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Abstract. In this study we examine the relative performance ally accomplished by hydrological regionalisation methods
of a range of methods for transposing catchment model pa¢Bloschl and Sivapalan, 1995). Numerous regionalisation
rameters to ungauged catchments. We calibrate 11 parameaethods have been proposed in the literature for the case of
ters of a semi-distributed conceptual rainfall-runoff model to catchment model parameters ¢Bthl, 2005). Among the
daily runoff and snow cover data of 320 Austrian catchmentsmost widely used techniques are regressions between the
in the period 1987-1997 and verify the model for the periodmodel parameters and physiographic catchment attributes.
1976-1986. We evaluate the predictive accuracy of the reTypically, linear multiple regressions are used where each
gionalisation methods by jack-knife cross-validation againstmodel parameter is estimated independently from the others
daily runoff and snow cover data. The results indicate that(e.g. Post and Jakeman, 1996, 1999; Sefton and Howarth,
two methods perform best. The first is a kriging approach1998). The regressions are not always straightforward to in-
where the model parameters are regionalised independenthkgrpret. In a comparative study of 331 catchments in Aus-
from each other based on their spatial correlation. The sectralia, Peel et al. (2000), for example, did not find the param-
ond is a similarity approach where the complete set of modekters of the SYMHID model significantly correlated to the
parameters is transposed from a donor catchment that is mosatchment attributes. Seibert (1999) related the model pa-
similar in terms of its physiographic attributes (mean catch-rameters of the HBV model to the attributes of 11 Swedish
ment elevation, stream network density, lake index, areal procatchments within the NOPEX area. Relationships between
portion of porous aquifers, land use, soils and geology). Follake percentage and soil parameters found by Seibert (1999)
the calibration period, the median Nash-Sutcliffe model effi- could not be explained by hydrologic reasoning while re-
ciencyME of daily runoff is 0.67 for both methods as com- lationships between forest percentage and snow parameters
pared toME=0.72 for the at-site simulations. For the veri- supported the process basis of the model. Similar conclu-
fication period, the corresponding efficiencies are 0.62 andsions were drawn by Kokkonen et al. (2003). They used
0.66. All regionalisation methods perform similar in terms the IHACRES model with 6 parameters and found that high
of simulating snow cover. significance of regressions does not guarantee a set of pa-
rameters with a good predictive power. Care must hence be
taken when interpreting the physical meaning of parameter-
descriptor relationships found by regressions.

The regression method is the most widely used regional-

Predicting hydrological variables in ungauged catchmentdSation technique but alternative methods are in use. Van-
has been singled out as one of the major issues in the hydéwiele and Elias (1995) examined two methods based on

drological sciences (Sivapalan et al., 2003). Predictions aréPatial proximity, the kriging method and the use of model
particularly difficult to make in alpine regions where data are Parameter values from a few neighbouring catchments in a

sparse and the spatial variability of the hydrological envi- Belgian case study. They found that the kriging approach
ronment is enormous. Transferring information from neigh- Provided a significantly better model performance than the

bouring catchments to the catchment of interest is generD@arest neighbour approach although the model performance
for some of the catchments was rather poor. The question

