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Abstract

Four catchment grouping methods are compared in terms of their performance in predicting specific low flow discharges q95,

i.e. the specific discharge that is exceeded on 95% of all days. The grouping methods are the residual pattern approach, weighted

cluster analysis, regression trees and an approach based on seasonality regions. For each group, a regression model between

catchment characteristics and q95 is fitted independently. Data from 325 sub-catchments in Austria ranging in catchment area

from 7 to 963 km2 are used in the analysis. The performance of the methods is assessed by leave-one-out cross-validation of the

regressionestimates, which emulates the case of ungauged catchments. Results indicate that the grouping based on seasonality

regions performs best and explains 70% of the spatial variance of q95. The favourable performance of this grouping method is

likely related to the striking differences in seasonal low flow processes in the study domain. Winter low flows are associated

with the retention of solid precipitation in the seasonal snow pack while summer low flows are related to the relatively large

moisture deficits in the lowland catchments during summer. The regression tree grouping performs second best (explained

variance of 64%) and the performance of the residual pattern approach is similar (explained variance of 63%). The weighted

cluster analysis only explains 59% of the spatial variance of q95, which is only a minor improvement over the global regression

model, i.e. without using any grouping (explained variance of 57%). An analysis of the sample characteristics of all methods

suggests that, again, the grouping method based on the seasonality regions has the most favourable characteristics although all

methods tend to underestimate specific low flow discharges in the very wet catchments.
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1. Introduction

Accurate estimates of low flow characteristics are

needed for a range of purposes in water resources

management and engineering including environmen-

tal flow requirements, water uses and discharges into
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streams, and hydropower operation (Smakhtin, 2001;

Gustard et al., 2004). Low flow characteristics are best

estimated from observed stream flow data but for sites

where these data are unavailable hydrological

regionalisation techniques can be used to infer them

from other catchments where stream flow data have

been collected (e.g. Demuth and Young, 2004).

The regionalisation of low flow characteristics is

usually based on some sort of regression between

the low flow characteristic of interest and catch-

ment characteristics that are available for ungauged

sites (e.g. Vogel and Kroll, 1992; Gustard et al.,

1992; Schreiber and Demuth, 1997; Skop and

Loaiciga, 1998). If the study domain is large or

very heterogeneous in terms of the low flow

processes a number of authors have suggested to

split the domain into regions and apply a regression

relationship to each of the regions independently.

This is termed the regional regression approach.

Gustard and Irving (1994), for example, tested a

number of regression models between standardised

Q95 low flows (the discharge that is exceeded on

95% of all days) and different soil group indices

for 1530 catchments in Europe. Their global

regression model of nine soil classes explained

29% of the spatial low flow variance while a

regional regression model explained between 17

and 47% of the variance, depending on the region.

In their study, the entire domain was subdivided

into seven geographic regions. In a smaller scale

study of 44 catchments in New Zealand, Clausen

and Pearson (1995) showed that the variance of a

drought index explained by catchment character-

istics increased from 64% to between 68 and 91%

if the domain is split into three geographically

defined regions.

In some instances it is clear how to group a

domain into regions of approximately uniform low

flow behaviour but, more often, the choice is far

from obvious. A number of methods of identifying

homogeneous regions have, therefore, been pro-

posed in the literature in the context of low flow

regionalisation. All of these methods use low flow

data and most of them use catchment character-

istics as well. In the first technique, termed residual

pattern approach, residuals from an initial, global

regression model between flow characteristics and

catchment characteristics are plotted, from which
geographically contiguous regions are obtained by

manual generalisation on a map (e.g. Hayes, 1992;

Aschwanden and Kan, 1999). This is an obvious

method of improving on a global regression model.

A drawback of the residual pattern approach,

however, is that the initial model may be far

from correct as it extends over the entire domain of

interest. The shapes of the regions so obtained may

then be artefacts of an inadequate model and the

regional regression model will have little physical

significance. Once the regions have been identified,

the ungauged site of interest needs to be allocated

to one of the regions. As the regions in this

approach are spatially contiguous, the ungauged

site can be allocated by its geographical location.

As a final step, the low flow value for the site of

interest is estimated from multiple regressions

between observed low flows and catchment charac-

teristics fitted to each of these regions

independently.

In the second technique, multivariate statistics such

as cluster analyses are used to delineate regions. In the

multivariate analyses, both low flow data and

catchment characteristics are used. They are usually

standardised and/or weighted to enhance the dis-

criminatory power of the methods. The use of

multivariate statistics in the context of low flow

regionalisation has been explored in detail by Nathan

and McMahon (1990). They tested a number of

approaches based on a combination of different

techniques of cluster analysis, multiple regression

and principal component analysis. They used

Andrews curves (Andrews, 1972) for visualising

similarity in catchment characteristics which allowed

them to fine-tune the catchment grouping. Based on

data from 184 catchments in south-east Australia,

Nathan and McMahon (1990) found that the relative

performance of the methods depended on the low flow

characteristic examined. Their overall assessment

suggested that the weighted cluster analysis (Ward’s

method based on a Euclidean distance measure) using

weights according to the coefficients of an initial

stepwise regression model performed best. Since

regions obtained by the cluster analysis approach are

generally discontiguous in space, the allocation of

ungauged sites to the most similar group requires

decision criteria, which are usually based on

catchment characteristics. Nathan and McMahon
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(1990) assumed in their analysis that the catchment

allocation was known and proposed to use Andrews

curves for assigning ungauged catchments. Possible

alternative methods are discriminant analyses and

classification trees (Haines et al., 1988). As a final

step, again, the low flow value for the site of interest is

estimated from multiple regressions between

observed low flows and catchment characteristics

fitted to each of the regions independently.

A third technique are Classification And

Regression Tree (CART) models (Breiman et al.,

1984) which, to our knowledge, have not yet been

used in low flow regionalisation. However, there do

exist a number of interesting applications in

hydrology, including the classification of satellite

images of snow cover and the interpolation of

ground snow measurement (e.g. Rosenthal and

Dozier, 1996; Elder, 1995) and a first attempt of

using the regression trees for regionalizing low

flows is given in Laaha (2002). In the context of low

flow regionalisation, the independent variables in the

regressions trees are the catchment characteristics

and the dependent variables are the low flows.

Regression trees then divide a heterogeneous

domain into a number of more homogeneous

regions by maximising the homogeneity of low

flows and catchment characteristics within each

group simultaneously. Regression trees have a

number of advantages over other models. Their

structure is non-parametric, small trees are readily

interpretable, there is no global sensitivity to outliers

and they are able to handle non-linear relationships

well. However, big trees are difficult to interpret,

there is a lack of smoothness and there are potential

problems with overfitting the data, so some method

for pruning the tree is needed (Breiman et al.,

1984). Once the regression tree is fitted to the data,

it can be used to allocate ungauged sites to the

regions obtained by the regression tree. Alterna-

tively, classification trees can be used to allocate

group names to catchment characteristics. Classifi-

cation trees operate on categorical variables while

regression trees operate on continuous variables.

The final step of estimating low flows for the

ungauged site of interest is a regional regression as

in the other grouping methods.

In a fourth technique, the seasonality of low flows

is used to delineate homogeneous regions. The
rationale of this approach is that differences in the

occurrence of low flows within a year are a reflection

of differences in the hydrologic processes and are

hence likely to be useful for finding homogeneous

regions. Merz et al. (1999); Piock-Ellena et al. (2000)

have illustrated that the seasonality approach is indeed

useful in the context of flood frequency regionalisa-

tion in Austria. They used a cluster analysis based on

circular statistics of flood occurrence within the year

to identify homogeneous regions and plotted vector

maps to visualise the spatial patterns of the

seasonalities of floods and other hydrologic variables.

