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[1] Derived flood frequency models can be used to study climate and land use change
effects on the flood frequency curve. Intra-annual (i.e., within year) climate variability
strongly impacts upon the flood frequency characteristics in two ways: in a direct way
through the seasonal variability of storm characteristics and indirectly through the
seasonality of rainfall and evapotranspiration which then affect the antecedent catchment
conditions for individual storm events. In this paper we propose a quasi-analytical derived
flood frequency model that is able to account for both types of seasonalities. The
model treats individual events separately. It consists of a rainfall model with seasonally
varying parameters. Increased flood peaks, as compared to block rainfall, due to random
within-storm rainfall time patterns are represented by a factor that is a function of the
ratio of storm duration and catchment response time. Event runoff coefficients are allowed
to vary seasonally and include a random component. Their statistical characteristics are
derived from long-term water balance simulations. The components of the derived
flood frequency model are integrated in probability space to derive monthly flood
frequency curves. These are then combined into annual flood frequency curves.
Comparisons with Monte Carlo simulations using parameters that are typical of Austrian
catchments indicate that the approximations used here are appropriate. We perform
sensitivity analyses to explore the effects of the interaction of rainfall and antecedent soil
moisture seasonalities on the flood frequency curve. When the two seasonalities are in
phase, there is resonance, which increases the flood frequency curve dramatically. We are
also able to isolate the contributions of individual months to the annual flood frequency

curve. Monthly flood frequency curves cross over for the parameters chosen here, as
extreme floods tend to mainly occur in summer while less extreme floods may occur

throughout the year.
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1. Introduction

[2] Floods are often generated by different processes in
the same catchment. In parts of Western Australia, for
example, floods with a return period less than 10 years
are typically winter floods, whereas floods with a return
period larger than 30 years tend to be summer floods despite
generally drier soils in summer [Sivandran, 2002]. This
arises due to different mechanisms of rain producing events
(frontal events in winter, thunderstorms and tropical cy-
clones in summer), and their interaction with different
flooding processes dominating in different times of the
year. In Austria there also exist significant seasonal patterns
of flood processes. In most of the country, the most extreme
floods are summer floods, often produced by long-duration
synoptic events, while smaller floods can occur throughout
the year [Merz and Bloschl, 2003]. Differences in flood
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processes related to rain-fed (in summer and autumn) and
snowmelt driven (spring) floods have received attention in
North America and Europe [Waylen and Woo, 1982,
Stedinger et al., 1992]. Hirschboeck [1987] performed a
detailed analysis on causative mechanisms of floods in a
number of catchments in Arizona based on surface and
upper weather maps [Hirschboeck, 1988]. This scheme was
updated by House and Hirschboeck [1997] and simplified
into three event types (tropical, convective, and frontal
events). The body of work on causative mechanisms
allowed Hirschboeck [1987] and Alila and Mtiraoui
[2002] to examine the flood statistics for each group of
events and derive hydroclimatically defined mixed distri-
butions in flood series. Merz and Bléschl [2003] found
significantly different flood frequency statistics for long-
rain floods, short-rain floods, flash floods, rain-on-snow
floods, and snowmelt floods in Austria. The need to
distinguish between flood frequency curves in different
months of the year, e.g., between summer and winter, or
between rain-fed or snowmelt driven floods, is becoming
much more critical because changes in climate and land use
cannot be fully investigated without explicitly incorporating
changes in the associated intra-annual (e.g., seasonal) and
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interannual (i.e., between year) variabilities. This is the
main motivation for this paper.

[3] Traditional flood frequency analysis depends upon
the existence of long periods of flood records. A recent
concern with such data-driven procedures is that changes in
climate and/or land uses may affect the flood frequencies,
yet may not be reflected by the short records we currently
have [Franks and Kuczera, 2002; Sankarasubramanian and
Lall, 2003], and the consequent nonstationarities in the data
record may invalidate traditional flood frequency analysis.
Also, unraveling land use and climate change effects from
observed flood frequency curves is notoriously difficult
[Kundzewicz, 2003].

[4] Therefore flood frequency estimation in the future is
increasingly likely to be based on a combination of tradi-
tional data-driven procedures, with increased use of rainfall-
runoff models that can capture the effects of both climate
and land use changes [Blazkova and Beven, 1997]. Derived
flood frequency procedures are amenable to this kind of
investigation. The derived flood frequency approach con-
sists of the following elements: (1) a statistical model of
rainfall, usually expressed in the form of a joint probability
distribution of rainfall intensity and duration, including, if
necessary, a correction for the effects of catchment size; (2) a
deterministic rainfall-runoff model which, in turn, contains
three components, namely, a runoff generation model, a
runoff routing model, and a method for the accounting of
antecedent catchment wetness; and (3) a mathematical
framework, or “methodology”, within which the above
two elements are combined together to permit the “deriva-
tion” or estimation of the probability of exceedance of a
given flood magnitude, thus leading to the “derived” flood
frequency curve. In previous work two alternative method-
ologies have been adopted for deriving the flood frequency
curve. The first approach is a Monte Carlo approach where
rainfall time series are generated by a stochastic rainfall
model and used to drive a continuous rainfall-runoff model
[Ott and Linsley, 1972; Beven, 1986; Rahman et al., 2002].
From the runoff time series so generated the flood frequency
curve is constructed. The second approach is a direct or
analytical approach where the flood frequency curve is
derived from the rainfall frequency curve using derived
distribution theory [Eagleson, 1972; Sivapalan et al., 1990;
Fiorentino and lacobellis, 2001]. It is only feasible when
the rainfall-runoff model and the stochastic models of
rainfall and antecedent conditions are simple enough for
the derivations to be analytically tractable but has the
advantage that the effects of the various processes can be
clearly distinguished in the final set of equations. The main
contribution of the derived flood frequency approach has
been the ability to understand the process controls of flood
frequency behavior, especially the ability to focus attention
on change of dominant processes with increasing return
period [Sivapalan et al., 1990; Bloschl and Sivapalan,
1997], and therefore the ability to adapt flood estimation
procedures to these dominant processes [Jothityangkoon
and Sivapalan, 2001].

[5] Intra-annual variability in climate impacts upon the
flood frequency curves in two ways: (1) seasonal and
interannual variability of storm characteristics have a direct
bearing on flood frequency distributions and (2) seasonality
of rainfall and evapotranspiration affect the antecedent
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catchment conditions for individual storm events, and thus
have an indirect effect on the magnitudes of the flood peaks.
In spite of the widely acknowledged importance of season-
ality of storm characteristics and of antecedent conditions
on flood frequency these effects, to our knowledge, have
never been explicitly included in any of the analytical
derived flood frequency models presented in the literature.
Clearly, this requires an explicit linking of derived flood
frequency models with long-term water balance models,
around a mathematical framework that enables the explicit
inclusion of seasonality. This is the subject matter of this
paper. Specifically, the aim of this paper is to explore the
connection between the seasonality of floods and the
seasonalities of climatic characteristics and the catchment
state.

[6] The presentation of the paper will adopt the following
outline. In section 2 we give examples of seasonal variabil-
ity of flood frequency. We then give a mathematical
presentation of the quasi-analytical derived flood frequency
methodology in section 3, including a description of the
way we derive annual flood frequency curves from monthly
curves. In section 4 we describe the implementation of the
continuous simulation or Monte Carlo approach with the
same or equivalent model structures and parameters as
the quasi-analytical approach, which we will use as a check
of the quasi-analytical results. Section 5 is devoted to the
application of the new derived flood frequency methodol-
ogy to a typical catchment in Austria, its validation by
comparing against results obtained using the Monte Carlo
simulation approach, and the use of sensitivity analysis to
gain insights into the effects of seasonality on monthly and
annual flood frequency curves. Section 6 provides a dis-
cussion and the conclusions.

2. Examples of Seasonal Variability of Flood
Frequency

[7] To further motivate the use of derived flood frequency
models that represent the seasonalities of climate and soil
moisture we illustrate the importance of seasonality through
a number of examples taken from Austrian catchments.
These examples also assist in guiding the development of
our generalized flood frequency method.