Correspondence tal. Parajka of whether or not homogeneous catchments tend to occur
(parajka@hydro.tuwien.ac.at) in close proximity to each other has been the subject of
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significant debate over the years. Shu and Burn (2003) sugtributes performed not as well as other methods but it was not
gested that geographically close catchments are not necessatear whether this was due to the catchment attributes being
ily homogeneous in terms of hydrological response. In theirpoor hydrological indicators at the regional scale or due to
case study in Great Britain, homogeneous spatial clusterproblems with the linearity assumption of the multiple linear
ing patterns of the regional flood frequency distribution wereregressions used. In this paper we hence examine alterna-
found within a 62.5 km radius from a local clustering centre. tive methods that use catchment attributes and are based on
Burn and Boorman (1993) assigned donor catchments basezimilarity measures.
on a similarity measure of physiographic catchment charac- This paper is organised as follows. We first provide a brief
teristics. In this method, the catchment characteristics arelescription of the dataset and give an overview of the hydro-
similar to those of the regression approach but the regionallogic model and the calibration procedure. In the following
isation model structure is different as no assumption of lin-section we describe the regionalisation approaches and the
earity is made. Also, the complete set of model parameters isnethodology used for cross-validation. We then present the
usually transposed from one or more donor catchments to theesults in terms of model performance of the different region-
catchment of interest in this approach, while in the regressioralisation methods and discuss the main findings of the paper.
case, the parameters are usually regionalised independently
from each other. Along similar lines, Campbell and Bates
(2001) used a regional link function to estimate the parame2 Data
ters of a quasi-distributed, non-linear flood event model for
39 watersheds in Australia with good accuracy. Fernandez ethis study was carried out in Austria using data from the
al. (2000) proposed a regional calibration approach that inperiod 1976-1997. Austria is flat or undulating in the east
volves a concurrent calibration of the model parameters ané@nd north, and alpine in the west and south. Elevations
the relationships between model parameters and catchmenange from 115ma.s.l. to 3797 ma.s.l.. Mean annual pre-
attributes at many sites in a region. This approach has ledipitation is less than 400 mm/year in the east and almost
to nearly perfect regional relationships between model pa-3000 mm/year in the west. Land use is mainly agricultural
rameters and catchment characteristics, however, these rel@ the lowlands and forest in the medium elevation ranges.
tionships did not improve the streamflow predictions at un-Alpine vegetation and rocks prevail in the highest catch-
gauged sites. A similar approach was applied in Btaéa et ~ ments. The dataset used in this study includes measure-
al. (2000) and Szolgay et al. (2003), where they intended tanents of daily precipitation and snow depths at 1091 sta-
find regionally valid parameters of a monthly water balancetions and daily air temperature at 212 climatic stations. To
model. They jointly calibrated a model using multiobjec- calibrate and verify a catchment model, daily runoff data
tive calibration, where the catchments were pooled togethefrom 320 gauged catchments were used with areas ranging
using cluster analysis of selected physiographic catchmenfrom 10kn? to 9770kn? and a median of 196 kfn 97 of
attributes. these catchments range in area between 10 and 1906
Merz and Bbschl (2004) examined the performance of catchments between 100 and 300kr64 catchments be-
various methods of regionalising the parameters of a contween 300 and 1000 kimand 55 catchments have areas of
ceptual catchment model in 308 Austrian catchments. Theynore than 1000 kf In preliminary analyses we carefully
concluded that the methods based on spatial proximity perscreened the runoff data for errors and removed all stations
formed better than those based on physiographic catchmentith significant anthropogenic effects. We also removed sta-
attributes. The present paper builds on their analysis and exions where we were not able to close the long term water
amines the relative performance of regionalisation methodsbalance. The spatial distribution of the climate stations and
The present paper goes beyond Merz anasBhl (2004) in  the boundaries of the gauged catchments are shown in Fig. 1.
three important aspects. The inputs to the water balance model were prepared in
First, Merz and Bbschl (2004) used a lumped catchment two steps. First, the daily values of precipitation, snow depth
model. In an alpine country such as Austria there may beand air temperature were spatially interpolated by methods
merits in allowing different model states in different eleva- that use elevation as auxiliary information. External drift
tions of the catchment to improve the overall predictive per-kriging was used for precipitation and snow depths, and the
formance. In this paper we hence subdivide each catchmereast-squares trend prediction method was used for air tem-
into elevation zones of 200 m. Second, even though Merz angheratures (Pebesma, 2001). The spatial distribution of poten-
Bloschl (2004) tested the robustness of model parameters itial evapotranspiration was estimated by a modified Blaney-
a comprehensive way, further gains in robustness may be obZriddle method (Parajka et al., 2003) using daily air tempera-
tained by a multi-objective calibration where response dataure and potential sunshine duration calculated by the Solei-
in addition to runoff are used. In this paper we hence use32 model (Mesards et al., 2002) that incorporates shading
both runoff data and snow cover data to calibrate and vali-by surrounding terrain. In a second step, a digital elevation
date the model. Third, Merz and @&lchl (2004) found that model with a 1 km grid resolution was used for deriv-
the regressions between model parameters and catchment atg 200 m elevation zones in each catchment. Time-series
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Table 1. Model parameters and a priori distributionsandv are

o Precipitation station [masl]

"\ Basin boundary 3600 the parameters of the Beta distribution (Eq. 8),and p,, are the
—  Austrian border . lower and upper bounds of the parameter space grsgk is the
— 2400 parameter value at which the Beta distribution is at a maximum
o0 (Ea. 6)
[ Parameter name Modelpart p;  pu u UV pmax
A SCF [-] Snow 10 15 12 40 103
DDF [mmPC day] Snow 00 50 20 40 125
LP/FC[-] Soil 00 10 40 12 0%
FC [mm] Soil 0.0 6000 11 15 1002

Fig. 1. Topography (ma.s.l.) of Austria and boundaries of the

gauged catchments used in this paper. The dots show the locations? [-] Soil 00 200 11 15 34
of stations with precipitation and snow depth measurements. Ko [days] Runoff 00 20 20 40 05
K1 [days] Runoff 20 300 20 40 90
Ko [days] Runoff 30.0 1800 105 1.05 105.0
of daily precipitation, air temperature, potential evaporation Cp [mm/day] Runoff 00 80 20 40 20
and snow depth were then extracted for each of the elevation C [days/mm] Runoff 00 500 105 1.05 250
P LSyz [mm] Runoff 10 1000 30 30 505

zones to be used in the water balance simulations.