In contrast, an application of a low flow seasonality

index in the UK (Young et al., 2000) suggested there

is little discriminatory power in this index because the

spatial variability of low flow seasonality was rather

weak. It is clear that the usefulness of this method

hinges on the existence of clear spatial patterns in low

flow seasonality. Laaha (2002) compared two season-

ality measures in upper Austria and found that both

measures were capable of classifying catchments into

summer and winter low flow dominated sub-regions.

An extension of this work is Laaha and Blöschl (2006)

who visually delineated homogenous regions with

respect to low flow seasonality from a number of

seasonality measures. Their results indicated that, in a

humid, mountainous country such as Austria, the

spatial variations in low flow seasonality are indeed

enormous. There is likely some potential in this

approach. If the regions are spatially contiguous such

as those of Laaha and Blöschl (2006), the ungauged

site can be allocated by its geographical location. The

final step of estimating low flows for the ungauged site

of interest is an analogous regional regression to the

other grouping methods.

While much work has been done in the literature on

catchment grouping in the context of low flow

regionalisation we are unaware of any comprehensive

comparison of the grouping methods for the same data

set to assess their relative merits. The aim of this

paper, therefore, is to examine the relative perform-

ance of different grouping techniques to investigate

what is the optimum grouping method for regionalis-

ing low flows. The comparison will be made on a

comprehensive Austrian data set and the low flow

characteristic chosen is the q95 specific low flow

quantile, i.e. the specific discharge that is exceeded on

95% of all days.



G. Laaha, G. Blöschl / Journal of Hydrology 323 (2006) 193–214196
2. Data

2.1. Study area

The study has been carried out in Austria, which is

physiographically quite diverse. There are three main

zones in terms of the geographical classification, high

Alps in the west, lowlands in the east, and there is

hilly terrain in the north (foothills of the Alps and

Bohemian Massif). Elevations range from 117 to

3798 m a.s.l. Geological formations vary signifi-

cantly, too. Austria has a varied climate with mean

annual precipitation ranging from 500 mm in the

eastern lowlands up to about 2800 mm in the western

Alpine regions. Runoff depths range from less than

50 mm per year in the eastern part of the country to

about 2000 mm per year in the Alps. Potential

evapotranspiration ranges from about 730 mm per

year in the lowlands to about 200 mm per year in the

high alpine regions. This diversity is reflected in a

variety of hydrologic regimes (Kresser, 1965) and low

flows exhibit important regional differences in terms

of their quantity and their seasonal occurrence (Laaha

and Blöschl, 2003).

2.2. Discharge data

Discharge data used in this study are daily discharge

series from 325 stream gauges. These data represent a

complete set of gauges for which discharges have been

continuously monitored from 1977 to 1996 and where

hydrographs have not been seriously affected by

abstractions and karst effects during low flow periods

(Laaha and Blöschl, 2006). Catchments for which a

significant part of the catchment area lies outside Austria

have not been included as no full set of physiographic

data was available for them. The catchments used here

cover a total area of 49,404 km2, which is about 60% of

the national territory of Austria. Although a larger

number of catchments are monitored in Austria, in this

paper priority is given to a consistent observation period

to make all records comparable in terms of climatic

variability.
2.3. Disaggregation of nested catchments

Nested catchments were split into sub-catchments

between subsequent stream gauges based on the
hierarchical ordering of gauges presented in Laaha

and Blöschl (2003). The advantage of using sub-

catchments rather than complete catchments is that

the application of regionalisation techniques to small

ungauged catchments is more straightforward. Also,

discharge characteristics of nested catchments are

statistically not independent and disaggregation into

sub-catchments between subsequent stream gauges

makes them more independent. The disadvantage of

the disaggregation is that errors may be somewhat

larger, as the low flow characteristics are estimated

from differences of the stream flow records at two

gauges.

2.4. Low flow characteristic

Low flows were quantified by the Q95 flow

quantile [Pr(QOQ95)Z0.95], i.e. the discharge that

is exceeded on 95% of all days of the measurement

period. This low flow characteristic is widely used in

Europe and was chosen because of its relevance for

multiple topics of water resources management (e.g.

Kresser et al., 1985; Gustard et al., 1992; Smakhtin,

2001). For gauged catchments without an upstream

gauge the Q95 low flow quantile was calculated

directly from the stream flow data. For sub-

catchments Q95 was calculated from the differences

of stream flows at the two gauges. Q95 was

subsequently standardised by the catchment area to

make the low flow characteristic more comparable

across scales. The resulting specific low flow

discharges q95 (l sK1 kmK2) were considered to be

representative of the characteristic unit runoff from

the catchment area during sustained dry periods.

2.5. Catchment characteristics

We used 31 physiographic catchment character-

istics in the low flow regionalisation in this paper.

They relate to sub-catchment area (A [101 km2]),

topographic elevation (H), topographic slope (S),

precipitation (P), geology (G), land use (L), and

stream network density (D [102 m/km2]). Topo-

graphic elevation is represented by the altitude of

the streamgauge (H0 [102 m], maximum altitude

(HC[102 m]), range of altitude (HR [102 m]) and

mean altitude (HM [102 m]). Topographic slope (S) is

represented by the mean slope (SM [%]), and by area
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percentages of slight slope (SSL [%]), moderate slope

(SMO [%]), steep slope (SST [%]). Precipitation (P) is

represented by average annual precipitation (P

[102 mm]), average summer precipitation (PS

[102 mm]), and average winter precipitation (Pw

[102 mm]. Geology (G) is represented by the area

percentages of Bohemian Massif (GB [%]), Quatern-

ary sediments (GQ [%]), Tertiary sediments (GT [%]),

Flysch (GF [%]), Limestone (GL [%]), Crystalline

rock (GC [%]), shallow groundwater table (GGS [%]),

deep groundwater table (GGD [%]), source region

(GSO [%]). Land use (L) is represented by the area

percentages of urban (LU [%]), agriculture (LA [%]),

permanent crop (LC [%]), grassland (LG [%]), forest

(LF [%]), wasteland-rocks (LR [%]), wetland (LWE

[%]), water surfaces (LWA [%]), glacier (LGL [%]). All

characteristics were first compiled on a regular grid

and then combined with the sub-catchment bound-

aries of Laaha and Blöschl (2003); Behr (1989) to

obtain the characteristics for each catchment. The

catchment characteristics used in this paper are

discussed in more detail in Laaha and Blöschl (2005).
3. Method
3.1. Classification of catchments
3.1.1. Residual pattern approach

The residual pattern approach to catchment group-

ing consisted of three steps:

(1) Perform stepwise regression to obtain a global

regression model;

(2) Plot the residuals from the global regression

model in geographic space;

(3) If residual patterns are apparent, delineate

contiguous regions of similar sign and magnitude

of residuals.

Stepwise regression may lead to over-fitted models

where omission of a single catchment characteristic

only slightly reduces the global model quality. When

choosing the number of catchment characteristics in

the global regression we therefore tended to use the

more parsimonious model as it produced clearer

residual patterns.
3.1.2. Weighted cluster analysis

Weighted cluster analysis has been recommended

by Nathan and McMahon (1990) as the optimal

technique to identify homogeneous regions and we

used their method consisting of the following steps:

(1) Identify the catchment characteristics most

relevant to the problem at hand by performing

an overall stepwise regression analysis;

(2) Weight the selected catchment characteristics

according to their relative importance, as deter-

mined by the magnitude of their b-coefficients
which are the coefficients of the stepwise

regression model based on standardised catch-

ment characteristics;

(3) Perform a number of cluster analyses on the

weighted catchment characteristics using differ-

ent measures of similarity and linkage methods;

(4) Prepare plots of Andrews curves for each of the

groupings derived in (3), and identify the set of

clusters exhibiting the least within-group vari-

ation. This will give the optimal classification of

catchments into homogeneous groups;

(5) Remove outliers in the optimum grouping based

on the Andrews plots, if needed. Derive a set of

mean catchment characteristics for each homo-

geneous group;

(6) Refine the optimum grouping derived by the

cluster analysis by comparing the catchment

characteristics of each catchment with the group

mean and reclassify the catchment in case the

catchment characteristics are too different.

