conditions of
the particular catchments.

Itis, however, possible to account for these differences, and correct for sampling
scale biases to some extent as pointed out in this paper. To illustrate the case, let
us consider a hypothetical example where bias is introduced into estimates of the
integral scale by large sample spacings. Let us assume that 100 samples have been
collected from a field of 1000 m by 1000 m extent, i.e. the average spacing is 100 m,
and that the integral scale was estimated from the data as 80 m. The equation for
the expected integral scale as a function of spacing (Equation (A15)) cannot be
analytically inverted, but we can find an estimate of the true correlation length by
trial and error. If we assume a true correlation length of 55 m the dimensionless
spacing is 1.8. Equation (A15) then gives a dimensionless integral scale of 1.5 (i.e.
a bias of 50%). This is consistent with its overestimation due to large spacings (80
rather than 55 m) so the initial guess was correct. The biases can be back-calculated
in a similar way for the other sampling scales. Let us consider an example of
biases due to large supports where hydraulic conductivity has been sampled by
groundwater pumping tests (support of 100 m). The samples gave a variance of the
logarithms of hydraulic conductivity of ‘71%1 x = 1.2 and an integral scale of J = 88
m but one is interested in the variance and the integral scale of the point process
(i.e. if conductivity had been measured by laboratory core tests with a support of
10 cm). Again by iteration, we can assume that the (true) point integral scale is
40 m. The dimensionless support then is 2.5. Equation (A8) gives a dimensionless
integral scale of 2.2 (i.e. a bias of 120%) which is consistent with the observed
integral scale of 88 m. From Equation (A2) the dimensionless variance is 0.32, so
the point variance is 3.75 rather than 1.2 what was observed for the large support.
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While this back-calculation is useful to assess potential biases, in many cases,
the uncertainty with this will be large. This is particularly true of the integral scale
if a small number of samples is available. Figure 5, for example, shows that, if
only 16 samples are available, the estimated integral scale becomes a function of
extent only and is essentially independent of the underlying correlation length. It
is on the order of 10 % of the extent of the domain. This is exactly the observa-
tion of Gelhar (1993, p. 292) and Bloschl (1999) in comparisons of case studies
of aquifer hydraulic conductivity and snow cover variability, respectively, and im-
plies that the integral scale is essentially unobservable if only a small number
of samples is available. As the number of samples increases, the integral scale
gets better defined. Also, random sampling decreases the bias over grid sampling.
It is clear that a large number of samples is a prerequisite for reliably identify-
ing the integral scales if they are to be used in either sampling design or data
interpretation.

It should be noted that in this study a number of simplifying assumptions have
been made. Most importantly, the random fields were assumed to be stationary with
one single scale, the integral scale, representing the spatial variability. While, often,
this is a reasonable assumption for a certain scale range, there are also examples
where the underlying variability possesses more than one scale or a suite of nested
scales (see, e.g., McBratney, 1992 for a soils example). In these cases a power
law variogram may be a better choice than an exponential variogram. This is then
termed fractal variability. There is a large body of literature on fractal random
fields in the environmental sciences (see e.g. Chiles and Delfiner, 1999) and more
research needs to be done on the sampling scale effects of this type of processes.
Qualitatively, one would assume that the biases for fractal processes are similar to
those found here (see, e.g., Bloschl, 1999), but the uncertainties most likely will be
different.

Another assumption made here was that the instrument errors were assumed
negligible. It is clear that, as the instrument errors increase, so will the uncertainties
in the estimates of the statistical characteristics.

We have taken a simple statistical approach here that intends to capture the first
order sampling scale effects on the mean, the spatial variance and the integral scale
of an environmental variable. There are applications where the interest resides in
different characteristics of a variable such as trends or patterns. While for these
characteristics the scale effects will be different, the analysis in this paper can give
some guidance on assessing their order of magnitude.
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Appendix A: Bias of Estimates
BIAS DUE TO LARGE SUPPORT

The assumption here is that the variable aggregates linearly, i.e.

1
= Z/AZ(X)dS (A1)

where z4 is the average value of a random field Z within an area A where L4 = VA
is termed the support in terms of units length. The variance of the aggregated field,
O'LZA, then is the difference between the total variance, o2, and the variance within
the support of the measurement, oy, 1, (Journel and Huijbregts, 1978):

2 2 2

O, =0 — 0wy, (A2)
with
Rmax
O, = / yr(r) - fi(r | La)dr (A3)
0

where yr denotes the true variogram. r is the distance between two randomly chosen
points in the aggregated region, Ry, is the maximum distance in the region and
fi1(r | L) is the probability density function (pdf) of distances r within the region
(Rodriguez-Iturbe and Mejia, 1974). For a square region, f; has been derived by
Ghosh (1951) as:

4r
filr) = LT¢1(F) (A4)
La
where
1 1,
¢1(r)=5nLA—2LAr+§r forO <r <Ly, (A5a)
L L
o1(r) = L%{sin_] “4 _ cos™! —A}
r r
2 2L2
+2LA,/I’2—L124—H_fA fOl’LAfl’lS\/ELA (A5b)