For testing different regionalisation approaches, we de-
rived a range of physiographic catchment attributes. The
topographic attributes were catchment area, catchment av- o S
erage and coefficient of variation of topographic elevation,2nd melt temperaturéy,. Catch deficit of the precipitation
average and the coefficient of variation of topographic sloped@uges during snowfall is corrected by a snow correction fac-
and the minimum and maximum of the topographic wetnesd®f» SCF A threshold temperature intervalk —Ts 1S used .
index of Beven and Kirkby (1979). Stream network den- to distinguish between _ralnfall, snowfall and a mix of rain
sity was calculated from the digital stream network map at2nd snow. The soil moisture routine represents runoff gen-
the 1:50 000 scale for each catchment. The FARL (flood at-eration and changes in the soil moisture state of the catch-
tenuation by reservoirs and lakes) lake index was calculatedhentand involves three parameters: the maximum soil mois-
according to the Flood Estimation Handbook (1999). The at-{ure storage=C, a parameter representing the soil moisture
tributes related to precipitation were the catchment averag&taté above which evaporation is at its potential rate, termed
of long term mean annual precipitation, the average of thehe limit for potential evaporationP, and a parameter in
long term mean of maximum annual daily summer and Win_the.non—llnear function relating r_unoﬁ.generatlon to the soil
ter precipitation for which the record length ranged from 45 Moisture state, termed the non-linearity param@tétunoff
to 97 years as well as the long term mean of maximum annugfeuting on the hillslopes is represented by an upper and a
1 hourly rainfall intensity from shorter records. The bound- lower soil reservoir. Excess rainfall enters the upper zone
aries of porous aquifers were taken from the Hydrographicr€Servoir and Ieaves_th|s reservoir through three p_aths, out-
Yearbook (HZB, 2000) from which the areal proportion of flow from the reservoir based on a fast storage coeffidiant

porous aquifers in each catchment was estimated. Digitapercolation to the lower zone with a constant percolation rate
maps of land use (Ecker et al., 1995), regional soil typesCP: and, if a threshold of the storage staf; 7 is exceeded,

(based on the FAO map, s&BG, 2001) and the main ge- through an additional outlet based on a very fast storage coef-
ological formations (Geologische Bundesanstalt, 1998) werdicient Ko. Water leaves the lower zone based on a slow stor-

also used to derive the respective areal proportions in each9€ coefficieni. The outflow from both reservoirs is then
catchment. routed by a triangular transfer function representing runoff

routing in the streams, where the base of transfer function is
estimated with the scaling of the outflow by thg param-
3 Model structure and model calibration eter. The model concept is similar to that presented in Merz
and Bbschl (2004). The difference is that in this study we
The model used in this paper is a semi-distributed conceptuaiised a semi-distributed model structure of 200 m elevation
rainfall-runoff model, following the structure of the HBYV zones while the model of Merz and@ichl (2004) was spa-
model (Bergsidm, 1976 and Lindstm et al., 1997). The tially lumped.
model runs on a daily time step and consists of a snow rou- The model was run for all 320 gauged catchments in Aus-
tine, a soil moisture routine and a flow routing routine. The tria. Daily inputs (precipitation, air temperature and poten-
snow routine represents snow accumulation and melt by dial evapotranspiration) were allowed to vary with elevation
simple degree-day concept, using degree-day faoOF within a catchment, and the soil moisture accounting and
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snow accounting was performed independently in each elsnow cover simulationn(,,) to the total number of days in
evation zone. However, the same model parameters were athe simulation period:

sumed to apply to all elevation zones of a catchment. From ‘

a total of 14 model parameters, 3 parameters were preséfs = £ (5)
(Tgr=2°C, Ts=0°C, Ty=0°C) and 11 parameters (Table 1) "

were estimated by automatic model calibration. We usedThe third term,Zp , allows inclusion of an expert estimate
the shuffled complex evolution (SCE-UA) scheme of Duan about the a priori distribution of each parameter. In calibra-
et al. (1992) to calibrate the model parameters to observedion procedures, the parameter values are usually bounded
runoff and snow cover. The objective functiod{) used between two limits (Duan et al., 1992) and otherwise no a
in the calibration involves three parts which are related topriori assumptions are made about the parameters. This im-
runoff (Z), snow cover Zs) and a priori information about ~ plies that the a priori distribution of the parameters is a uni-
the distribution of each model parametéfp). Zc is the  form distribution. We believe that it is possible to make a

weighted mean of these parts: more informed guess about the shape of the a priori distribu-
tion of the model parameters and introduced a penalty func-
Zec=w1-Zg+wz-Zs+w3-Zp, (1)  tion, Zp, based on an a priori Beta distribution for each pa-
where the weights were obtained in test simulations asrameter.
w1=0.6, w»=0.1 andw3=0.3. These consisted of sensitivity K fmaxj — fj (P/—__Pl/>
analyses that showed that the model results were only modz , = Z P PJ (6)
erately sensitive to the choice of weights. j=1 Jmax j
The runoff objective functionZ, combines the Nash-
Sutcliffe coefficient ME) and the relative volume errovE): _ Pmax;j — Pl,j
Jmaxj = [j (f) )
Zo=(1— ME)+ws- VE, 2) Py = PLy
where wherep; is the model parametgr to be calibratedp; and