In the spirit of Nathan and McMahon (1990),

several cluster analysis techniques of the S-Plus

statistics package were compared. These were two

hierarchical cluster analysismethods, hclust (Hartigan,

1975) and agnes (Kaufman and Rousseeuw, 1990),

which are similar to the algorithm used by Nathan and

McMahon, as well as the pam partitioning method

(Kaufman and Rousseeuw, 1990). Several combi-

nations of linkage methods (single linkage, average

linkage and complete linkage) and distance measures

(Euclidean distance and Manhattan distance) were

evaluated for different numbers of clusters. The most

appropriate method was selected by a visual assess-

ment of Andrews plots. In Andrews plots, a point in

multi-dimensional space xZ[x1, x2,.,xn] is
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represented by a function of the form:

FðtÞZ x1=
ffiffiffi
2

p
Cx2sinðtÞCx3cosðtÞCx4sinð2tÞ

Cx5cosð2tÞC/ (1)

plotted over the range of Kp%t%Cp. A set of

multivariate observations can be displayed as a

collection of these plots and those functions that

remain close together for all values of t correspond to

observations that are close to one another in terms of

their Euclidean distance. This property implies that

these plots can be used to both detect groups of similar

observations and identify outliers in multivariate data.

Since the regions obtained by weighted cluster

analysis, generally, are not contiguous, the prediction

of low flow characteristics at ungauged sites requires a

decision rule based on catchment characteristics in

order to allocate the site of interest to the most

appropriate region. Nathan and McMahon proposed a

procedure similar to step (6), i.e. comparing the

Andrews curve of an ungauged catchment with the

mean curve of each cluster. Because of the sub-

jectivity of a visual assessment, this method is not

suitable for automatic cross-validation of the regional

regression model. We therefore adopted an alternative

approach and used classification trees for automati-

cally allocating ungauged catchments to the most

appropriate cluster. Similarly to the regression trees

(see below), the classification tree was fitted based on

10-fold cross-validation to determine the optimum

tree size for prediction.
3.1.3. Regression tree

In this paper, regression trees are proposed for

obtaining homogeneous regions to be used in a

regional regression approach. Regression trees are

an exploratory technique for finding homogeneous

regions among predictor variables (i.e. catchment

characteristics) with respect to a target variable (i.e.

q95 low flow). The regression tree is constructed by an

algorithm known as binary recursive partitioning

(Clark and Pregibon, 1991). By this algorithm, groups

of catchments are subsequently subdivided by binary

conditions (e.g. IF Ps!534 mm THEN sub-group x

ELSE sub-group y), starting from the most important

catchment characteristics and proceeding to the less

important ones. Each condition yields the optimal
subdivision of a group, which minimises the sum of

squared differences between observed values of q95
and the group mean, a measure that is termed the

deviance of the node. The algorithm identifies the

most important catchment characteristics, and poten-

tial interactions between catchment characteristics are

handled implicitly (Venables and Ripley, 1999).

Tree construction can be carried out until each

terminal node consists of one single catchment but

this leads to a model with little significance for

prediction or classification problems. To avoid such

over-fitting, trees need to be pruned back, and the

optimal number of nodes is best determined by an

independent validation data set. If no such validation

data set is available, one can split the data set into 10

(roughly) equally sized parts, subsequently use nine

parts for calibration and one part for validation, and

calculate the average prediction error (total deviance

of a tree) for several tree sizes. This procedure, termed

10-fold cross-validation, is part of the S-Plus tree-

package and was used in this study.

Regression trees have the convenient property of

invariance against monotone transformation of pre-

dictor variables (i.e. catchment characteristics).

However, the dependent variable (i.e. q95) needs to

be normally distributed for optimal tree construction.

We examined the distribution of q95 in the data set of

this paper and found that a square-root transformation

of q95 yields a distribution that is close to normal.

Since the regression tree is used for classification but

not for prediction, no retransformation is needed

which may be non-unique if the transformed variable

changes sign.

The regression tree approach to catchment group-

ing consisted of the following steps:

(1) Perform transformation to normality;

(2) Fit an initial regression tree to the data;

(3) Determine the optimal tree size by 10-fold cross-

validation;

(4) Prune the initial tree back to the tree size derived

in (3).

While regression trees are suitable for allocating

unobserved catchments to the most appropriate

clusters, they are not suitable for cross-validation of

the resulting regional regression model as the names

of the clusters may change when models are refitted
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for subsets of the data. We therefore fitted a

classification tree to the group names of the regression

tree as (categorical) dependent variable, which

exhibited an identical structure to the regression

tree, but had the advantage of producing the same

group names for various data subsets. This allowed us

to assign each ungauged catchment to one of the

clusters of the regression tree in the cross-validation.

3.1.4. Regions of similar low flow seasonality

Regions of similar low flow seasonality as defined

by Laaha and Blöschl (2003) were used as the final

scheme for catchment grouping. Laaha and Blöschl

(2003) classified Austria into eight contiguous regions

based on a visual assessment of two seasonality

measures. The first seasonality measure was a

seasonality index based on circular statistics (Young

et al., 2000) that represented the mean and the

variance of the days of low flow occurrence. The

second seasonality measure were seasonality histo-

grams (Laaha, 2002) which were used to refine the

information from the seasonal statistics. Catchment

elevation was used to assist in the delineation of the

regions as, in Austria, topographic elevation is one of

the main controls of hydrologic regimes. The method

consisted of the following steps:

(1) Determine the Julian dates (i.e. days from 1 to

365) of days of low flow occurrence for each sub-

catchment by selecting all days when daily

discharge was below Q95;

(2) Calculate the seasonality index from the dates for

each sub-catchment and plot the seasonality

indices as a vector-map in geographical space;

(3) Delineate preliminary regions on the vector map;

(4) Plot monthly histograms of low flow occurrence

for each sub-catchment and use them to refine the

preliminary classification;

(5) Use topographic elevation to refine the exact

position of the region boundaries.
3.2. Regional regression approach

For each group identified by the classification

methods, a multiple regression model was fitted

independently with specific low flow discharge q95
as the dependent variable and a set of catchment
characteristics as the independent variables.

Catchment characteristics are often subject to inter-

correlations and multicollinearity. Rather than

performing a selection of the most important variables

prior to regionalisation, we used a stepwise regression

approach. The stepwise regression procedure used

Mallow’s Cp (Weisberg, 1985, p. 216) as the criterion

of optimality, which was calculated as:

Cp Z
RSSp

ŝ2
C2pKn (2)

The first term is the residual sum of squares of one

considered model (RSSp) with p coefficients divided

by the residual error variance ŝ2 of the full model and

corresponds to the relative optimality in terms of

model error. Complexity of models is penalised by the

second term, which adds the number of coefficients p

minus the number of catchments n. Cp is therefore a

penalised selection criterion which takes the gain of

explained variance as well as the parsimony of models

into account and yields models that are optimal in

terms of prediction errors. Variable selection starts

with one arbitrarily chosen catchment characteristic

and subsequently adds variables that minimise the Cp

criterion. After each step it is tested if replacing one of

the variables by any remaining catchment character-

istic will further decrease the criterion. The selection

procedure continues until Cp reaches a minimum. The

catchment characteristics obtained by the stepwise

regression can hence be interpreted as important

controls of low flows.

Fitting regression models in hydrology is often

complicated by single extreme values or outliers.

Eliminating outliers may improve the goodness-of-fit

but this does not necessarily entail an increase in the

predictive power of the model. On the other hand,

extreme valuesmay act as leverage points and force the

fittedmodel close to them, particularly if the regression

model is fitted by the least squares method, which

increases the magnitude of the residuals of the

remaining points. We therefore adopted an iterative

robustified regression technique in this paper. Initial

models were fitted by stepwise regression and then

checked for leverage points usingCook’s distance (e.g.