[8] Figure 1 presents, for four Austrian catchments, plots
of the month in which the annual maximum flood occurred
for each year of record against the estimated return period
for that flood. In the Teufelmiihle catchment (Figure la)
located in the north of Austria, we note that at low return
periods the annual maximum floods could occur in any of
the 12 months in a fairly uniform manner, whereas with
increasing return period, the annual maximum floods tend
to be produced preferentially in the December to March
(winter) period. On the other hand, in the Wienerbruck
catchment (Figure 1b) located in the Alps, there is a similar
narrowing down in the timing of annual maximum floods
with increasing return period, but this time around the July
to September (summer) period. In the Anger catchment
(Figure 1c) located in southeastern Austria, there is not the
same degree of narrowing down in the timing of floods,
with most floods occurring in the May to October period,
regardless of return period. Finally, in the Rattendorf
catchment (Figure 1d) located in southern Austria, the
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Figure 1. Seasonality of flood frequency (date versus return period) for four example catchments in

Austria: (a) Teufelmiihle, (b) Wienerbruck, (¢) Anger, and (d) Rattendorf. The mean catchment elevations
and catchment areas are Teufelmiihle, 751 m, 452 km?; Wienerbruck, 1013 m, 36 km?; Anger, 994 m,

408 km?; Rattendorf, 1380 m, 595 km?.

narrowing down in the timing of annual maximum floods
shows a rather bimodal variation, with one set of floods
occurring preferentially around June (spring) and the next
around October (early winter). Clearly, these observed
patterns must have both hydrological causes, and hydrolog-
ical consequences, and yet analyses of these are precluded
in traditional flood frequency analysis.

[9] We can speculate on possible physical causes of the
observed seasonality in the timing of annual maximum
flood peaks. Strong seasonal contrast in a number of
contributing factors can have a significant effect on the
extremes: rainfall, snowmelt, the underlying water balance
reflected in the runoff coefficient and initial base flow in
the streams. The first obvious cause could be the season-
ality of rainfall inputs, especially the seasonality of
extreme (flood producing) storms. Figure 2 presents the
number of “extreme storms” as a function of the month
for four regions in Austria that are loosely associated
with the catchments of Figure 1 described above:
Figure 2a shows Moldau (Teufelmiihle), Figure 2b shows
Donau between Enns and March (Wienerbruck), Figure 2c
shows Raab (Anger), and Figure 2d shows Drau (Rattendorf).
These were taken from Gutknecht and Watzinger [1996],
where “extreme storms” are defined as those storms that have
the property that d >1/5t,, where ¢, is rainfall duration in
minutes and d is the total rainfall depth in mm over this
duration. In the case of the Drau region and the associ-
ated Rattendorf catchment, presented in Figures 2d and
1d, the close association between the bimodal distribution
of the timing of annual maximum floods (June and
October) and the similarly bimodal distribution of ex-

treme storms is unmistakable, and therefore the seasonal-
ity of extreme storms must be a primary determinant of
seasonality of floods. In the Donau between Enns and
March region and the Wienerbruck catchment, presented
in Figures 2b and 1b, the most extreme storms appear to
occur in summer which seems to be reflected also in the
timing of annual maximum floods. The same appears to
hold for the Raab region and the Anger catchment, where
the extreme storms are mainly centered around June
(Figure 2c) and the timing of annual maxima floods
directly follow (Figure lc). However, in the Moldau
region and the Teufelmiihle catchment the temporal
distribution of extreme storms tends to be centered
around July (Figure 2a), and yet annual maximum floods
tend to be strongly centered around January at large
return periods (Figure la). At least in the latter case,
the observed seasonality is not directly attributable to
seasonality of extreme storms. We must therefore seek
alternative or additional explanations.

[10] Figure 3 presents the seasonal (monthly) variation of
the runoff coefficient at event scale and the base flow for the
four Austrian catchments considered before. In Figure 3a
the base flow is defined as the minimum of daily runoff in
each month, averaged over 30 years. Minimum runoff is an
indicator of low flow and has here been used as a proxy for
base flow. In Figure 3b the runoff coefficient has been
estimated through the application of a variant of the HBV
model [Merz and Bloschl, 2003, 2004] and is defined as the
direct runoff divided by the sum of rainfall and melt input,
averaged over each month and averaged over 30 years of
record (thick lines). The thin lines in Figure 3b show the
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Figure 2. Secasonality of extreme storms [from Gutknecht and Watzinger, 1996]: Number of extreme
storms (expressed in percentages) versus month for four example regions in Austria, (a) Moldau, (b) Donau
between Enns and March, (c) Raab, and (d) Drau. “Extreme storms” are defined as those storms that have
the property that d >/5¢., where ¢, is rainfall duration in minutes and d is the total rainfall depth in
millimeters. Histograms in Figures 2a—2d are based on 48, 1795, 1512, and 3071 storms, respectively.

standard deviations between years and within each month of
the runoff coefficients so defined. Both of these numbers
show strong seasonal variation, and being measures of the
antecedent condition of the catchment, they are likely to
differently impact on the magnitude of the flood peaks that
might result from storms that occur in different times of the
year. The most dramatic effect is in Rattendorf (solid lines),
where the runoff coefficient shows a bimodality that is in
phase with, and therefore reinforces, the seasonality of
extreme storms, thus contributing to the strong bimodality
in the seasonal variation of annual maximum floods. The
spring peak of the runoff coefficient appears to be associ-
ated with snowmelt while the autumn peak appears to be
associated with heavy rainfall. In Teufelmiihle (dashed
lines) the apparent shift of the annual maximum flood peaks
toward winter must be due to the high runoff coefficients
obtained during the winter months, and not necessarily
related to extreme storms. The high runoff coefficients in
winter are a result of low evaporation and the presence of
shallow snowpacks as indicated by the runoff simulations.
Merz et al. [2004] have shown that the main effect of
snowmelt on flood response in this type of catchments is in
increasing antecedent soil moisture and hence runoff coef-
ficients rather than through snowmelt contributions during
the event. Wienerbruck is located at higher altitudes than
Teufelmiihle, so most of the snowmelt occurs in spring
rather than in winter. The runoff coefficients in Figure 3b
(dotted line) indeed peak in spring. The relatively flat

response in Anger (dashed dotted lines) appears to be
related to the rather flat variation of runoff coefficient and
base flow during the year, and this suggests that the
distribution of extreme storms is therefore the dominant
control.

[11] Owur basic hypothesis in this paper therefore is that
the interactions between seasonality of rainfall character-
istics and the seasonality of antecedent conditions can
lead to the complex patterns of flood frequency behavior
shown in Figure 1. We further hypothesize that these
interactions can also be reflected in interesting regional/
spatial patterns of flood frequency behavior. By way of
illustration of the latter phenomenon, we present in
Figure 4 regional patterns of flood frequency behavior
for Austria [Merz et al., 1999]. Figure 4a presents the
timing of all of the recorded annual maximum floods
over a period of about 40 years regardless of return
period, and presented as a map of arrows. On the other
hand, Figure 4b presents the seasonality of only the three
largest recorded floods (high return periods). The length
of the arrows is a measure of the strength of the
seasonality: » = 1 if the floods occur on the same day
of the year; » = 0 if the floods occur uniformly around
the year. The direction of each arrow gives the mean
timing of the floods in terms of day of the year counted
from 1 January. Very low seasonalities are indicated as
disks. The arrows in Figure 4b are significantly longer
than those in Figure 4a, which indicates a narrowing
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Figure 3. Seasonal base flow and runoff coefficient for
four example catchments in Austria: Teufelmiihle (dashed
lines), Wienerbruck (dotted lines), Anger (dash-dotted
lines), and Rattendorf (solid lines). (a) Base flow (minimum
of daily runoff in each month, averaged over 30 years).
(b) Runoff coefficient estimated by a rainfall-runoff model,
averaged over each month and averaged over 30 years
(thick lines) and standard deviation between years and
within month of the runoff coefficient (thin lines).

down in the timing of annual maximum floods with
increasing return period similar to what we saw in Figure
1 for a few of the catchments. However, the observed
timings of the largest floods also display strong regional
variations, suggesting that the interactions between
extreme storms and antecedent conditions are highly
spatially heterogeneous, being dependent on the hetero-
geneity of the climatic and catchment characteristics
governing the generation of floods. Figure 4 suggests
that the flood processes may indeed change as one moves
from moderate to extreme floods.

[12] A major objective of this paper therefore is to
explore the connection between the seasonality of floods
and the climatic and catchment properties that govern the
generation of these floods. However, while we are motivated
by these empirical observations, the objective of the paper is
limited to presenting a quasi-analytical framework within
which to investigate these interactions. At this time, we are
not endeavoring to recreate, through a modeling exercise,
the exact temporal patterns presented for the four individual
catchments (Figure 1), nor the observed regional patterns
(Figure 4). From this perspective the work presented here
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represents the initial steps of a much more long-term
investigation.

3. Quasi-analytical Derived Flood Frequency
Model

[13] The approach proposed here is a generalization of the
derived flood frequency approach presented by Eagleson
[1972] and subsequently adapted and extended by others
[e.g., Sivapalan et al., 1990; Fiorentino and lacobellis,
2001]. We will use the derived flood frequency approach
to construct “monthly” flood frequency curves, for each
month of the year, which we will then combine into
“annual” flood frequency curves based on the “theory of
mixed distributions” [Buishand and Demaré, 1990].