pu are the lower and upper bounds of the parameter space,

n 2 respectively,pmax is the parameter value corresponding to
El(Q"bsv" = QOsim.i) the mode of the a priori distribution aridis the number of
ME=1-—; > (3)  parameters to be calibrated. The probability density function
>~ (Qobs.i — Qobs) of the Beta distributiory is:
i=1
n n el v) = 2o )x“—1<1— X'
Z Qsim,i - Z Qobs,i u,v
VE = =L _ i=1 ‘ ) forO<x<1u>0v>0 (8)
Z Qobs,i with
i=1
1
Qsim,i is the simulated streamflow on day Qos,; is the  p,. v):/xu—l(l_x)v—ldx _Twre ©)
observed streamflowQ,,s is the average of the observed / '(u+v)

streamflow over the calibration (or verification) periodnof
days, and the weight4 was found from test simulations as  For all catchments we assigned the same values af the
ws=0.1. v, p; andp, as per Table 1 which has been taken from Merz
The snow objective functioZ g used observed and simu- and Bbschl (2004). If detailed information will be available
lated snow coverage. Observed snow coverage was estimatéfbr example from catchment attributes or from field studies),
from daily grid maps constructed from the observed snowthe limits and parameters of the Beta distributions for model
depth data. If the catchment zone average of snow depth wasarameters may be assigned differently from catchment to
greater than 0.5 mm than the zone was considered as snoeatchment.
covered, otherwise as snow free. Simulated snow coverage For the evaluation of the calibration and verification ef-
was derived from the snow water equivalent simulated by theficiencies the entire period of observation (1976-1997) was
model where a zone was considered snow covered if the wasplit into two 11 year periods: the verification period from
ter equivalent was greater than 0.1 mm, otherwise it was coni November 1976 to 31 December 1986 and the calibration
sidered snow free. Snow simulations on a particular day wergeriod from 1 November 1987 to 31 December 1997. Warm
considered to be poor if the absolute difference between simup periods from January to October were used in both cases.
ulated and observed snow coverage was greater than 50%ables 2 to 4 give the model performance of the 320 basins
of the catchment area. The snow objective functignwas  (first line “at-site”) for both the calibration and the verifica-
then defined as the ratio of the number of days with poortion periods. Figure 2 shows the model performance plotted
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Table 2. Model efficiency of runoff ME) according to Nash-Sutcliffe for gauged catchments (at-site) and ungauged catchments (various
regionalisation procedures) both for the calibration and the verification periods. First value: m&tidficiency. Second value: difference

of 75% and 25% quantiles of efficiencies, i.e. a measure of scatter. High model performances are associated with large medians and smal
scatter.

Group Method Calibration 1987-1997  Verification 1976—-1986
Local At site 0.72/0.13 0.66/0.20
Mean Global mean 0.61/0.21 0.56/0.25
Mean Local mean 0.64/0.18 0.60/0.23
Spatial proximity  Nearest neighbour 0.66/0.18 0.61/0.22
Spatial proximity  Inverse distance weighting 0.66/0.17 0.61/0.21
Spatial proximity  Kriging 0.67/0.16 0.62/0.20
Spatial proximity  Kriging without nested neighbours 0.66/0.16 0.61/0.22
Regression Global multiple regression 0.60/0.24 0.54/0.28
Regression Local multiple regression 0.62/0.19 0.58/0.25
Regression Local georegression 0.65/0.19 0.60/0.22
Similarity Topography 0.66/0.20 0.61/0.22
Similarity Geomorphology 0.64/0.19 0.58/0.24
Similarity Land use 0.65/0.21 0.61/0.25
Similarity Soils 0.64/0.21 0.59/0.24
Similarity Geology 0.64/0.20 0.61/0.23
Similarity Rainfall 0.62/0.21 0.57/0.25
Similarity Combination 0.67/0.17 0.61/0.21
Similarity Perfect 0.70/0.14 0.64/0.20

Table 3. Volume errors of runoff VE) for gauged catchments (at-site) and ungauged catchments (various regionalisation procedures) both
for the calibration and the verification periods. First value: mediaviEbfin %). Second value: difference of 75% and 25% quantilegof
(in %), i.e. a measure of scatter. High model performances are associated with MEdiase to 0 and small scatter.

Group Method Calibration 1987-1997  Verification 1976-1986
Local At site 0.3/7.4 —5.3/10.9
Arithmetic Mean  Global mean —1.3/24.6 —9.2/22.2
Arithmetic Mean  Local mean —2.2/20.0 —8.6/18.1
Spatial proximity  Nearest neighbour 2.8/18.1 -5.0/17.2
Spatial proximity  Inverse distance weighting —1.3/18.0 —8.5/16.1
Spatial proximity  Kriging 0.1/16.9 —-8.1/16.1
Spatial proximity  Kriging without nested neighbours 0.3/17.6 -8.2/17.1
Regression Global multiple regression 0.8/27.1 —7.2/25.5
Regression Local multiple regression 0.8/23.3 —7.3/22.4
Regression Local georegression 1.0/21.5 —6.9/21.2
Similarity Topography 1.4/18.5 —-6.3/17.1
Similarity Geomorphology 2.1/20.0 —5.4/20.9
Similarity Land use 1.5/18.1 —5.5/16.1
Similarity Soils 2.7/18.0 —4.1/17.8
Similarity Geology 2.3/18.0 —5.2/17.5
Similarity Rainfall 2.6/23.7 -5.9/22.1
Similarity Combination 1.8/20.0 —5.6/17.5
Similarity Perfect 1.9/9.9 —5.1/13.2