Weisberg, 1985). These leverage points were removed

from the sample and the regression model was refitted

iteratively until no leverage points remained. The final

model quality was assessed for all data including
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leverage points. q95was used in all regional regressions

without transformation, as exploratory analyses of the

data suggested that transformations did not increase

the predictive performance.

The regression models so obtained were checked

for numerical stability of computation. Since numeri-

cal stability is sensitive to different scales of

predictors, all catchment characteristics had been

scaled by integer powers of 10 to give similar

magnitudes in terms of their ranges (Section 2.5).

Since linear regression is scale invariant (Weisberg,

1985, p. 185) the regression models, including their

residual statistics, remain unaffected by the rescaling

but the numerical stability is improved.

3.3. Analysis of predictive performance

3.3.1. Analysis of variance

In a first step, we were interested in how well the

classification into homogeneous regions may explain

the spatial variability of specific low flow discharges,

q95. A widely used measure of the explanatory power

of groupings is the one-factorial analysis of variance

(ANOVA) which was used here with q95 as the

dependent variable and the classification number as the

independent variable. TheANOVAmay be interpreted

as an assessment of a simple regionalisation model,

where predicted q95 is simply the average low flow

discharge in each group of a classification. The

coefficient of determination (R2) of this model, i.e.

the ratio of the variance explained by the classification

and the total variance of low flows, is a measure of the

goodness-of-fit of this simplemodel.R2 values close to

100% indicate an excellent goodness-of-fit while

smaller values indicate a poorer goodness-of-fit.

3.3.2. Goodness-of-fit of component regressions

In a second step we examined how well the

regression models in each of the regions fitted the

data. We assessed the goodness-of-fit by the coeffi-

cient of determination of the regressions separately in

each of the regions.

3.3.3. Cross-validation of regional regression

The value of the classification methods for

the ultimate purpose of estimating low flow character-

istics at ungauged sites cannot be fully assessed by

goodness-of-fit statistics. A more appropriate measure
of the prediction errors are the error statistics from

leave-one-out cross-validation. In this paper, the cross-

validation procedure consisted of the following steps:

(1) Remove catchment i from the data set;

(2) Update the catchment classification (if appropri-

ate) for the remaining nK1 catchments;

(3) Assign catchment i to one of the regions obtained

in (2);

(4) Estimate the coefficients of the regression equation

for this region using all catchments in this region

apart from catchment i;

(5) Apply the regression equation obtained in (4) to

predict the low flow characteristic q95 at site i;

(6) Repeat steps (1) – (5) for all n catchments;

(7) Calculate the predictive error for each catchment i

as q95 estimated in (5) minus observed q95 and

analyse the error statistics.

In some of the classification methods the catchment

classification was updated during the cross-validation

procedure while in others it was not. In the weighted

cluster analysis and the regression tree approaches the

regions are discontiguous, and will hence significantly

change if a single catchment is added. In thesemethods

the classification was updated. In the residual pattern

and the seasonality region approaches, however, the

regions are contiguous and will therefore not change

much if a single catchment is added. In these methods

the classification was not updated.

From this prediction vector, the cross-validation

prediction error Vcv was then estimated by:

Vcv Z
1

n

Xn

iZ1

ðq̂ðKiÞ
95i Kq95iÞ

2 (3)

where q95i is the observed specific low flow discharge

q95 for catchment i and q̂ðKiÞ
95i is the model prediction

without using observed low flows from catchment i.

The root mean squared error based on cross-validation

is therefore

rmsecv Z
ffiffiffiffiffiffiffi
Vcv

p
(4)

and the coefficient of determination based on cross-

validation is:

R2
cv Z

VqKVcv

Vq

(5)
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where Vq is the spatial variance of the observed

specific low flow discharges q95.

The advantage of cross-validation over other

techniques of assessing predictive errors is its

robustness and its general applicability to all

regionalisation models. This is because cross-vali-

dation works well even if the regionalisation models

are far from correct (Efron and Tibshirani, 1993).

Cross-validation is hence a full emulation of the case

of ungauged sites.
4. Results

4.1. Residual pattern approach

A preliminary global regression model was fitted

to the data by stepwise regression. Since the primary

purpose of the global model was to calculate a

meaningful residual pattern, the residuals were

carefully checked for the general assumptions

underlying multiple regression, unbiasedness

(E[resi]Z0) and homoscedasticity (Var[resi]Zcon-

stant), where resi is the residual of catchment i. The

analysis indicated slight heteroscedasticity which

appeared to be a consequence of a significant skew

of the distribution of q95. We therefore transformed

q95 by a square-root transformation which resulted in

approximate normality. The global regression model

was then fitted to the transformed data. The

retransformation is non-unique if the variable

changes sign but since all predictions were positive

this was not a problem.
Fig. 1. Residual pattern of (a) the global regression model (goodness-of-fit

(cross-validated residuals). Positive residuals indicate an overestimation b
Stepwise regression resulted in seven catchment

characteristics used as predictors. This equation was

manually revised and the three predictors that

contributed least to the model performance were

removed to avoid overfitting. There was only a

slightly loss in the goodness-of-fit when removing

these predictors (R2 decreased from 66 to 62%). The

more parsimonious model indicated a clearer

residual pattern than the full model based on seven

predictors and hence seemed to be more suitable for

detecting homogeneous regions. The residual map is

presented in Fig. 1a. The residual pattern suggests

that Austria can be classified into two main units.

The first unit consists of flatlands and hilly terrain. In

this unit, the magnitude of the residuals is generally

low (!1 l sK1 kmK2 for most catchments, except

for East-Tyrol) and the pattern of the residuals is

random, so the global model seems to work well in

this unit. The second unit consists of the Alpine

catchments and the Molassezone in the North. In this

unit, the magnitude of the residuals is larger

although there are no clear patterns. We chose to

subdivide the second unit into four regions based on

the geology. This gave us a total of five regions as

shown in the summary plot of Fig. 7(a). Region 0

relates to small residuals, region 1 relates to negative

residuals, and the remaining regions 2–4 relate to

positive residuals.

The coefficient of determination of this classifi-

cation calculated by one-way ANOVA was R2Z25%

(Fig. 6) which means that this classification explains

25% of the total spatial variance of the specific low

flow discharges q95. Although this is not much, the
residuals) and (b) the here from obtained regional regression model

y the model.



Table 1

Components of the regional regression model based on the residual pattern approach

Group Region R2 (%) Model

0 N, E, SE of Austria, E-Tyrol, W-Tyrol 87 q̂95ZK3:46C0:67PK0:19LGLK0:03GFC0:10SM
1 Central-Alps and Pre-Alps 60 q̂95ZK0:81C0:69PC0:41HRK0:52HMC0:08SM
2 Part of the Northern Calcerous Alps 15 q̂95Z7:66C0:12GQ

3 Carinthia 82 q̂95Z1:51C1:02DK0:08SMO

4 Bregenzerwald (Vorarlberg) 32 q̂95Z14:49K0:12SMO

R2 denotes the goodness-of-fit coefficient of determination. Symbols see Sections 2.4 and 2.5.
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delineated regions were used as a basis for a regional

regression model. The model consisted of five

independent regionally restricted models. A statistical

summary of these component models is presented in

Table 1. Three out of the five regions are well

represented by the regional models (regions 0, 1, and

3). However, the regression models for region 2

(Northern Calcerous Alps) and region 4 (Bregenzer-

wald) indicate very poor model performance, which

suggests that there may be significant heterogeneity of

low flow processes within these regions. Note that R2

represents the model goodness-of-fit coefficient of

determination and hence does not fully capture the

predictive performance for ungauged sites.