3.1. Details of the Stochastic Rainfall Model

[14] The stochastic rainfall model used here is an adapta-
tion of the one used previously by Robinson and Sivapalan
[1997a]. The model is adapted for conditions in Austria, and
the parameters of the model are adjusted to mimic the
observed rainfall record at Frankenfels station in the east
of the country. The essential details of the model are
presented next for completeness, with the parameter values
adopted summarized in Table 1. Essentially, the model
consists of discrete rainfall events whose arrival times,
durations, average rainfall intensity and the within-storm
intensity patterns are all random, governed by specified
distributions. In addition, the parameters of these distribu-
tions are assumed to be seasonally dependent. At this stage,
we have ignored spatial variability of the rainfall intensities.
3.1.1. Storm Duration and Interstorm Period

[15] Guided by data, storm duration, #. and interstorm
period, #,, are assumed to follow the Weibull distribution
(probability density function or pdf), with parameters that
vary seasonally, i.e.,

8,-1 8,
e ) R ) I

Yr \Yr r

1\ !
8,1 8
Jr,(ts]vp) = % (%) exp <f ;—’;) >0  (2a)
1\ !
Yo = Wy (F (1 + —)) (2b)
By

where (3, and 3, are the shape parameters of the Weibull
distributions, and v, and v, are the scale parameters which
can be expressed by the mean storm duration p,, and the
mean interstorm period p,. These are allowed to vary
sinusoidally with time of year, T, as follows:

B =8 + cos{zj71 (- T,.)} (3)

2
wy = Op + ap cos{g (r— Tb)} (4)
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Figure 4. Flood seasonality in Austria [from Merz et al., 1999]. The direction of the arrows indicates
the average occurrence of floods in a year, and the length of the arrows is a measure of the strength of the
seasonality. (a) All maximum annual floods. (b) Only the three biggest floods on record.

where §, and 9, are annual average storm duration and
interstorm period, respectively, 7, and T, are seasonal phase
shifts, o, and «, are the amplitudes of the seasonal
variations of ¢, and 7, T describes the time of year, and w is
the total number of time units in a year (i.e., w = 12 months
if T, 7. and T; are in month units). o, oy, O,, O, T, and T,
have simply been estimated by fitting equations (3) and (4)
to seasonal plots of mean storm duration and mean
interstorm period derived from the Frankenfels rainfall time
series. (3,- and 3, were assumed to be constant throughout the
year and were estimated from the distribution of storm
duration and interstorm period of the rainfall data. The data
also indicated that the observed distributions can be closely
approximated by Weibull distributions.
3.1.2. Rainfall Intensities

[16] We describe the mean storm rainfall intensity i as a
random variable stochastically dependent upon storm dura-
tion, #,, i.e., i and ¢, follow the joint pdf, f; 7 (i, t,), which is
also seasonally varying due to the variation of vy, with time
of year, 7. The mean storm rainfall intensity is disaggre-
gated further to hourly intensity patterns using stochastically
generated mass curves [Huff, 1967], as shown later.

3.1.3. Average Storm Rainfall Intensity

[17] To parameterize the dependence between i and 7. we
assumed the conditional statistics of E[i|£,] and CV? [i|z,] to
be power functions of #,. as follows:

Elilt] =ai  and  CVi|t,] = axt® (5)
with the coefficient a; being assumed to also vary
seasonally, as follows, to account for variability of rainfall
generating mechanisms within the year:

a :6a+onacos{2§(*r—’ra)} (6)

The power functions given in equation (5) provide
relationships between ¢, and the first two moments of f;
(ilt,), the conditional distribution of i given ¢, which is
assumed to follow the gamma distribution:

fililn) = % (\)™" exp(—X) )
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Table 1. Parameters of the Rainfall and Runoftf Models
Value Value
Value Value Value Used in Used in
Usedin Usedin Usedin Figures 11a and Figures 11b and
Parameter Symbol Equation Figure 8 Figure 9 Figure 10 12a 12b Units

Weibull parameter of storm duration B, (1) 0.7 0.7 0.7 0.7 0.7
Weibull parameter of inter-storm period B 2) 0.7 0.7 0.7 0.7 0.7
Annual average storm duration o, 3) 5.7 5.7 5.7 5.7 5.7 hours
Amplitudes of the seasonal variation Q. 3) 1.4 1.4 14;0 1.4 1.4 hours

of storm duration
Month of maximum storm duration T, 3) 0 0 0 0 months
Annual average interstorm period & 4 43.0 43.0 43.0 43.0 43.0 hours
Amplitudes of the seasonal variation of Qy @) 5.6 5.6 5.6;0 5.6 5.6 hours

interstorm period
Month of maximum interstorm period T 4) 0 0 0 0 months
Rainfall model parameter a, %) 1.5 1.5 1.5 1.5 1.5
Rainfall model parameter by %) 0.01 0.01 0.01 0.01 0.01
Rainfall model parameter by %) —0.55 —0.55 —0.55 —0.55 —0.55
Parameter of mean rainfall intensity 04 (6) 1.05 1.05 1.05 1.05 1.05 mm h° !
Amplitude of rainfall intensity oy (6) 0.65 0.65 0.65 0.65 0.65 mm h™®!
Month of maximum rainfall intensity Ta 6) 6 6 6 6 months
Annual average base flow 8, 9) 0.065 0.065 0 0 0 mm/h
Amplitude of the seasonal variation of base flow Oy ) 0.035 0.035 0 0 0 mm/h
Month of maximum base flow Tq ) 6.5 6.5 - 6.5 6.5 months
Annual average runoff coefficient o (10) 0.35 0.35 0.35 0.35 0.35
Amplitude of the seasonal variations of the Qe (10) 0.25 0.25 0.25; 0 0.25 0.25

runoff coefficient
Month of maximum runoff coefficients Te (10) 3.5 3.5 variable 6 3 months
Variance of the random component of the o2 (12) 0; 0.04 0.04 0.04 0.04

runoff coefficient
Catchment response time for flood events t. (13), (14) 6.0 6.0 6.0 6.0 6.0 hours
Mean of the rescaled x ratio of flood peaks [ (16) 0.3 0.3 0.3 0.3
Variance of the rescaled x ratio of flood peaks c% (16) 0.04 0.04 0.04 0.04

with the gamma parameters, k and X\ being functions of #,.
By matching expressions for the statistics of the general
gamma distribution with equation (5), we can estimate k
and X as follows:

b, —by—bs

t
L and \=-"L (8)
a aa

K=

The parameters by, b,, a5, 9,, o, and T, have been estimated
by fitting equations (5) and (6) to the rainfall data at
Frankenfels.

3.2. Details of the Simple Rainfall-Runoff Model

[18] The rainfall-runoff model used in the study is rather
simple, as the main motivation is to present the generalized
derived flood frequency framework, and validate it using
results from the Monte Carlo approach. The rainfall-runoff
model consists of three components: (1) a base flow
component, which is assumed to be seasonally varying;
(2) a quick flow component that utilizes a single runoff
coefficient, whose variation within the year has a seasonal
component (i.e., its mean) and a random component (i.e.,
deviation from the mean); and (3) a runoff routing compo-
nent which consists of a linear reservoir with a response
time of #.. The details of these three components are given
below.

[19] 1. The first component is initial flow in the river
(base flow). Base flow ¢, is assumed to vary seasonally
according to the sinusoidal expression

qo = 8, + cos{zzTr (t— ’I'q)} )

No randomness is allowed in the case of the base flow
variation.

[20] 2. The second component is quick flow runoff
generation and the runoff coefficient. The volume of runoff
generation during a storm is estimated according to a
specified runoff coefficient, r., (fixed for the event and thus
nonlinearity is not considered), the mean of which is
assumed to vary seasonally, i.e., with the time of occurrence
of the storm, as follows:

Tem =60+0¢Ccos{2j(1’fﬂrc)} (10)
W

In addition to the seasonal variation, the runoff coefficient is
also assumed to contain a random element. For simplicity,
and on the basis of empirical results (see Figure 3), we
assume that the variance of the random component remains
constant throughout the year at a value equal to o2. We
assume further based on previous work of Gottschalk and
Weingartner [1998] that 7, is distributed according to the
beta distribution:

(1 —r)!

0<r.<l,u>0v>0 (11)

where B(u, v) is the incomplete beta function, and given the
mean and standard deviation of runoff coefficient as above,
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Figure 5. Typical simulated hyetograph (a major event in
October).

the parameters # and v of the beta distribution can then be
estimated from:

(12a)

(12b)

y="lo 2t (1)

In the model the runoff coefficients represent the lumped
effect of a number of processes that vary seasonally
including evaporation and snowmelt as well as random
processes such as antecedent rainfall.

[21] 3. The final component is runoff routing. For routing
purposes, we conceptualize the catchment as a linear
reservoir with a response time ¢.. Effectively, this is equiv-
alent to the convolution of the time series of quick flow
generation with an exponential instantaneous unit hydro-
graph (IUH). For a single storm, the transformation of
rainfall to runoff can be expressed through the convolution
integral given below:

/
t—t) at
te

where i(f) is the rainfall input time series, and ¢(?) is the
resulting runoff time series. For response time 7., we used
a typical value of medium sized catchments in Austria of
6 hours.