as cumulative distribution function€PFs). The model effi-  tion and verification periods is 0.72 and 0.66, respectively.
ciencyME of runoff is shown on the left, the volume erigE This means that the model performance decreases slightly
of runoff in the centre and the snow cover error on the right.when moving from calibration to verification. The median
The median ofME over the 320 catchments in the calibra- of VE in the calibration and verification periods is 0.3% and
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Table 4. Snow cover simulations errorg ) for gauged catchments (at-site) and ungauged catchments (various regionalisation procedures)
both for the calibration and the verification periods. First value: median of the percentage of days with poor snow cover simulations. Second
value: difference of 75% and 25% quantiles, i.e. a measure of scatter. High model performances are associated with small medians and sma

scatter.

Group Method Calibration 1987-1997  Verification 1976—-1986
Local At site 6.55/3.79 6.43/3.39
Mean Global mean 6.90/4.38 7.10/4.03
Mean Local mean 6.87/3.96 6.67/3.66
Spatial proximity  Nearest neighbour 6.72/3.74 6.63/3.34
Spatial proximity  Inverse distance weighting 6.77/4.13 6.60/3.39
Spatial proximity  Kriging 6.72/4.23 6.63/3.26
Spatial proximity  Kriging without nested neighbours 6.77/4.18 6.65/3.29
Regression Global multiple regression 6.97/3.94 6.90/3.86
Regression Local multiple regression 7.00/3.79 6.55/3.61
Regression Local georegression 6.97/3.89 6.77/3.29
Similarity Topography 6.63/3.71 6.40/3.04
Similarity Geomorphology 6.65/3.89 6.40/3.19
Similarity Land use 6.60/3.79 6.38/3.36
Similarity Soils 6.70/3.76 6.67/3.21
Similarity Geology 6.95/4.11 6.60/3.41
Similarity Rainfall 6.80/4.18 6.80/3.31
Similarity Combination 6.65/3.81 6.48/3.11
Similarity Perfect 6.55/3.99 6.43/3.54
0.9 30 15
08— ///// 204 — Calibration 1o — calibration
0.74 IR -+ —— Verification _ —— Verification
—~o06d- )/[’// - g ol
0.6+ i > E
u Y 5
20.5———/—— i 2
0.4 [/ S Galibration | N
0.3 —-tmiendd T Verification
0.2 T T T -30 T T T 0 ; ‘ ‘ ; ‘ T
0 100 200 300 0 100 200 300 0 100 200 300
Basins Basins Basins

Fig. 2. At-site calibration and verification performances: Cumulative distribution functioBs-] of the model efficiencies of daily runoff
(ME, left), volume errors of runoff({E, centre) and percentage of days with poor snow cover simulatibngight). 320 basins, calibration
(1987-1997) and verification (1976-1986) periods.

—5.3%, indicating that the calibration is essentially unbiasedrespectively, which indicates that the model performance re-
while the verification period does exhibit a small underes-mains essentially the same.

timation of runoff. The small underestimation of runoff is o I th itud £ th del effici .
related to generally different (drier) climatic conditions ob- simi;;errf(l) ’resuelt;nf?ggl gthzsr r(;giorelzes'mgiees peuk;(l:ilsehngtljeii fr‘]r:
served in verification period 1976-1986. The scatter of the’ . )

ved in verrication perl literature (e.g. Seibert, 1999; Perrin et al., 2001). The runoff

volume error (75%—25% quantile, Table 3) increases some-
what from 7 to 11% which translates into a slightly SteeperperformancesME andVE) are somewhat better than those
CDF in Fig. 2 (centre panel) for the case of the verification n Merz gnd'BbschI (.2004) even though we useq snow data
period. The median of the snow performance meagiie in the objective function, which was not the case in Merz and

in the calibration and verification periods is 6.5% and 6.4%,BIOSChI (2004)_' Th_e d|fferenc¢s_ are 0.03 'C?”d 0.05in tefms of
ME for the calibration and verification periods, respectively.
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CALIBRATION 1987-97 VERIFICATION 1976-8

Fig. 3. At-site calibration and verification performances: Model efficiencies of daily ruhif, top), volume errors of runoff\(E, centre)
and percentage of days with poor snow cover simulati@iys bottom). 320 basins, calibration (1987-1997) and verification (1976—1986)
periods.