Equation (A3) can then be evaluated numerically. The variogram of the averaged
process can be found in a similar way (Journel and Huijbregts, 1978):

Rmax
YL, (h) = / yr(r) - far [ (h, La))dr —of (A6)
0
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where f; is the pdf of distances of two points, each of them is located randomly in
one of two regions. The two regions are separated by a centre-to-centre distance
h and have side lengths (support) L4. For square regions and & > L4, f> has been
derived by Sivapalan (1986) as:

2r
fa(r) = L_;‘\(bz(r)

where

Y
Go(r) = Lavr? —e? — Y 26) —elLy4 c0s1<

L
$a(r) = TA + e(r -\t - L124) —eLysin™! (—)
-

2

$2(r) = Lag cos™! (ﬁ) —elLy |:sin1 (E) —cos” ! (ﬁ)i|
r r r

L2
—e/r2— L% —2L, r2—h2+7’*+h2+r2—gr (A7)
forhfrf,/Lix—l-h2

. (L
¢a(r) =L ,gsin ‘<TA> _Li"‘gm—gr

for\/LZ+h2<r<g

$a(r) = LAg|:SiI1_1 (%) —cos”! <§>i| + gm

L2 2 2
+LA\/r2—g2—M forg <r <,/L%+ g2

2

withe=h—Lsandg=h+ L,

and it can be evaluated numerically if the regions overlap (i.e. & < Lj4). The
expected integral scale can then be found by numerical integration similar to
Equation (6):

JL

A

/ N (1 _ Yk )> dh (A8)
0 oL,
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BIAS DUE TO SMALL EXTENT

The variance O’EF of a random field within a domain of extent Lg can be found

similar to Equatibn (A3) as:

Rinax
of, =/O yr(r) - fir | Lg)dr (A9)

Western and Bloschl (1999) suggested that the expected variogram of a random
field with a small extent can be assumed to be similar to the true variogram for lags
that are small compared to the extent Lg, and that it will be equal to O'I%E for lags
that are large compared to the extent with a sharp crossover at a certain lag distance

B where the true variogram reaches aLzE, 1.e.

YL.(h) =y(h) forO<h<B (A10a)
yi,(h)y=o0f, forh> B (A10b)

For an exponential variogram (Equation (2)) this gives:

2
or

2 025
yr(B)=o0;, and B=—A-In|1-— (A11)
where X is the true correlation length of the underlying process. This gives the
expectation of the integral scale:

A o},
Jo, = . [ng + (cr% — crzE) -In (1 — L; )] (A12)

- 2
O'LE or

BIAS DUE TO LARGE SPACING

For any large spacing Lg, the expectation of the sample variance O'LZS will be equal
to the true variance:

o, =0’ (A13)
For lags larger than the average spacing, L s, Western and Bloschl (1999) suggested

that the sample variogram can be approximated by the true variogram and for shorter
lags it can be assumed to be linear between the origin y(0) = 0 and y(Lyg), i.e.

h

YLs(h) = L—VT(LS) forh < Lg (Al4a)
N

vLs(h) = yr(h) forh > Lg (A14b)
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The expectation of the integral scale for an exponential variogram then is:

_LS LS LS
JL _A|:exp< . >+2A <1+exp( . ))] (A15)

which approaches the true correlation length A for small spacings.

Appendix B: Error Boundaries of Estimates of Mean

For grid sampling, the uncertainty (in terms of the error variance Var) of the
estimates of the mean z;, as a function of extent Lg is (Rodriguez-Iturbe and
Mejia, 1974):

Var(zr,) = — |:Z Cov(zi,zi)+2 Z Z Cov(zi, z )i|

i=1 j=i+1

Var(zz,) = |:N + 22 Z p(h,,)}

i=1 j=i+l1

(A16)

where GLZE is the variance of the random field within the region with extent Lg.

For brevity, we use here the covariance Cov = O'LZE — y1, and the correlogram
o= Cov/oLzE of the random variables in points i and j with a distance A;;, instead
of the variogram. A16 can be solved numerically, given the number of samples, N,
and a correlogram.

For random sampling, the distance becomes a random variable, and Rodriguez-
Iturbe and Mejia (1974) replaced the distance with the expectation of distance:

Var(ZL;) = {Z Cov(zi, zi) +2 Z Z Cov(zi, z, } (A17)

i=1 j=i+l
_ UEE
Var(zp,) = N2

{N+ NN — DE[p(hij | Lg)]} (A18)
E [ phij | L E)] represents the expected value of the correlation between two points
randomly located in a square of side length L and can be expressed in a similar

way to Equation (A9):

-
E[pthij | Le)] = /0 p(r) fi(r | Lg)dr (A19)

where f; is taken from Equation (A4).
For large spacings, p(h;; | L) =0, i # j. The expression then reduces to:

Var(zr,) = ULzE A20
ar(zLE) = W ( )
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which is the normal expression for the expected random error of the mean for
uncorrelated samples. The uncertainty of the estimates of variance for uncorrelated
samples can be found as:

5 20*21
Var(s*) = TE (A21)
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