=+ [ i(t)exp(f (13)
0

3.3. Effect of Within-Storm Patterns on Flood Peaks

[22] In this paper we are interested in the flood peak
resulting from the above convolution for all the storms
occurring in the year. For the Monte Carlo simulation
approach (to be presented later), this is fairly straightfor-
ward, and only involves repeated application of equation
(13) for the entire rainfall record.

[23] For the quasi-analytical approach, however, we re-
quire analytical or quasi-analytical expressions for the flood
peak in terms of the average rainfall intensity, duration, also
accounting for within-storm patterns. This is not so straight-
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forward, and in this section we present an approximate
approach that involves the implementation of a random
correction factor x to account for the random nature of
within-storm patterns.

[24] To illustrate this, consider a single storm of average
intensity, i, and of duration, ¢, For a constant storm runoff
coefficient, r., the depth of (new) runoff generated is 7, - i -
t. As a base case, let us assume that the rainfall intensity
within the storm is also constant. Under these simplifying
assumptions, by completing the integration in equation (13)
we can easily derive an expression for the flood peak as

follows:
. t
Gp=qo+re i X" <1 —exp(—t—»

where for the simple rainfall pattern used in this base case, a
correction factor is indeed not needed, and x = 1. To come
up with a priori estimates for x for more complex within-
storm patterns, we utilized synthetic time series of rainfall
intensities, generated using the rainfall model presented
earlier, with variable duration, average intensity but
including within-storm temporal patterns. The within-storm
temporal patterns are generated using Robinson and
Sivapalan’s [1997a] cascade method which is summarized
in Appendix A. An example of a typical storm is presented
in Figure 5 which, by visual inspection, is similar to
observed storm patterns. As a check of the ability of the
rainfall model to reproduce observed patterns of variability
in the observed record at Frankenfels, we carried out a
number of comparisons. As an example, cumulative mass
curves are shown in Figure 6, including the mean and the
0.1 and 0.9 quantiles all of which mimic the corresponding
patterns in the observed record. The cascade model in
Appendix A is used to find values for x and it is also used
in the Monte Carlo approach discussed later but it is not
directly used in the quasi-analytical derived flood frequency
model.

[25] For finding values for v, each of the storms so
produced is routed through a linear store, as in equation

(14)

normalized precipitation depth

o0 | 02 04 o6 08 10
normalized time

Figure 6. Mass curves (see equation (A1)). Thick lines are

the 10 and 90% quantiles and mean of simulations. Dots are

the 10 and 90% quantiles and mean from 7 years of hourly

rainfall data at the Frankenfels rain gauge. Thin line is the

mass curve of the simulated event in Figure 5.
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Figure 7. Effect of time patterns (i.e., within storm
temporal rainfall patterns) on peak flow, as expressed in
terms of the x ratio. Here ¢, is the storm duration, and .. is
the catchment response time. (a) X from Monte Carlo
simulations (circles, . = 2 hours; triangles, . = 6 hours;
squares, f. = 24 hours) with fitted mean x indicated as a
solid line. (b) Fitted upper and lower envelopes (dashed
lines), mean from Monte Carlo simulations for a number of
t,/t.. classes (solid circles), fitted mean (thick solid line); 1 +
standard deviation from Monte Carlo simulations (open
circles), and 1 + fitted standard deviation (thin solid line).

(13), for three different specified response times #.. For
each . this kind of filtering produces a synthetic runoff
record for each storm, which is analyzed to identify the
single flood peak for each storm. Clearly, the required
correction factor x for estimation of the flood peak using
equation (14) is a number generally greater than 1, and
also random due to the random nature of the within-storm
patterns. We also find that, on average, increasing f. leads
to a reduction of the magnitude of the flood peak, and
thus x.

[26] In order to obtain a simple expression for x we
plotted it against ¢/t., the ratio of storm duration to
response time, and as shown in Figure 7a, we find that
it collapses into a single scatterplot regardless of the
individual values of . and 7. used. However, there is
considerable scatter about the mean curve, arising from
the randomness of the within-storm patterns. To account
for the scatter we fitted four curves: the lower and upper
envelopes (y; and ,) of the scatterplots, and the mean
and standard deviation (X, and o) for each value of ¢,/
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t.. Figure 7b presents the fitted curves, which are
expressed analytically as follows:

t

Xm = 1+ X;n? (lsa)
f,

oy _Uxt_c (15b)
/tf

=14+ Xi, (15¢)
— /t"

Xufl_i_xut_ (ISd)
¢

where ¥, = 0.17, o, = 0.08, x; = 0.05, X, = 0.45. These
parameters are a function of the models chosen for
rainfall (i.e., within storm patterns) and the runoff
response, but are independent of the actual event
characteristics used in their estimation, namely 7. and ¢,.
Let us consider a new random variable m, which is a
scaled version of the  ratio defined above, with the
property that 0 < m < 1, as follows:

_XTX
Xu = Xu

) (16a)

or

t
X = x(;m) =X+ {Xu — X} (16b)

The mean, ., and variance, 0%, of the rescaled ratio of
flood peaks, m, can then be estimated using the
expressions given in equations (15a) to (15d). Upon
doing this, remarkably, we find that the mean and
variance collapse to being mere constants, and completely
independent of ¢/t that is,

_ o !
I\LTI _ Xm Xi — X Xi (173)

Xu =X Xu— X
o2 o2
D (17b)
— ! !/
(Xu Xl) (Xu - X[)

[27] This is a highly convenient result, yielding ., = 0.3
and of] = 0.04. We further assume that n) is also distributed

according to the beta distribution:

o1

0<n<1l,p>0,0>0

(18)

=l —
B(p,9) " (I=m
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where B(p, V) is the incomplete beta function. As in the case
of the runoff coefficient, the parameters p and U are then
given by

- un (198.)

2
ﬂm_(l_w

2
0'TI

(19b)

Note that the properties of the x and m ratios presented
above, i.e., p,, = 0.3 and 0% = 0.04, are a function of the
nature of the within-storm patterns, i.e., the cascade model
used to generate these within-storm patterns, and the
rainfall-runoff model used for the runoff generation and
routing. More complex models of both rainfall and runoff
routing may lead to different properties of the x ratio. For
example, nonlinearity of the rainfall-runoff process will lead
to higher x ratios. More detailed investigation of the
interactions of the rainfall model and the rainfall-runoff
model can lead to significant improvements in the accuracy
of flood estimates, and is left for further research.

3.4. Quasi-analytical Derived Flood Frequency
Framework

3.4.1. Probability Distribution of the Population
of Flood Peaks

[28] Flood frequency analysis concerns the estimation of
annual peak discharges with specified probabilities of
exceedance. If we let a random variable Y denote the peak
discharge of all independent storms, and Q denote the
annual maximum peak discharge, then the probability
distribution of Q is the extreme value distribution associated
with Y. Noting that the rainfall inputs i and ¢. are random
variables (potentially also dependent on each other), we can
derive the probability distribution of Y in terms of the
probability density functions of i and 7, using derived
distribution theory [Eagleson, 1972; Wood, 1976; Robinson
and Sivapalan, 1997b]. Given the joint probability density
function of i and ¢, as f;.7 (i, ¢,), the cumulative distribution
of Yis given by:

Fy(gy) =Pr[Y <gq,] = / / Srr. (i t,)di dt, (20)

Here Fy (g,,) is the probability, for a given flood event, that
the flood peak Yis less than or equal to g,,. For the rainfall-
runoff model given by equation (14), R is the region such
that g, > go + r. ix[1 — exp (—#/t.)]. Then, using equation
(20) for the simplifying case where x and 7, are allowed to
remain constant for all storms, the above integral simplifies
to

qp — 490

FY(qP) = (/ FI{VC.X[I — exp(—t,/tc)} |t"}.f7r(tr)dt" (21)

where F; (.|¢,) is the conditional cumulative distribution of
rainfall intensity, conditioned on ..
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3.4.2. Conversion to Extreme Value Distribution

[29] Assuming m independent floods in a year, the
extreme value distribution is formed by selecting the largest
of these m floods in each year, and deriving the distribution
function of the truncated series. Using the theory of order
statistics [Mood et al., 1974; Kottegoda and Rosso, 1997],
the cdf of annual maximum floods, denoted by Fy (g,), is
given by

P[0 > gq)) =1 - Fp(gy) = 1 — [Fr(q,)]" (22)
The same result can also be expressed in terms of a return
period (in years):

-1

T={Pr[0>q,]} "= {1~ Folg,)} "= {1~ [Fr(4,)]"}
(23)

3.4.3. Seasonal Variability of Climate and Antecedent
Conditions

[30] The above result is only valid if the rainfall and
catchment properties do not vary systematically within the
year. The effects of seasonal variability, if present, must
somehow be factored in the derivation. Let us suppose that
pdfs of i and ¢, vary seasonally, as do the runoff coefficient,
r., and initial base flow, go. We will assume that these pdfs
remain sufficiently stationary within individual months, so
that the integral in equation (21) can still be carried out in
the normal way for each month. For simplicity we will here
assume that the x ratio for rainfall temporal variability
remains constant for all months. Thus, for any month j, j =
1,...12, we can rewrite the integral of equation (21) as
follows:

i _ i 3 4qp — 4 J
Fy (Qp) B O/FI{VZX[I - exp(o_tr/tc)} |tr}fT’(tr)dtr (24)

[31] At this point we generalize the above result by
introducing random variability of both runoff coefficient
and the x ratio. Using the probability density functions
derived before for runoff coefficient and the scaled ratio of
flood peaks, m, we then have

1 oo ; qp 7(]{)
0/ 0/ FI{";[XI 0 = X)) - [1 = exp(=2-/t)] ltr}

(25)

where it should be noted that x, and %, are empirical
functions of ¢,/z,.