This indicates that the model has been reliably calibrated tanean of all 320 calibrated values in Austria (termed “global

the data set. mean”) or, alternatively, as the arithmetic mean of a re-
The spatial patterns of the model performances are pregion within a radius of 50 km from the catchment of inter-
sented in Fig. 3. The runoff efficienci®$E and runoff vol-  est (termed “local mean”). This group of methods assumes

ume errorsVE are shown at the top and the centre, respec-that all catchments within the selected radius are similar and
tively, the snow cover errorg€s are shown at the bottom. differences in the parameter values arise only from random
The left column relates to the calibration period and the rightfactors.

column to the verification period. Figure 3 indicates that

S : : . The second group of regionalisation methods is based on
there are significant regional differences in the model per- : > o
. . .~ the spatial proximity (or spatial distance) between the catch-
formance. In the western, alpine parts of Austria the sim-

. L . ment of interest and the gauged catchments. The spatial
ulation of runoff is significantly better than in the eastern . .
: istance between two catchments was measured by the dis-
lowlands. The alpine catchments are wetter and snowmel . .
ance of the respective catchment centroids. The methods

is more important than in the catchments of the east. It APt this group were the nearest neighbour method where the

pears that large runoff depths and the presence of snow packs
. ) complete set of model parameters was taken from one donor
are amenable to accurate runoff simulations.

catchment; the inverse distance weighting where parameters
from a number of donor catchments were combined; and the
4 Regionalisation methods ordinary kriging method. The ordinary kriging method was
based on an exponential variogram with a nugget of 10% of
We explored four groups of regionalisation methods. In thethe observed variance, a sill equal to the variance, and arange
first group, we selected each parameter as the arithmetiof 60 km. This is consistent with the empirical variograms of
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Fig. 4. Performance of the spatial averaging group of regionalisation methods: Cumulative distribution funcdfsof the model
efficiencies of daily runoff ME, left), volume errors of runoff(E, centre) and percentage of days with poor snow cover simulations (
right). 320 basins, calibration (top) and verification (bottom) periods.

most of the calibrated model parameters. To complement thand avoid multicollinearity, we examined the variance infla-
ordinary kriging method, we also examined ordinary kriging tion factor (Hirsch et al., 1992). If the inflation factor was
where we left out the immediate upstream and downstreangreater than 10, then this set of three attributes was rejected
neighbours to assess the effect of nested catchments. Wnd the scheme proceeded to the second best correlation. The
termed this method kriging without nested neighbours. rationale of this choice is that a large correlation coefficient

In the third group we estimated each model parameter inM@y be a good indicator of the predictive power of the at-

dependently from regressions to catchment attributes. W&fiPutes provided there is no collinearity.
tested global multiple linear regression, where we included The fourth group of methods is also based on catchment

all 320 catchments; local multiple linear regression within gattributes but uses a different regionalisation model struc-

50km search radius; and local georegression where we infureé. The main idea of this group is to find a donor catch-
terpolated the residuals of the local multiple regression byment that is most similar in terms of its catchment attributes,
ordinary kriging using an exponential semivariogram with and to transpose the complete parameter set to the catch-
50 km range. In all cases we estimated the regression coefffeént of interest. Leaving the combination of model param-
cients by the ordinary least squares method. The number oft€rs unchanged may address some of the problems encoun-
catchments included in the local multiple regression and th¢€red with the regression approach (Merz anghl, 2004).
georegression differed regionally. For a 50 km search radiud € donor catchment was selected as the gauged catchment
as used here it ranged between 5 and 66 catchments, witiith the smallest similarity indesb (e.g. Burn and Boorman,

an average of 31 catchments. Out of the selected catchmer93):
attributes we only used the set of those three attributes that ' G U
were associated with the largest multiple correlation coeffi- 4, _ 3 X7 - x/|

= 10
cient for each station and each model parameter. To diagnose = AX; (10)
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which is defined as the sum of absolute differences okthe ized by its range similar to Eq. (10). This is a diagnostic case

selected physiographic attributes of the gaugel ) catch-
ment and the (ungauged) catchment of interg&t), nor-
malized by its rangeA X). We examined the following com-

which probes the potential of the catchment model perfor-
mance that can be achieved with an ideal donor catchment
selection. In this study it helps assess the criteria for select-

binations of catchment attributes: combinations based on toing the catchment attributes used for finding the donor catch-
pography (average catchment elevation, slope, topographiment. In a practical application this is not a viable method as
index); geomorphology (average stream network densitythe model parameters are of course unknown at the ungauged

FARL index and areal proportion of porous aquifers); land site of interest. Note that all similarity index based regional-

use classes; soils classes; geology classes; rainfall (long-terisation methods as well as the geo-regression have not been

mean annual precipitation, maximum daily summer and win-used in Merz and Bischl (2004) while the other regionalisa-
ter precipitation, 1 hourly rainfall intensity); and an a priori tion methods have also been examined in Merz arid@il

defined combination of selected attributes (mean catchmen{2004).

elevation, stream network density, FARL index and areal
proportion of porous aquifers, land use, soils and geologigion approaches by jack-knife cross-validation. In this ap-