The predictive performance of the complete

regional regression model was finally checked by

cross-validation. Ungauged catchments were

assigned based on the regions in Fig. 7(a). The

overall predictive performance was found as

R2
cvZ63%. This is significantly better than the

coefficient of determination of the classification

(goodness-of-fit R2Z25%). This improvement is

also apparent when comparing the residual pattern

of the global regression model (Fig. 1(a)) with that

of the regional regression model (Fig. 1(b)). The

latter pattern is more random and the magnitudes of

the residuals are significantly smaller. This means

that there is a lot of value in using regionally

restricted regression models over one single, global

regression model.
Table 2

Catchment characteristics and associated weights obtained by a prelimina

Catchment characteristic HR LR GF

Weight (b-coefficient) 0.22 K0.27 K0.12

Symbols see Section 2.5.
4.2. Weighted cluster analysis

For the weighted cluster analysis, all catchment

characteristics were standardised to zero mean and

unit variance. A stepwise regression was then

conducted between q95 and the standardised catch-

ment characteristics in order to identify the most

relevant catchment characteristics. The catchment

characteristics so obtained and the respective b-coef-
ficients of the regression are presented in Table 2.

These b-coefficients were checked for plausibility and
subsequently used as weights in the weighted cluster

analysis.

A number of cluster analyses were carried out,

combining different distance measures and linkage

methods for a range of numbers of clusters. In each

case, the homogeneity of the groups was assessed by a

visual examination of Andrews plots. This comparison

suggested that the hierarchical cluster analysis (agnes)

that combinesWard’s method and a Euclidean distance

metric (using 10 clusters) was preferable to other

methods and slightly preferable to the pam partitioning

method (10 clusters, Euclidean metric). Fig. 2 shows

the Andrews curves for the optimum classification

method (agnes, 10 clusters). Each panel represents a

cluster and each line corresponds to one catchment. The

xi of Eq. (1) are the catchment characteristics in Table 2

from left to right, standardised to zero mean and unit

variance, and weighted by the b-coefficients. The

Andrews curves were subsequently examined for
ry stepwise regression

PW GGD SM GQ

0.42 0.13 0.33 0.11
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homogeneity. Overall, the between-group variability is

much larger than the within-group variability, although

in groups 4 and 5 individual catchments appear to be

different from the rest. However, given that a

robustified regression technique was used which gives

little weight to single outliers, we deemed the groups

sufficiently homogeneous for the further analysis. We

were hence able to avoid any subjective steps ofmanual

re-classsification of outliers. The coefficient of deter-

mination of the classification by the weighted cluster

analysis alone (i.e. without regional regressions) was

R2Z56% (Fig. 6) which means that this classification

explains 56% of the total spatial variance of the specific

low flow discharges q95. This is significantly more than

that of the residual patterns approach.

In a next step, the clusters were plotted on a map

(see summary plot in Fig. 7(b)). Even though the

cluster analysis did not use any information on the

geographical location of catchments, most of

the clusters are contiguous and there are only some

of the Alpine catchments that are scattered in terms of

their location. This result gives additional credence to

the weighted cluster analysis approach. The spatial

contiguity of the regions is apparently related to the

spatial dependence of the weighted catchment

characteristics.

Regression models were then fitted to each of the

regions independently. They are shown in Table 3.

Most regions are represented rather poorly by the

respective multiple regression models. For some

regions (regions 8, 6, 4, 3), however, the model

performance is very good. These differences may be

related to the weights of the catchment characteristics.

Constant weights have been used across the entire
Table 3

Components of the regional regression model based on the weighted clus

Group Region R

1 Upper Austria 3

2 Central Alps 3

3 Northern Calcerous Alps I 6

4 Flatland and hilly terrain (N, E of Austria) 6

5 High Alps I (Tyrol, Carinthia) 4

6 High Alps II (Tyrol, Carinthia) 7

7 Low Alps (Styria and Carinthia) 4

8 Flyschzone (Upper- and Lower Austria) 7

9 Northern Calcerous Alps II 3

10 Pre-alps (Bregenzerwald)

R2 denotes the goodness-of-fit coefficient of determination. Symbols see S
study domain, which may be more appropriate in

some parts of the domain than in others, as local

deviations from the average behaviour may exist. The

catchment characteristics used in the context of a

weighted cluster analysis are hence not able to fully

represent regional anomalies in the low flow patterns.

Even though most of the clusters in Fig. 7(b) were

coherent we did not judge them to be sufficiently

contiguous for allocating ungauged catchments to

regions in a unique way. The grouping of Fig. 7(b)

was therefore approximated by a classification tree

(Fig. 3). The quality of approximation was assessed

by the misclassification error, which is the ratio of

misclassified catchments and all classified catch-

ments. The overall misclassification error is 21 out

of 325 catchments (i.e. 21/325Z0.06) which rep-

resents an excellent approximation to the grouping

from the weighted cluster analysis. Fig. 3 shows in

detail what catchment characteristics are most

significant in representing the clusters. This result is

similar to the weights found by the regressions using

standardised catchment characteristics in Table 2.

Note that region 10 does not appear in the

classification tree as the number of catchments is

very small in this region. Also note that some of the

catchment groups appear in two nodes (e.g. group 4)

which means that this group consists of both terminal

nodes in the classification tree.

The predictive performance of the complete

regional regression model was finally examined by

cross-validation, using the classification tree of Fig. 3

for assigning ungauged catchments to the regions. The

cross-validation gave a predictive performance of

R2
cvZ59%. Although the variance explained by the
ter analysis

2 (%) Model

5 q̂95Z8:30C5:45H0C2:01AK1:08LFC1:37PS

2 q̂95Z8:20C2:07GQC3:62PWC0:91A

6 q̂95Z9:36K2:10SMOC2:60GF

7 q̂95Z4:66C2:45PK0:30GF

4 q̂95Z7:75C3:26PS

0 q̂95ZK1:67C4:24SM
1 q̂95Z5:89C1:69HCK0:87SMO

5 q̂95Z17:35K1:98GFC11:04A

2 q̂95Z10:65K1:87DC3:55GQ

0 q̂95Z8:45

ection 2.4 and 2.5.



Fig. 3. Approximation of the classification based on the weighted cluster analysis by the classification tree. Ellipses indicate interior nodes,

rectangles indicate terminal nodes (groups of catchments). Numbers within nodes represent group numbers (Table 3), numbers below nodes

represent misclassification error rate (misclassified catchments/classified catchments).
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grouping alone was relatively large, the weighted

cluster analysis does not appear to be as useful for

delineating regions for the regional regressions.
Fig. 4. Cross-validated deviance of regression trees as a function of

number of splits. The minimum prediction error (cross-validated

deviance) is obtained by a tree size of seven terminal nodes.
4.3. Regression tree

In the regression tree approach, the target variable

was the specific low flow discharge q95 transformed

by a square-root transformation. As descriptive

variables, the complete set of non-standardised

catchment characteristics was used. From an initial

regression tree that was completely fitted to data, the

optimal tree size was determined by 10-fold cross-

validation. Fig. 4 shows the cross-validated total

deviance of trees of different sizes. Since the cross-

validated deviance is a measure of the prediction error



Fig. 5. Regression tree model. Ellipses indicate interior nodes,

rectangles indicate terminal nodes (groups of catchments), circles

represent group numbers. Numbers within nodes represent node

means of square root-transformed specific discharge q95, numbers

below nodes represent node deviances in terms of square root-

transformed specific discharge.
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of the model, the optimum size of the regression tree

is where the prediction error is at a minimum. Fig. 4

indicates that the optimum size is seven nodes. The

initial regression tree was then pruned back to seven

nodes using cost-complexity pruning (Clark and

Pregibon, 1991).

The regression tree so obtained is shown in Fig. 5

and divides Austria into seven regions. The structure

of the regression tree indicates that the resulting
Table 4

Components of the regional regression model based on the regression tree

Group Region R2 (%)

1 Flatland and hilly terrain (N, E of Austria) 70

2 Mühlviertel and Pre-alps (Lower Austria) 51

3 Foothills of Alps 25

4 Central Alps 54

5 High Alps (Tyrol) 67

6 Calcerous Alps I (SMG ! 57.95%) 13

7 Calcerous Alps II (SMG ! 57.95%) 47

R2 denotes the goodness-of-fit coefficient of determination. Symbols see S
classification partitions the landscape into regions of

similar relief and similar seasonal precipitation. The

variance explained by the grouping, calculated by

one-way ANOVA, is 62% (Fig. 6). This is the largest

value of all classification approaches. This means that

the regression tree is an excellent classification

method if one is interested in finding groups that are

most distinct in terms of both catchment character-

istics and catchment response.