[32] Let us assume that the number of flood peaks in
month j, is m;, j = 1, ... 12. Then, equation (23) can be
rewritten for each month of the year, as follows:

(26)

r={1-F@)"}

[33] We will term the resulting flood frequencies monthly
flood frequency curves, since they relate to probability of
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Figure 8. Monthly (thin lines) and annual (thick line)
quasi-analytical derived flood frequency curves and annual
flood frequency curves from Monte Carlo simulations
(circles). No time patterns are used, and runoff coefficient is
seasonal but not random. Horizontal scale is linear using
Gumbel reduced variates. For parameters, see Table 1.

exceedances of the given flood peak ¢, within a single
month, yet the return periods are in years, e.g., probability
that the January flood peak exceeds g, in any given year.
Provided seasonal variations of all controlling variables are
known, it is straightforward to compute, using equations
(25) and (26), the monthly flood frequency distributions for
all 12 months.
3.4.4. Derivation of Annual Flood Frequency
and Mixed Distributions

[34] For many engineering applications, we want to
derive the annual flood frequency, i.e., the probability that
the annual flood peak (maximum of the 12 monthly
maxima) exceeds a given ¢, and the corresponding return
period. Here this will be accomplished using the theory of
mixed distributions, noting that the cdfs of the flood peaks
for each month are different and the cdf of annual maxima is
thus drawn from a mixture of these. Assuming the flood
peaks in month j are independent from those in month j + 1
and considering the number of flood peaks in month j, m;
j=1,...12, again using order statistics [Mood et al., 1974;
Kottegoda and Rosso, 1997; Buishand and Demaré, 1990],
we can show that

12

Pr[Q0>gq,] =1—Fp(qy) =1— H [F/}(‘Ip)}'n/

=1

(27)

12

r{Pr{Q>qu}l{I—H{ny(qp)}’”’} 9

J=1

[35] Note above that, essentially, mixing of the monthly
flood frequency curves is equivalent to estimating the
product of the monthly nonexceedance probabilities, under
the product sign in equations (27) and (28). It can be shown
to be invariant of the number of stationary periods used (i.e.,
in this case a month), provided that the number of events in
a year are preserved. Equations (22) and (27) are based on
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the assumption of the independence of individual events.
While this assumption is clearly appropriate for the annual
case (equation (22)) it is less obviously so for the monthly
case (equation (27)) and will be checked by Monte Carlo
simulations.

4. Monte Carlo Simulation Approach

[36] The continuous or Monte Carlo simulation approach
is used to check the integration and the  ratio approxima-
tion adopted by the quasi-analytical derived flood frequency
approach as well as the assumption of independence of
monthly flood peaks. The steps involved in the Monte Carlo
approach are summarized as follows.

[37] 1. Synthetically generate (where necessary multiple
realizations of) continuous time series of rainfall intensities,
using the rainfall model presented in section 3.1 and in
Appendix A, using parameters presented in Table 1.

[38] 2. Apply the runoff coefficient, for each storm,
incorporating the seasonality and randomness on a storm
by storm basis as per the date that the storm occurred,
multiply the rainfall time series by this runoff coefficient.

[39] 3. Convolute the resulting runoff generation time
series with the exponential [UH presented in equation (13)
with response time 7. being assumed to remain constant with
date, and add the seasonally varying base flow at the end.

[40] 4. Scan the resulting continuous time series and pick
the largest flood in each month (forming the monthly
maxima data series), and in the whole year (annual maxima
data series), and construct the monthly and annual flood
frequency curves.

5. Results

5.1. Test of the Generalized Derived Flood Frequency
Approach

[41] As a test of the derived flood frequency approach we
compare the estimated flood frequency curve for the case
with no within-storm patterns, against the corresponding
predictions by the Monte Carlo method. For both the
rainfall and the catchment models, parameters that are
typical of Austrian conditions have been used (Table 1).
For this application, the runoff coefficient is assumed to
vary seasonally, but no randomness is included. The results
are presented in Figure 8. All flood peaks are expressed in
terms of runoff depths (mm/h). Given the catchment re-
sponse time of 6 hours assumed here, the average hourly
values (Monte Carlo simulations) are comparable with the
instantaneous values of the quasi-analytical approach. The
1 mm/h of runoff depth is equivalent to a specific peak
discharge of 0.28 m’/s/km®. The annual flood frequency
curve resulting from the quasi-analytical approach (thick
solid line in Figure 8) is close to that resulting from the
Monte Carlo approach (circles) suggesting that the gener-
alized derived flood frequency approach presented in this
paper captures the seasonality and that the integration is
correct. Figure 8 also presents the monthly flood frequency
curves (thin lines). The probability that a given flood peak
discharge occurs in a particular month is smaller (larger 7)
than for it to occur at any time of the year. The monthly
flood frequency curves hence plot to the right of the annual
curve in Figure 8. For a flood peak of, say, 1.5 mm/h the
annual return period is 1.4 (equivalent to a nonexceedance
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Figure 9. Annual flood frequency curves using time
patterns from the quasi-analytical (lines) and Monte Carlo
(dots) methods. Bottom line shows the case with within-
storm time patterns included, runoff coefficient seasonal but
not random. Top line shows the case with storm time
patterns included, runoff coefficient seasonal and random.

probability of 0.30) while the monthly return periods are
2.8, 3.0, 5.5 .... (equivalent to nonexceedance probabilities
Fy of 0.64, 0.67, 0.82 ...). The annual nonexceedance
probability of 0.30 is simply the product of the monthly
nonexceedance probabilities. The monthly flood frequency
curves for the summer months plot at the top while those for
the winter months plot at the bottom indicating that big
floods in winter are very unlikely for the parameters chosen
here (Table 1).

5.2. Effect of Randomness of Within-Storm Patterns
and Runoff Coefficient

[42] Figure 9 presents the estimated flood frequency
curves when within-storm patterns are included (by both
the quasi-analytical and Monte Carlo approaches). In the
bottom line of Figure 9, the runoff coefficient is assumed to
vary seasonally in a deterministic manner (no randomness is
included). For small to medium return periods the Monte
Carlo results are close to the results from the quasi-analyt-
ical approach. This suggests that the approximate analytical
X ratio approach adequately captures the effects of within-
storm temporal patterns on the flood peaks. However, for
return periods larger than about 30 years, the quasi-analyt-
ical approach seems to slightly underestimate flood peaks
and the flood frequency curve is slightly less curvilinear
than in the case of the Monte Carlo simulations. This
suggests that the x ratio approximation is somewhat more
linear than the explicit time patterns and the probability of
extreme events is slightly underestimated.

[43] As compared to Figure 8, the bottom line in Figure 9
gives almost twice the flood peak for the same return
period. This is the effect of within-storm temporal patterns.
It is clear that the inclusion of rainfall time patterns is
critically important for realistic derived flood frequency
predictions.

[44] We also present in Figure 9 the results of the case
where the runoff coefficient varies both seasonally (in the
mean) along with a random component (top line in
Figure 9). With the addition of the random component,
the flood frequency curve not only increases on average
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(shifts upward), but it also increases in steepness. When
allowing for random runoff coefficients a small number of
events occur where large runoff coefficients (wet antecedent
moisture conditions) coincide with large rainfall depths to
produce very large flood peaks.