We examined the predictive accuracy of the regionalisa-

units). We also tested a diagnostic case termed “perfect’proach, we treated one gauged catchment as ungauged and
For the perfect similarity case we transposed the complet&jmulated the water balance dynamics using parameters es-

parameter set from the donor catchment that was most Sil'ﬂjmated from regiona] information 0n|y_ In a second step,

ilar to the catchment of interest in terms of the model pa-we estimated the model performance by comparing the sim-
rameter values. The Slml'arlty was defined by the sum of thQﬂated and observed hydrographs as well as the simulated

absolute differences between the parameter values, normagnd observed snow cover. This comparison gavielESVE
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Fig. 6. Performance of the multiple regression group of regionalisation methods: Cumulative distribution fun€idf)sof the model
efficiencies of daily runoff MIE, left), volume errors of runoff\(E, centre) and percentage of days with poor snow cover simulatiofns (
right). 320 basins, calibration (top) and verification (bottom) periods.

andZs model efficiencies. We repeated the analysis for eacltlose to 0 with a small scatter and tdg snow cover errors
catchment in turn and calculated the statistics of these erroshould be small.
measures for all catchments. The comparison of these er-
ror measures with those for the locally calibrated case (here Figure 4 shows the performance of the group of methods
termed “at site”), both for the calibration and verification Pased on spatial averaging. The left panels showMEe
periods, indicates what decrease of model performance ong!noff efficiencies, the centre panels show Wterunoff vol-
would have to expect when moving from gauged to ungaugedime errors and the right panels show thg snow cover
catchments. This decrease we term the spatial loss in mod&rors. The top panels relate to the calibration period and
accuracy. The decrease in model performance when movinge bottom panels to the verification period. Figure 4 indi-
from the calibration period to the verification period we term cates that the global mean method (red line) provides rather
the temporal loss in model accuracy. poor runoff simulations as compared to the at-site simula-
tions (blue line). The median runoff efficiencies for the
global mean method case avE=0.61 (calibration period)
as compared tME=0.72 for the at site case (Table 2) and the
5 Performance of regionalisation methods scatter of the volume errors is much larger (24.6 as compared
to 7.4%, Table 3). Itis clearly very important to account for
The performance of the regionalisation methods is presentedifferences between catchments, and using the same param-
in terms of their cumulative distribution functionGIDFs) in eter set for the entire study region is inappropriate for runoff
Figs. 4 to 8 and the median and quantile statistics in Tables 2nodelling. Using the local mean method slightly improves
3 and 4. For a favourable model performance Ntte runoff the efficiencies over the global mealME=0.64) although
efficiencies should be large, tME volume errors should be the difference is not large. It is interesting that the model
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performance in terms of snow cover only decreases slightlyimportant similarities of model parameters across catchment
when moving from the at-site case to the global mean methodoundaries.

case (Table 4).

The CDFs of model performances obtained from the

Figure 6 shows the results for the multiple regression
methods. In this group of methods, the local methods (local

re-

gionalisation methods based on spatial proximity are pIottec{egreSSIon and georegression) perform better than the global

in Fig. 5. The methods only differ very slightly in terms
their runoff performance. The medidtE runoff efficiency
(Table 2) in the case of kriging iISIE=0.67 in the calibra

tion period and 0.62 in the verification period. The at-site
efficiencies aréME=0.72 and 0.66 which means that the spa-

of

method (global regression). This suggests that it is indeed

useful to account for regional differences in the regression

equations. The local georegression performs somewhat bet-
ter than the local regression (eldE=0.65 as compared to
0.62 for the calibration period) which suggests that the spatial

tial and temporal losses are both about 0.05. The scatter Oqorrelation of mode| parameters can enhance the estimates

the VE runoff volume error is similar for all spatial proxim-
ity methods (about 17% in both periods), which is certainly  The similarity approach provides an alternative method of

over only using regressions with catchment attributes.

larger than the scatter of the at-site simulations (7 and 11%using catchment attributes and the results are shown in Fig. 7.

in the calibration and verification periods, Table 3). The per-The best model performance in termsui runoff efficiency
formance of kriging and kriging without nested neighbours is provided by the combination similarity measure. The spa-
is similar which indicates that the favourable performance oftial losses are very similar to the kriging approach (0.72—
kriging is not only a result of the same portion of the land- 0.67=0.05 in the calibration and 0.66—0.61=0.05 in the veri-
scape draining into nested catchments. There appear to exifitation periods). The runoff volume erroME, are slightly
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Fig. 8. Summary of the performance of the best regionalisation methods of each group: Cumulative distribution fuG&iensf(the
model efficiencies of daily runoffME, left), volume errors of runoff(E, centre) and percentage of days with poor snow cover simulations
(Zs, right). 320 basins, calibration (top) and verification (bottom) periods.

larger than for other similarity methods although the differ- for the best regionalisation method (Table 3). This indicates
ence is not large (e.g. 18% scatter for the land use similarthat there is indeed potential for improving the criteria for
ity measure as compared to 20% scatter for the combinatiofinding donor catchments. For the snow cover eréyshere
similarity measure, both for the calibration period). Again, is, however, very little difference.