Regression equationswere nowfitted to each region

independently (Table 4). Two regions (regions 1 and 5)

are well represented by the regression models, three

regions (regions 2, 4, 7) exhibit a moderate model fit,

and two regions (regions 3, 6) are poorly represented

by the models. In the main, the goodness-of-fit of the

regional regression model is similar to that of the

weighted cluster analysis (Table 3). Overall,

the regions so obtained are consistent with both the

geographical classification of Austria and the main

geological units (Fig. 7(c)). As the regions are not

sufficiently contiguous to permit a unique allocation of

ungauged catchments we allocated them by a

classification tree. The cross-validation of regional

regression estimates based on the regression tree

approachwas found asR2
cvZ64%. This is significantly

better than the estimates from the weighted cluster

analysis where the performance was only R2
cvZ59%.

The main difference in terms of predictive perform-

ance of the two methods seems to be related to the

allocation of ungauged catchments. The classification

tree for the grouping in the weighted cluster analysis

method exhibited a significantly larger misclassifi-

cation rate than the classifications in the regression tree

approach. It appears that one advantage of the

regression tree method is a very efficient classification

and allocation of ungauged catchments.
Model

q̂95ZK2:28C0:33PC0:04GGSC0:25HMC0:40SST
q̂95Z2:25K0:60DK0:08LGLC1:91PW

q̂95ZK0:19C0:57DC0:03GGDK0:10GGS

q̂95ZK1:99C0:90PK0:20GTC0:11GQ

q̂95ZK9:57C0:30SM
q̂95Z14:68C0:19LAK0:56D

q̂95Z10:51C0:05GLK1:47PWC0:15LG

ection 2.4 and 2.5.
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4.4. Regions of similar low flow seasonality

The last approach to catchment grouping con-

sidered in this study is based on types of low flow

seasonality as defined by Laaha and Blöschl (2003).

Most regions of the grouping of Laaha and Blöschl

(2003) are contiguous with the exception of three sub-

types of winter low flows (types A, B, C), which are

scattered within the winter low flow dominated Alpine

region. Since this approach was focused on contiguous

regions, these three types were merged into one single

type of winter low flows. The resulting classification

consists of eight regions of approximately homo-

geneous seasonality (Fig. 7(d)). Since all regions are

contiguous, the allocation of ungauged sites is well

defined by their location and no re-classification was

needed in the cross-validation procedure. Examples of

the seasonal distribution of low flows for each of the

regions are given in Fig. 6. From Fig. 6 it is quite clear
Fig. 6. Seasonality types of low flows in Austria illustrated by the non-exce

each region. Letters relate to winter low flows, numbers relate to summer
that the seasonality of low flows shows major

differences in the study domain, so one would expect

seasonality to possess significant predictive power for

delineating regions of similar low flow processes.

Regional regressions were now fitted indepen-

dently to each of the regions. The results are

summarised in Table 5. In most regions, the models

fit well, with coefficients of determination ranging

from 60 to 70%. The regression models for the Pre-

Alps of Styria and Lower Carinthia (regions 3 and 4)

exhibit even better coefficients of determinations of

89 and 83%, respectively. The exception is the

Alpine, winter low flow dominated region (A–C),

where the goodness-of-fit is only R2 Z51%. This low

coefficient is not surprising as three types of

seasonality have been lumped into a single region.

In a final step, the predictive performance for the

case of ungauged catchments was assessed by cross-

validation. The cross-validated coefficient of
edance frequencies of Q95 for each month for a typical catchment in

low flows (Fig. 7(d)).



Table 5

Components of the regional regression model based on regions of similar low flow seasonality

Group Region R2 (%) Model

A–C Alps 51 q̂95Z0:67C0:40PC0:17GQK0:01GCC

6:43LWEC0:14SMK0:04LRK0:20H0

1 Flatland & hilly terrain (N, E of Austria) 71 q̂95ZK0:12C0:11SMC0:05GGSC0:02GC

2 Bohemian Massif 64 q̂95ZK3:31C1:96PW

3 Foothills of Alps (Upper Austria) 68 q̂95ZK10:04K0:76DC3:27PK2:22Ho

4 Flyschzone 63 q̂95ZK6:17C0:06GLC2:07PSK0:06LF

5 Lower Carinthia 83 q̂95ZK17:48C3:56DC20:06LWE

D Pre-Alps (Styria) 89 q̂95ZK7:99C1:08PC0:04LF

E Pre-Alps (Vorarlberg) 60 q̂95Z18:20K0:18SMO

R2 denotes the goodness-of-fit coefficient of determination. Symbols see Sections 2.4 and 2.5.
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determination for the approach based on seasonality

regions was R2
cvZ70%. This is a better predictive

performance than the other grouping methods. It

appears that the stream flow characteristics as

illustrated in Fig. 6 contain a lot of information highly

relevant to low flow regionalisation.
5. Discussion
5.1. Variance explained by grouping alone (ANOVA)

In a first step of comparing the methods of

catchment grouping we examined the part of the

variance (R2) of specific low flows q95 that can be

explained by the grouping alone without using

regressions. The R2 values are large if the variability

between the estimated group means of q95 (SSG) are

large relative to the variability of the residuals

(observed q95 minus group mean) within each group

(SSR). R2 is a goodness-of-fit measure.

The regression tree approach performs best (Fig. 6).

Out of the total sum of squared specific low flow

discharges of 5246 l2 sK2 kmK4 the regressions tree

explains 3244 l2 sK2 kmK4, i.e. the variance explained

by the grouping, calculated by one-way ANOVA, is

62%. Thismeans that the regression tree is an excellent

classification method if one is interested in finding

groups that aremost distinct in terms of both catchment

characteristics and low flow catchment response. We

believe that the reason for the good performance is that

the splitting algorithm simultaneously maximises

group homogeneity in terms of catchment character-

istics and low flows. The regression tree is flexible in
that it can choose the locally most relevant catchment

characteristics, as each group can be subdivided by

different decision criteria. This means that there is no

need to select global similarity measures. This is an

advantage for low flow regionalisation where global

similarity measures may not exist. Application of the

regression tree is straightforward and it provides an

objective and robust classification. The most relevant

catchment characteristics are apparent in the structure

of the fitted regression tree. In contrast to the weighted

cluster analysis, the regression tree is suitable for non-

linear relationships between low flows and catchment

characteristics which is an additional advantage. Using

regression trees prior to linear regressions is therefore

an attractive approach of combining the merits of non-

linear and linear models.

The weighted cluster analysis approach performs

second best and explains 56% of the variance of q95.

The weighting of the catchment characteristics by the

coefficients of a regression model transfers infor-

mation on low flow discharges to the distance

measures used in the cluster analysis, which seems

to be a rather efficient approach. However, it should

be noted that the weighted cluster analysis consists of

10 groups so one would expect a better goodness-of-

fit than for the other methods. The seasonality regions

and residual pattern approaches yield low R2 values of

34 and 25%, respectively. It is clear that these two

methods give little weight to finding regions that are

most homogeneous in terms of low flows. It is also

interesting that even though there are large differences

in the goodness-of-fit between the groupings, they are

all significant at the 95% level (Table 6). For

comparison Fig. 7 presents the catchment groupings



Table 6

Variance explained by the groupings alone without using regressions

Classification method Number of Groups SSG SSR SST R2(%) p-value

Residual pattern approach 5 1319.1 3927.1 5246.3 25 !0.001

Weighted cluster analysis 10 2911.8 2334.4 5246.2 56 !0.001

Regression tree 7 3244.4 2001.9 5246.3 62 !0.001

Seasonality regions 8 1787.0 3459.3 5246.2 34 !0.001

SSG is the sum of squares of the mean group specific low flows q95, SSR is the sum of squares of the residuals of group mean minus observed q95
and SST is the total sum of squares of the observed q95. Units of SS are l2 sK2 kmK4. R2 is the coefficient of determination of the group mean and

the p-values are the empirical significance levels of F-tests of the group means.
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obtained by the four classification methods. Group

numbers are as of Tables 1, 3, 4 and 5. There are some

similarities between the classifications, which reflect

the main topographical units of Austria.