5.3. Further Insights into the Effects of Seasonality

[45] With the derived flood frequency model developed
above, we next carry out additional simulations to gain
further insights into the effects of seasonality. There are two
ways that seasonality enters into the flood frequency curve:
seasonality in the rainfall inputs, especially “extreme rain-
falls,” and the seasonality in the transformation between
rainfall and runoff. The latter appears through the runoff
coefficient and base flow in the present model, whose
seasonality ultimately can be connected to seasonality of
rainfall and evaporation. Figure 10 examines the effect of
the interaction of these two types of seasonality on the flood
frequency curve. Figure 10a shows the annual flood fre-
quency curves for different phase shifts between seasonal

10.0

8.0

6.0

4.0

flood peak (mm/h)

) no seasonality
20

a)

0.0 T T T T
1.2 3 10 30 100
return period (yrs)

0.8 6 mm/h

4 mm/h

0.6

0.4+

2 mm/h

non exceedance probability

0.2

0.0

6 a4 2 0 2 a4 s
phase shift At (months)

Figure 10. Effect of phase shift. (a) Annual flood
frequency curves for different phase shifts At of the runoff
coefficient r, as compared to rainfall (At =1, — 7, with T,.=
Tp = T, — 6; thin lines) and annual flood frequency curve
without any seasonality (i.e., all amplitudes are 0; thick line
with circles). (b) Nonexceedance probabilities Fy for three
flood peaks (2, 4, and 6 mm/h) as a function of phase shift
AT. A phase shift of At = 0 corresponds to highest runoff
coefficients in the same month as the highest rainfall
intensity.
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Figure 11. Flood frequency curves for different months
(thin lines) and annual flood frequency curve (thick line).
(a) Phase shift AT = 0 (i.e., maximum rain in summer,
maximum runoff coefficient r. in summer). (b) Phase shift
AT = —3 months (i.e., maximum rain in summer, maximum
7. in spring).

variabilities of rainfall and runoff coefficient (thin lines).
The phase shift is defined as At = 1, — 7, with T, = 7, =
T, — 6. Figure 10a also includes the base case with no
seasonality either in the rainfall or in the runoff coefficient
(thick line with circles). Figure 10a shows that the flood
magnitude is largest when the rainfall and runoff coefficient
are perfectly in phase, i.e., the phase shift At = 0, which
means the highest runoff coefficients occur in the same
month as highest rainfall intensity. This reflects a kind of
resonance. The flood frequency curves decrease in magni-
tude when they become increasingly out of phase. It is
interesting that any kind of seasonality (including out of
phase) produces higher flood frequency curves than the case
where no seasonality is included (thick line with circles in
Figure 10). When seasonality is present a coincidence of
large runoff coefficients (wet antecedent moisture condi-
tions) with large rainfall depths is more likely than for the
case without seasonality thus producing larger flood peaks.
Note that the “resonance” highlighted above will be even
more dramatic if the runoff generation process were to be
nonlinear, with a runoff coefficient that increases with
increased rainfall.

[46] Figure 10b presents the same results of Figure 10a in
an alternative manner to illustrate the role of the nonexcee-
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dance probabilities. In this case, we estimate the nonexceed-
ance probabilities for three different specified values of the
flood peak (2, 4 and 6 mm/h). Essentially, this amounts to
slicing Figure 10a horizontally at the three specified flood
levels, reading off the return period for each phase shift, and
then estimating the corresponding nonexceedance probabil-
ities (=1 — T '). The results in Figure 10b show that the
nonexceedance probability of a given flood peak is smallest
for zero phase shift (case of resonance), and increases with
increasing phase shift. For the largest of the flood peak
values selected (6 mm/h) the exceedance probability varies
from 0.01 (6 month phase shift) to 0.08 (no phase shift).

[47] Having determined the effect of seasonality of ex-
treme storms and antecedent conditions on the magnitude of
the annual and monthly flood frequency curves, we next
investigate the question as to what are the relative contri-
butions of individual months toward the annual flood
frequency curve. In doing this we note at the outset that
whereas in the observed record only one month produces
the observed annual maximum flood in each year, the
derived flood frequency approach can generate the relative
contributions of the various months toward the annual
maximum flood, i.e., the probability that the annual maxi-
mum flood of a given return period would occur in a
specified month, although this cannot be verified in practice
with the limited length of record currently available.

[48] Figure 11 presents the flood frequency curves for
different months, with different phase shifts between sea-
sonal variability of extreme storms and antecedent condi-
tions. Figure 11a presents the case with zero phase shift, i.e.,
where maximum rainfall and maximum runoff coefficients
occur in the same month. Figure 11b presents the case for a
phase shift of 3 months (AT = —3) i.e., where maximum
rainfall occurs three months after maximum runoff coeffi-
cients. The thick lines are the annual flood frequency curves
and the thin lines are the monthly curves. The highest
monthly curves in Figure 11a are for the summer months
(June and July) when both highest rainfall and runoff
coefficients occur. The two lines lie on top of each other
as all model assumptions are strictly symmetrical around the
mid of the year. The lowest monthly curves are for the
winter months (December, January) where both rainfall
intensities and runoff coefficients are low. For the case of
a phase shift of 3 months (AT = —3, i.e., maximum rain
intensities in summer, maximum runoff coefficients in
spring) the monthly contributions are more complex.
Figure 11b shows that the monthly flood frequency curves
cross over, with the probability of exceedance changing
depending upon the month. The high monthly curves occur
in early summer while the low curves occur in early winter.
The crossing over of the monthly curves is related to the
interaction of rainfall seasonality and the seasonality of
antecedent soil moisture. In months with relatively wet
antecedent conditions but small rainfall intensities (March,
for example) small floods are quite frequent, leading to a
flat flood frequency curve. In contrast, in months with
relatively dry antecedent conditions and large rainfall in-
tensities (September, for example) small floods are less
frequent but a number of large floods do occur, leading to
a steep flood frequency curve.

[49] In order to shed more light on this interaction of
climate and catchment state seasonalities, Figure 12 shows
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Figure 12. Probability contributions of months in terms of
return period versus month for different flood peaks (0.5, 1,
2, and 5 mm/h). (a) Phase shift AT = 0. (b) Phase shift At =
—3 months as in Figure 11. The 1 mm/h of runoff depth is
equivalent to a specific peak discharge of 0.28 m>/s/km?.

the contributions to the probability of nonexceedance from
different months in terms of the return period, and for
different values of the flood peak Q,. As in Figure 11,
Figure 12a presents the case for zero phase shift between
extreme rainfalls and antecedent conditions At = 0 whereas
Figure 12b presents the case for a three month phase shift
(At = —-3). Figure 12 can be thought of as slices of Figure 11
for different flood peak values (0.5, 1, 2, 5 mm/h). Figure 12
mirrors the same phenomenon exhibited in Figure 11,
namely, the occurrence of extreme floods in summer, and
less extreme floods throughout the year.

6. Discussion and Conclusions

[s0] The paper has presented a derived flood frequency
methodology that applies the theory of “mixed distribu-
tions” to account for the seasonalities of catchment state
and climate forcing, and uses the  ratio approach to
incorporate the effects of within-storm patterns. Both of
these advances remedy serious drawbacks in much of
previous derived flood frequency research. The inclusion
of seasonality and within storm time patterns change the
shape of the flood frequency curve dramatically over the
cases where these two aspects are ignored.
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[s1] The x ratio approach is a parsimonious parameter-
ization of the combined effect of within-storm rainfall
characteristics and catchment response characteristics. Its
simplicity, being a function of the ratio of storm duration
and catchment response time only, makes the method
amenable to analytical derivations. While the parameters
given here are valid for the particular rainfall and runoff
models used here, it is straightforward to derive the param-
eters for any rainfall and runoff model used in a particular
context. For example, nonlinearity of the rainfall-runoff
process will lead to higher x ratios. More detailed investi-
gation of the interactions of the rainfall model and the
rainfall-runoff model can lead to significant improvements
in the accuracy of flood estimates, and this is left for further
research. The effect of the time patterns, as demonstrated
here, is dramatic. As compared to the case of constant
intensity rainfall, inclusion of time patterns results in almost
twice the flood peak for the same return period. It is clear
that the inclusion of rainfall time patterns is critically
important for realistic derived flood frequency predictions
and makes them more consistent with current rainfall-runoff
models used in a design context.