5.2. Goodness-of-fit of regression models

In a second step we compared the goodness-of-fit

of the regressions models for each of the groups

identified by the various grouping methods. We also

compared these goodness-of-fit values to the global

regression model.

The global regression model uses four catchment

characteristics as predictors. These are HR (range of
Fig. 7. Classifications of catchments bas
altitude), LR (fraction of wasteland or rocks), GF

(fraction of Flysch) and PW (average winter precipi-

tation). The global model explains 62% of the

variance in q95. This is the same value as the best

grouping method without regressions. It is interesting

to compare this result to studies in the literature that

used a similar number of catchments as in this paper

(325 catchments) and examined specific discharges as

in this paper, rather than discharges. Gustard et al.

(1992) obtained R2Z57% between Q95 standardised

by the mean flow and portion of hydrologically

defined soil classes for 694 catchments in the UK.

Schreiber and Demuth (1997) obtained R2Z56%

between specific mean annual 10-day minimum
ed on different grouping methods.



Table 7

Predictive performance of regional regression models based on

different grouping methods

Catchment grouping Allocation of ungauged

site via
R2
cv (%)

Residual pattern

approach

Geographic location 63

Weighted cluster analysis Classification tree 59

Regression tree Classification tree 64

Seasonality regions Geographic location 70

No grouping – 57

R2
cv is the coefficient of determination of cross-validated estimates.
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discharge MAM(10) and a number of catchment

characteristics for 169 catchments in south-west

Germany, and Aschwanden and Kan (1999) obtained

R2Z51% between specific discharge (q95) and a

number of catchment characteristics for 143 head-

water catchments in Switzerland. The R2 obtained in

this study are hence somewhat larger than those from

the literature. It is likely that the difference is related

to the hydrological heterogeneity of Austria with clear

regional differences in low flows. The better good-

ness-of-fit in this study may also be related to using

sub-catchments rather than complete catchments

which may make the catchment characteristics more

relevant to low flow regionalisation.

The R2 values of the component models vary vastly

depending on the grouping method and the region

(Tables 1, 3, 4, and 5). For the residual pattern

approach, the R2 values vary from 15 to 87%, for the

weighted cluster analysis they vary from 0 to 75%, for

the regression tree they vary from 13 to 70% and for

the seasonality regions they vary from 51 to 89%.

Overall the seasonality regions provide the best

goodness-of-fit of the component regression models.

Aschwanden and Kan (1999) obtained R2 values

between 59 and 84% using the residual pattern

approach and regional regressions of q95 in a very

similar analysis to this paper. This R2 range is a similar

order of magnitude found for the residual patterns

approach in this study. The low goodness-of-fit for one

of the regions of 15% in this study (region 2, Table 1)

may be related to karstic effects as this is a limestone

area of the Pre-alps. It is possible that the specific

discharges derived from the observations are inaccur-

ate as the hydrologic catchment areas in these regions

may differ from the topographic catchment areas but

are not well known. Most other studies in the

literature used discharge rather than specific discharge

and so are not directly comparable to the results in this

paper. As catchment size usually explains around

80–90% of the variability of low flow discharges (e.g.

Dingman and Lawlor, 1995; Vogel and Kroll, 1992) it

is clear that the R2 values for discharges will be much

larger than the R2 values for specific discharges,

particularly if there are significant variations in

catchment size within the sample. Dingman and

Lawlor (1995); Vogel and Kroll (1992), for example,

reported R2 values of more than 90%.
5.3. Predictive performance of regional regressions

for various grouping methods

The global regression model, i.e. without using any

grouping, gives an R2
cvZ57% in the cross-validation

mode (Table 7). This is a significantly lower value

than the goodness-of-fit R2 of the global model (R2Z
62%). Part of the difference may be related to an

overfitting of the global regression model although

this is unlikely to explain the full difference as only

four catchment characteristics have been used as

predictors. A more important reason for the difference

may be heteroscedasticity of the sample and the

existence of outliers, which contribute significantly to

the estimation error. This issue is discussed later in

this paper.

In the regional regression models, the grouping

based on seasonality regions performs best (Table 7).

The explained variance, in a cross-validation mode, is

R2
cvZ70%. This is significantly more than for the

global model ðR2
cvZ57%Þ. It appears that delineating

regions based on the seasonality of low flows provides

information on the hydrological regimes not captured

by the catchment characteristics and the low flow

discharges. Note that all four grouping methods use

information on the low flow discharge q95, albeit in

different ways, and all grouping methods, with the

exception of the seasonality regions approach, use

catchment characteristics as well.

It is interesting that this performance is signifi-

cantly better than that of an alternative model

proposed by Laaha and Blöschl (2006) which gave

R2
cvZ58% for the same data set. The model of Laaha

and Blöschl (2006) is a global regression model that

uses a region index as a predictor variable in addition
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to the catchment characteristics. This index value

differs by the region and has been calibrated. It

appears that the seasonality types are not mainly

related to the magnitude of the low flows, so they are

not very efficient as a predictor variable. However, the

relationship between catchment characteristics and

low flows appears to be significantly different for

different seasonality regions. Various processes may

combine in different ways in different seasonality

regions, as a result of differences in the hydrologic and

climatic regime. The seasonality grouping is hence

very efficient in the context of the regional regression

approach of using separate regressions in each of the

groups. The favourable performance of the grouping

method based on seasonality regions may be related to

the striking differences in low flow seasonalities in the

study domain (Fig. 6). These differences are clearly

related to different processes. Winter low flows are a

result of the retention of solid precipitation in the

seasonal snow pack of the catchment and of freezing

processes in the soils. In contrast, summer low flows

are related to the relatively large moisture deficits in

the lowland regions of Austria during summer. It

appears that grouping the domain according to low

flow seasonalities does capture some of the effects of

these processes.

The regression tree grouping performs second best

ðR2
cvZ64%Þ and the performance of the residual

pattern approach is similar ðR2
cvZ63%Þ. As compared

to the global regression model ðR2
cvZ57%Þ there is

some improvement in the performance although it is

not large. The weighted cluster analysis, only yields a

minor improvement ðR2
cvZ59%Þ over the global

model. The improvement of the regional regression

models (including grouping) over the global model

(without grouping) is related to the degree of non-

linearity that can be captured by the grouping method.

In the weighted cluster analysis method, the perform-

ance is similar to the fully linear global model, so does

poorly in representing any non-linearity. The other

two methods do capture some of the non-linearity.

It is interesting that the relative performance of the

grouping methods combined with regional regressions

differs from the relative goodness-of-fit of the

grouping methods alone. While for the grouping

methods alone the regression tree approach performed

best, it is the grouping based on seasonality regions

that performs best when combining the grouping with
regional regressions. It is clear that in the latter case,

the important feature the catchment groupings need to

capture is the way the catchment characteristics are

related to low flows rather than the low flows

themselves. Within group homogeneity and between

group heterogeneity in terms of low flow discharges

are hence not a good indicator for the predictive

performance of low flow regional regressions. Cross-

validation of the regression estimates is certainly a

preferable way of measuring the performance of

regionalisation methods.