[52] Analyses of the effects of seasonality on flood
frequency indicated that indeed interannual climate vari-
ability strongly impacts upon the flood frequency charac-
teristics in two ways, in a direct way through the seasonal
variability of storm characteristics, and indirectly through
the seasonality of rainfall and evapotranspiration which
affect the antecedent catchment conditions for individual
storm events. The relative phase shift between climate
forcing and catchment state determines the magnitude and
shape of the flood frequency curve. The highest impact of
seasonality occurred when the seasonality in rainfall
intensities was in phase with the seasonality of antecedent
catchment wetness, i.e., when high rainfall intensities and
large runoff coefficients occurred in the same season.
This resonance increased the magnitude of the flood
frequency curves by more than 50% over the case where
climate forcing and catchment moisture state were out of
phase. It is likely that the resonance highlighted above
will be even more dramatic if the runoff generation
processes were to be nonlinear, with a runoff coefficient
that increases with increased rainfall. For certain combi-
nations of the relative phase shift between climate forcing
and catchment state, e.g., three months with maximum
rain intensities in summer and maximum runoff coeffi-
cients in spring, the monthly flood frequency curves cross
over. In months with relatively wet antecedent conditions
but small rainfall intensities (March, for example) small
floods are quite frequent, leading to a flat flood frequency
curve. In contrast, in months with relatively dry anteced-
ent conditions and large rainfall intensities (September,
for example) small floods are less frequent but a number
of large floods do occur, leading to a steep flood
frequency curve. This is reminiscent of flood frequency
behavior in different climates. In dry climates flood
frequency curves tend to be steep while in wet climates
they tend to be much flatter. This is the case in Austria.
In western Austria, which is relatively wet, the CVs of
the maximum annual floods are only about 0.3 while in
eastern Austria which is relatively dry, the CVs of the
flood frequency curves are of the order of 0.7. In
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different climates around the world this contrast may be
even more pronounced [see, e.g., lacobellis et al., 2002].

[s3] It is interesting that any kind of seasonality (includ-
ing out of phase) produces higher flood frequency curves
than the case where no seasonality is included. When
seasonality is present a coincidence of large runoff coef-
ficients (wet antecedent moisture conditions) with large
rainfall depths is more likely than for the case without
seasonality thus producing larger flood peaks. A similar
effect occurs when the runoff coefficient is allowed to vary
randomly between events. When allowing for random
runoff coefficients a small number of events occur where
large runoff coefficients (wet antecedent moisture condi-
tions) coincide with large rainfall depths producing very
large flood peaks. The flood frequency curve not only
increases on average (shifts upward), but it also increases
in steepness. This is in line with the general experience
that extreme floods are often produced by the combined
effect of a number of factors, each of which is not
particularly unusual [Snorasson et al., 2002]. This is also
consistent with the assessment of Wood [1976] on the role
of random variability of model parameters in a flood
frequency context.

[54] The seasonal derived flood frequency approach pre-
sented here not only allows to isolate climate versus
catchment seasonalities but also to examine the probability
contributions of individual months. Whereas in the ob-
served record only one month produces the observed annual
maximum flood in each year, the derived flood frequency
approach can generate the relative contributions of the
various months toward the annual maximum flood, i.e.,
the probability that the annual maximum flood of a given
return period would occur in a specified month, although
this cannot be verified in practice with the limited length of
record currently available. For the hypothetical catchments
examined here the occurrence of extreme floods is more
likely in summer, and less extreme floods may occur
throughout the year (Figure 12). Qualitatively, this repro-
duces the narrowing down in the timing of annual maxi-
mum floods with increasing return period illustrated by
some of the Austrian example catchments, particularly the
Teufelmiihle and the Wienerbruck catchments (Figures la
and 1c). This type of analysis facilitates the assessment of
floods that occur in an unusual season. For example, a
recent flood at the Salzach in Salzburg, Austria, that
occurred in March 2002 [Godina et al., 2003] corresponds
to a return period of 100 years if only March floods are
considered, while the same flood peak if it had occurred in
July had been associated with a return period of only 2 years.
This is very similar to the hypothetical example in
Figure 12a corresponding to a flood peak of about 2 mm/h.

[55] The rainfall-runoff model used in the study is rather
simple, as the main motivation is to present the generalized
derived flood frequency framework, and validate it using
results from the Monte Carlo approach. For applications to
real catchments a more complex runoff model will likely be
needed that is able to represent nonlinearities in both runoff
generation and runoff routing. It is straightforward to extend
the quasi-analytical framework to nonlinear models, how-
ever, equation (25) needs to be solved iteratively as in the
derived flood frequency model of Bloschl and Sivapalan
[1997], for example. It is also likely that due to the space-
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time intermittency of rainfall, there will be some interde-
pendence between the contributing area of the catchment
and the distributions of the duration of flood producing
storms and this may also depend on the scale. Similarly, the
rainfall model would have to be calibrated to each climate
region of interest. These issues are left for further research.

[s6] Even though the results presented here only dealt
with hypothetical catchments, the results give us hope that
with the proper rainfall and runoff models, we can almost
fully capture the effects of seasonality in derived flood
frequency models, and through these obtain valuable
insights into the process controls of flood frequency. This
will be extremely valuable for flood frequency regionaliza-
tions, since it enables us to regionalize individual compo-
nents of the flood frequency curves (i.e., rainfall and
catchment characteristics) which may be physically more
meaningful than to regionalize the complete annual flood
frequency curve. The results have also important implica-
tions for climate/land use change analyses. It is likely that
climate change will not only impact on the flood magnitude
but also on the seasonal distribution of flood occurrence. In
fact, it is likely that the more obvious first indication of
climate and land use change effects will be through a
change in the seasonal patterns of flood occurrence. The
flood frequency curve is an integrated response but we do
need to isolate the controls to understand climate/land use
changes and other nonstationarities.

[57] It is important to re-emphasize the purpose of this
work. There have been a number of studies that have
examined flood frequencies (or precipitation frequencies)
separately for different seasons which were then combined
into annual curves [e.g., Buishand and Demaré, 1990;
Rasmussen and Rosbjerg, 1991]. These studies have gen-
erally found that separating flood frequency curves into
seasons does not necessarily provide a better estimation of
the annual flood frequency curve because of the larger
number of parameters that need to be estimated in the case
of a seasonal model. It should be noted that a better
estimation of the annual flood frequency curve at gauged
locations is not the main focus of this paper. The value of
the proposed approach lies in the potential of isolating
process controls and using known controls in a consistent
way. This is in the spirit of examining and using the
causative mechanisms of floods based on surface and upper
weather maps of House and Hirschboeck [1997] and the
flood process types of Merz and Bloschl [2003]. The
method will enable hydrologists to interpret differences in
observed flood frequency behavior between different cli-
matic regions and can help to decipher climatic and catch-
ment controls on flood frequencies, to classify variability
between climatic regions, and generally to extrapolate
information relating to floods from gauged to ungauged
catchments.

Appendix A: Within-Storm Temporal Patterns

[s8] We used explicit within-storm temporal patterns for
two purposes: to estimate the x ratio in the quasi-analytical
approach, and to generate rainfall time series in the Monte
Carlo approach.

[59] To define the temporal patterns of rainfall intensity
for each storm we used the idea of mass curves [Huff,
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1967; Chow et al., 1988]. A normalized mass curve is
defined by

1 t‘
H(t*)=— [ ({)dl (A1)
[

it

where #* = #/t. (0 < ¢* < 1), i is the mean rainfall intensity
for the storm, u(#) is the instantaneous rainfall intensity
(within-storm pattern) at time ¢ internal to the storm (0 <
¢ < t), and ¢, is storm duration.

[60] In order to generate realistic within-storm intensity
patterns, we use a stochastic model capable of producing
normalized mass curves satisfying the statistical character-
istics described above. The model has a multiplicative
structure similar to that used in random cascades. At the
first level of disaggregation H(#*) is given as follows:

H(0) =0
H(0.5) = w, (A2)
H(1) =1

where wy is a random number with the property that 0 <
wi < 1. The corresponding temporal pattern consists of two
rectangles of height 2w, and 2(1 — wy). At the next, second,
level of disaggregation, the mass curve is obtained using
two additional independent random variables w, and w5 as
follows:

H(0) =0

H(0.25) = wyw,

H(0.5) = wiwy +wi (1 —wp) =w, (A3)
H(0.75) = wi + (1 —wy)ws

H(l) =1

[61] This corresponds to a temporal pattern with four
rectangles. The disaggregation process is continued in this
way to higher levels of disaggregation until the desired fine
timescale (1 hour in this case) is reached. The independent
random numbers wy, wy, ... Wy, .... (0 < wy < 1 for any k)
are drawn from the beta distribution, fj (w), which is given
by

1
S (w) ZWWGHU —w)" 0<w<1,0,>0,0,>0
1,92

(A4)

[62] When 0; = 6,, fi (w) is symmetrical around w = 0.5,
and this results in normalized mass curves the median of
which is a straight line, namely the 1:1 line. The actual
magnitude of 6; = 0, then controls the extent of variability
around the median curve. High values of 0; = 0, give rise to
smaller variability since then much of the weight of f;- (w) is
concentrated around w = 0.5. Low values of 6; = 6, cause fj-
(w) to be concentrated, bimodally, around w =1 and w = 0,
which causes larger variability of mass curves above and
below the 1:1 line. For our purposes we chose values of 6; =
0, = 1 since the stochastically generated mass curves
matched the 10%, 50% and 90% percentile mass curves
estimated from data.
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[63] Finally, the stochastically generated normalized mass
curves are converted to within-storm temporal patterns of
rainfall intensity using

L(t’)z%{H(g)fH(/;A>} /' =A2A, .1, (A5)

where 1(¢) is the storm rainfall intensity over the period (¢ —
A, 1), A is the time step (1 hour used in the paper), and 0 <
! <t.

[64] Acknowledgments. This research was supported by the Austrian
Science Foundation (FWF), project P14478-TEC, and the Austrian Acad-
emy of Sciences, project HO 18. The first author acknowledges the
hospitality of Vienna University of Technology, where much of this work
was completed while on his study leave. CWR reference ED 1158 MS.

References

Alila, Y., and A. Mtiraoui (2002), Implications of heterogeneous flood-
frequency distributions on traditional stream-discharge prediction tech-
niques, Hydrol. Processes, 16(5), 1065—1084.

Beven, K. J. (1986), Runoff production and flood frequency in catchments
of order n: An alternative approach, in Scale Problems in Hydrology,
edited by V. K. Gupta, I. Rodriguez-Iturbe, and E. F. Wood, pp. 107—
131, Springer, New York.

Blazkova, S., and K. Beven (1997), Flood frequency prediction for data
limited catchments in the Czech Republic using a stochastic rainfall
model and TOPMODEL, J. Hydrol., 195, 256—-278.

Bloschl, G., and M. Sivapalan (1997), Process controls on regional flood
frequency: Coefficient of variation and basin scale, Water Resour. Res.,
33(12), 2967-2980.

Buishand, T. A., and G. R. Demaré (1990), Estimation of the annual max-
imum distribution from samples of maxima in separate seasons, Stochas-
tic Hydrol. Hydraul., 4, 89—103.

Chow, V. T., D. R. Maidment, and L. W. Mays (1988), Applied Hydrology,
McGraw-Hill, New York.

Eagleson, P. S. (1972), Dynamics of flood frequency, Water Resour. Res.,
8(4), 878—898.

Fiorentino, M., and V. Tacobellis (2001), New insights into the climatic and
geologic controls on the probability distribution of floods, Water Resour:
Res., 37(3), 721-730.

Franks, S. W., and G. Kuczera (2002), Flood frequency analysis: Evidence
and implications of secular climate variability, New South Wales, Water
Resour. Res., 38(5), 1062, doi:10.1029/2001 WR000232.

Godina, R., P. Lalk, P. Lorenz, G. Miiller, and V. Weilguni (2003), Die
Hochwasserereignisse im Jahr 2002 in Osterreich, Mitt. Hydrogr.
Dienstes Oesterreich, 82, 1-39.

Gottschalk, L., and R. Weingartner (1998), Distribution of peak flow de-
rived from a distribution of rainfall volume and runoff coefficient, and a
unit hydrograph, J. Hydrol., 208, 148—162.

Gutknecht, D., and A. Watzinger (1996), Aufbereitung und Basisanalyse
der Starkregendaten aus den Hydrographischen Jahrbiichern 1948—1993,
technical report, Inst. of Hydraul., Hydrol. and Water Resour. Manage.,
Vienna Univ. of Technol., Vienna.

Hirschboeck, K. K. (1987), Hydroclimatically-defined mixed distributions
in partial duration flood series, in Hydrologic Frequency Modeling, edi-
ted by V. P. Singh, pp. 199212, Springer, New York.

Hirschboeck, K. K. (1988), Flood hydroclimatology, in Flood Geomorphol-
ogy, edited by V. R. Baker, R. C. Kochel, and P. C. Patton, pp. 27-49,
John Wiley, Hoboken, N. J.

House, P. K., and K. K. Hirschboeck (1997), Hydroclimatological and
paleohydrological context of extreme winter flooding in Arizona,
1993, in Storm-Induced Geological Hazards: Case Histories From the
1992— 1993 Winter Storm in Southern California and Arizona, edited by
R. A. Larson and J. E. Slosson, Rev. Eng. Geol., XI, 1-24.

Huff, F. A. (1967), Time distribution of rainfall, Water Resour. Res., 3(4),
1007-1018.

lacobellis, V., P. Claps, and M. Fiorentino (2002), Climatic control on the
variability of flood distribution, Hydrol. Earth Syst. Sci., 6(2), 229—-237.

Jothityangkoon, C., and M. Sivapalan (2001), Temporal scales of rainfall-
runoff processes and spatial scaling of flood peaks: Space-time connec-
tion through catchment water balance, Adv. Water Resour., 24(9—10),
1015-1036.

16 of 17



W06012

Kottegoda, N. T., and R. Rosso (1997), Statistics, Probability and Reli-
ability for Civil and Environmental Engineers, 735 pp., McGraw-Hill,
New York.

Kundzewicz, Z. W. (2003), Extreme precipitation and floods in the chang-
ing world, in Water Resources Systems, edited by G. Bloschl et al., I[4HS
Publ., 281, 32-39.

Merz, R., and G. Bloschl (2003), A process typology of regional floods,
Water Resour. Res., 39(12), 1340, doi:10.1029/2002WR001952.

Merz, R., and G. Bloschl (2004), Regionalisation of catchment model
parameters, J. Hydrol., 287, 95—123.

Merz, R., U. Piock-Ellena, G. Bloschl, and D. Gutknecht (1999), Season-
ality of flood processes in Austria, in Hydrological Extremes: Under-
standing, Predicting, Mitigating, edited by L. Gottschalk et al., JAHS
Publ., 255, 273-278.

Merz, R., J. Parajka, C. Reszler, and G. Bloschl (2004), Analyse regionaler
Ereignisabflussbeiwerte in Osterreich, technical report, Inst. of Hydraul.,
Hydrol. and Water Resour. Manage., Vienna Univ. of Technol., Vienna.

Mood, A. M., F. A. Graybill, and D. C. Boes (1974), Introduction to
Statistical Theory, 3rd ed., McGraw-Hill, New York.

Ott, R. F., and R. K. Linsley (1972), Streamflow frequency using stochas-
tically generated hourly rainfall, in International Symposium on Uncer-
tainties in Hydrologic and Water Resources Systems, vol. 1, pp. 230—
244, Univ. of Ariz., Tucson.

Rahman, A., P. E. Weinmann, T. M.T. Hoang, and E. M. Laurenson (2002),
Monte Carlo simulation of flood frequency curves from rainfall, J. Hy-
drol., 256, 196-210.

Rasmussen, P. F., and D. Rosbjerg (1991), Prediction uncertainty in seasonal
partial duration series, Water Resour. Res., 27(11), 2875-2883.

Robinson, J. S., and M. Sivapalan (1997a), An investigation into the
physical causes of scaling and heterogeneity of regional flood frequency,
Water Resour. Res., 33(5), 1045—1059.

SIVAPALAN ET AL.: FLOOD FREQUENCY AND HYDROLOGIC SEASONALITY

W06012

Robinson, J. S., and M. Sivapalan (1997b), Temporal scales and hydrolo-
gical regimes: Implications for flood frequency scaling, Water Resour:
Res., 33(12), 2981-2999.

Sankarasubramanian, A., and U. Lall (2003), Flood quantiles in a changing
climate: Seasonal forecasts and causal relations, Water Resour. Res.,
39(5), 1134, doi:10.1029/2002WR001593.

Sivandran, G. (2002), Effect of rising water tables and climate change on
annual and monthly flood frequencies, B. Eng. thesis, Cent. for Water
Res., Univ. of West. Aust., Crawley, Australia.

Sivapalan, M., E. F. Wood, and K. Beven (1990), On hydrologic similarity:
3. A dimensionless flood frequency model using a generalized geomor-
phologic unit hydrograph and partial area runoff generation, Water Re-
sour. Res., 26(1), 43—-58.

Snorasson, A., H. P. Finnsdéttir, and M. E. Moss (Eds.) (2002), The Ex-
tremes of the Extremes: Extraordinary Floods, [AHS Publ., 271, 394 pp.

Stedinger, J. R., R. M. Vogel, and E. Foufoula-Georgiou (1992), Frequency
analysis of extreme events, in Handbook of Hydrology, chap. 18,
pp. 18.1-18.66, edited by D. R. Maidment, McGraw-Hill, New York.

Waylen, P. R., and M.-K. Woo (1982), Prediction of annual floods gener-
ated by mixed process, Water Resour. Res., 18(4), 1283—1286.

Wood, E. F. (1976), An analysis of the effects of parameter uncertainty in
deterministic hydrologic models, Water Resour. Res., 12(5), 925—-932.

G. Bloschl, D. Gutknecht, and R. Merz, Institute for Hydraulic and
Water Resources Engineering, Vienna University of Technology, Karlsplatz
13, A-1040 Vienna, Austria. (bloeschl@hydro.tuwien.ac.at)

M. Sivapalan, Centre for Water Research, Department of Environmental
Engineering, University of Western Australia, 35 Stirling Highway,
Crawley, WA 6009, Australia. (sivapalan@cwr.uwa.edu.au)

17 of 17