It should be noted that in the residual pattern and

the seasonality region approaches the regions were

not updated in the cross-validation procedure. This

was because the regions were deemed sufficiently

contiguous not to change much if a single catchment

is added. It is possible that the cross-validation

performance of these two methods may very slightly

decrease if the regions were updated but given the

relative magnitude of the cross-validated coefficients

of determinations it is unlikely that this will change

the ranking of the predictive performance of the

methods.

5.4. Heteroscedasticity, outliers and bias

As a final step of assessing the methods of

catchment grouping we examined scatter plots of

predicted vs. observed specific low flow discharges

q95 (Fig. 8). The scatter plots allow a detailed

examination of the performance of individual catch-

ments including the existence of outliers and a

potential heteroscedasticity of the observations and

the predictions. Overall the relative scatter of the

methods (Fig. 8) corresponds well with the cross-

validated coefficients of determination in Table 7 and

it is clear that the seasonality regions approach

performs best and the weighted cluster analysis

approach performs poorest. The weighted cluster

analysis approach overestimates low flows signifi-

cantly for three catchments and the magnitude of the

estimation error is relatively large for a number of

catchments. The outliers tend to increase with q95,

which suggests that the predictions are heteroscedas-

tic. One would usually apply a variance-stabilising

transformation in this case, such as taking the

logarithms of q95. However, since preliminary

analyses indicated little effect on the model



Fig. 8. Scatter plots of predicted vs. observed specific low flow discharges q95 (l sK1 kmK2) in the cross-validation mode. Each panel

corresponds to one regional regression model and each point corresponds to one catchment.
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parameters, the level of heteroscedasticity was

considered acceptable in the context of this paper as

the main focus was on evaluating the potential of

catchment grouping on low flow regionalisation. The

residual pattern approach generally performs quite

well although it gives negative predictions of q95 for

two catchments and a few outliers. The regression tree

approach performs equally well for the bulk of the

catchments, but appears slightly superior to the

residual pattern approach as far as outliers are

concerned. The approach based on seasonality regions

performs best. The points are scattered around the 1:1

line indicating low prediction errors for a broad range

of discharges. The scatter is almost homoscedastic

and there are only a few minor outliers.

One apparent deficiency of all models is the large

scatter and clear bias for very wet catchments. In
catchments where observed specific low flow

discharges are more than about 12 l sK1 kmK2 the

low flows are consistently underestimated, and the

random prediction error is also rather large. It

appears that none of the models can cope very well

with these large discharges. Part of the errors may be

related to biases in the observed values. A specific

discharge of 12 l sK1 kmK2 corresponds to 378 mm

of low flow depth per year which is a relatively large

value for Austrian conditions. In all catchments in

the q95O12 l sK1 kmK2 range, with the exception of

two catchments, limestone is the main geologic

formation (75% of the catchment area on average)

so karst effects are likely to occur. It is possible that

the specific discharges derived from the observations

are inaccurate as the hydrologic catchment areas in

these regions may differ from the topographic
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catchment areas. A more detailed analysis is needed

to ascertain the extent to which the low flow

observations in these catchments are actually biased.

It should also be noted that it is not uncommon for

regionalisation models to have a tendency for

underestimating large values. For example, the

flood regionalisation analysis of Merz and Blöschl

(2005) showed that flood quantiles in the same study

area were consistently underestimated by their

method for catchments with above-average specific

flood discharges.
6. Conclusion

We compared four catchment grouping methods in

terms of their performance in predicting specific low

flow discharges q95. These methods are the residual

pattern approach, weighted cluster analysis,

regression trees and an approach based on seasonality

regions. The grouping based on seasonality regions

performs best and explains 70% of the variance in a

cross-validation mode. The favourable performance

of this grouping method is likely related to the striking

differences in seasonal low flow processes in the study

domain. Winter low flows are a result of the retention

of solid precipitation in the seasonal snow pack of the

catchments and of freezing processes in the soils while

summer low flows are related to the relatively large

moisture deficits in the lowland regions of Austria

during summer. The regression tree grouping per-

forms second best (explained variance of 64%) and

the performance of the residual pattern approach is

similar (explained variance of 63%). The weighted

cluster analysis only explains 59% of the spatial

variance of q95, which is only a minor improvement

over the global regression model, i.e. without using

any grouping, in a cross-validation mode (explained

variance of 57%).

We further examined the part of the variance (R2)

of specific low flows q95 that can be explained by the

grouping alone without using regressions. In this

comparison, the regression tree approach performs

best and explains 62% of the spatial variance. This

means that the regression tree is an excellent

classification method if one is interested in finding

groups that are most distinct in terms of both

catchment characteristics and low flow catchment
response. The weighted cluster analysis approach

performs second best (explained variance of 56%).

The seasonality regions and residual pattern

approaches yield low R2 values of 34 and 25%,

respectively. It is clear that these two methods give

little weight to finding regions that are most

homogeneous in terms of low flows.

An analysis of the sample characteristics of all

methods suggests that, again, the grouping method

based on the seasonality regions has the most

favourable characteristics although all methods tend

to underestimate specific low flow discharges in the

very wet catchments. The favourable performance of

the seasonality regions approach was further reflected

in an analysis of the goodness-of-fit of the regressions

between catchment characteristics and q95 for each of

the groups identified by the various grouping

methods. Here, the seasonality regions approach

explained between 51 and 89% of the spatial variance

of q95, depending on the region. A global regression

model that uses range of altitude, fraction of rock,

fraction of Flysch, and average winter precipitation as

the predictor variables explains 57% of the variance

in q95.

This study has examined a single low flow

characteristic (q95) and it would be interesting to see

whether the relative performance of the grouping

methods remains the same if different characteristics

are examined. There is also some potential in using

short discharge series in the low flow regionalisation

as short series and, perhaps, snapshot discharge

measurements may be available in a much larger

number of catchments (Laaha and Blöschl, 2005). We

are currently assessing techniques that combine both

sources of information, estimates from regionalisation

and estimates from short records, and the results will

be reported in the near future.
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question. Communications hydrologiques, vol. 27. Service
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von Hochwässern. Wasser, Energie, Luft, 92. Jahrgang, Heft

1/2, 13-21, Baden.

Rosenthal, W., Dozier, J., 1996. Automated mapping of montane

snow cover at subpixel resolution from the Landsat Thematic

Mapper. Water Resour. Res. 32, 115–130.

Schreiber, P., Demuth, S., 1997. Regionalisation of low flows in

southwest Germany. Hydrol. Sci. J. 42 (6), 845–858.

Skop, E., Loaiciga, H.A., 1998. Investigating catchment hydrology

and low-flow characteristics using GIS. Nordic Hydrol. 29 (2),

105–128.

Smakhtin, V.U., 2001. Low flow hydrology: a review. J. Hydrol.

240, 147–186.

Veanbles, W.N., Ripley, B.D., 1999. Modern Applied Statistics

with S-Plus, third ed. Springer, New York.

Vogel, R.M., Kroll, C.N., 1992. Regional geohydrologic-geo-

morphic relationships for the estimation of low-flow statistics.

Water Resour. Res. 28 (9), 2451–2458.

Weisberg, S., 1985. Applied Linear Regression, second ed. Wiley,

New York.

Young, A.R., Round, C.E., Gustard, A., 2000. Gustard Spatial and

temporal variations in the occurrence of low flow events in the

UK. Hydrol. Earth Syst. Sci. 4 (I), 35–45.


	A comparison of low flow regionalisation methods-catchment grouping
	Introduction
	Data
	Study area
	Discharge data
	Disaggregation of nested catchments
	Low flow characteristic
	Catchment characteristics

	Method
	Classification of catchments
	Regional regression approach
	Analysis of predictive performance

	Results
	Residual pattern approach
	Weighted cluster analysis
	Regression tree
	Regions of similar low flow seasonality

	Discussion
	Variance explained by grouping alone (ANOVA)
	Goodness-of-fit of regression models
	Predictive performance of regional regressions for various grouping methods
	Heteroscedasticity, outliers and bias

	Conclusion
	Acknowledgements
	References