the snow performancess are very similar for all the meth- ~ The summary of the best regionalisation methods from
ods. Itis interesting to examine the geographical distancegach group is presented in Fig. 8. The methods are the local
between the donor catchments and the catchments of intereshean method, kriging, local georegression, and the combi-
The median distance was similar for all similarity measuresnation similarity index approach. The differences between
and was in the order of 10 km. This suggests that there is sigthe methods are not large but they do exist. M runoff
nificant similarity in the physiographic factors over relatively efficiency shows very little difference for efficiencies of, say,
short distances, which may be one of the reasons for the spavilE>0.7 but for catchments where the simulated daily runoff
tial proximity methods to perform well. The case of the “per- fitted poorly to observed values the differences are larger
fect” similarity index illustrates the model performance when with kriging and the combination similarity index perform-

a donor catchment with the most similar model parameters isng best. The/E runoff volume errors exhibit the most no-
applied in the water balance simulations. The spatial loss oticeable scatter around the at-site calibration, but it is not pos-
ME runoff efficiency is only 0.02 for both the calibration and sible to ascertain from th€DFs which regionalisation ap-
verification periods which is less than half of the spatial lossproach produces the smallest scatter. The biases are smallest
of the best regionalisation methods (0.05 in case of both theor the combination similarity method (red line in Fig. 8), at
combination similarity measure and ordinary kriging). The |east for the verification period. As indicated in the previous
scatter in the volume errors is only 10% as compared to 17%igures, the differences between the regionalisation methods
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CALIBRATION 1987-97 VERIFICATION 1976-86

Fig. 9. Performance of the kriging regionalisation method: Model efficiencies of daily rukiif {op), volume errors of runoff\(E, centre)
and percentage of days with poor snow cover simulati@iys bottom). 320 basins, calibration (1987-1997) and verification (1976-1986)
periods.

are very small in terms of snow performance. For catchments The spatial patterns of th&E runoff volume errors

with rather poor snow simulation&§ >9%, e.g.) the com- (Fig. 9), again, exhibit larger scatter than those of the at-

bination similarity index performs slightly better than other site case (Fig. 3). This is consistent with the larger scatter

regionalisation approaches. (75%—25% quantiles) indicated in Table 3 and the steeper
To examine whether there are spatial patterns in the perCDF shown in Fig. 5. The difference is particularly large in

formance of the regionalisation methods Fig. 9 shows thethe high alpine parts of Austria, which is consistent with the

calibration and verification performances for the case of thearge scatter iME as shown in the top panels of Fig. 9. The

kriging regionalisation method. The regional patterns of theregional snow cover errors also show somewhat larger scat-

ME runoff efficiencies (Fig. 9 top) are indeed very similar to ter in the regionalised case as compared to the at-site simula-

those of the at-site calibration and verification (Fig. 3 top). tions.

There appears to exist, however, more spatial scatter, which

is mainly due to a number of small catchments in the central

alpine parts of Austria, where the regionalisation performed6 Discussion and conclusions

poorer. While the median spatial loss in model performance

over all catchments was 0.05 in the calibration period it isThe results indicate that two regionalisation methods per-

larger for catchments with areas of less than 108 kabout ~ form best. The first is a kriging approach where the model

0.09). This indicates that in small catchments the peculiari-parameters are regionalised independently from each other

ties in runoff forming conditions are more difficult to capture based on their spatial correlation. The second is a similar-

than in larger catchments where always some sort of averagty approach where the complete set of model parameters is

ing takes place. transposed from a donor catchment that is most similar in
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terms of its physiographic attributes (mean catchment eleto 0.79 when moving from calibrated parameters to region-
vation, stream network density, lake index, areal proportionalised parameters for the same set of 11 catchments, but a
of porous aquifers, land use, soils and geology). The firstdecrease to 0.67 for a separate set of 7 catchments. Beldring
result is consistent with Merz and &lchl (2004) who indi- et al. (2002) found medialE of 0.68 for both a set of 141
cated that spatial proximity may be a better similarity mea-gauged catchments and a set of 43 catchments treated as un-
sure for transposing catchment model parameters in spacgauged although for 20% of the catchments belonging to the
than physiographic catchment attributes. We improved thesecond set the efficiencies were less than 0.3. As compared
model structure over that used in Merz and&ihl (2004) to Merz and Bdschl (2004), théME model performances in-
by allowing for elevation zones and we enhanced the pa<creased by between 0.07 and 0.10 depending on the region-
rameter estimation by using snow data in addition to runoffalisation method. This is mainly due to the improved model
but the finding of the favourable performance of kriging re- structure of allowing for elevation zones. However, the un-
mains the same. Similar to Merz anddBthl (2004), there certainty is still large. As pointed out by &chl (2005), site
is only a slight decrease in model performance when leavvisits involving a field assessment of catchment behaviour
ing out the immediate (nested) neighbours in the regionali-may assist in improving the model performance beyond what
sations. This suggests that the favourable performance is natan be realistically achieved from catchment attributes that
only a result of the same portion of the landscape drainingare available at the regional scale.
into nested catchments. There appear to exist important sim- The comparisons of the regionalisation methods indicated
ilarities of model parameters across catchment boundaries. that the overall snow performance is almost insensitive to
is likely that these similarities are related to real hydrologi- the choice of method. Detailed analysis of snow model ef-
cal controls that vary smoothly in space. For a number officiency in particular catchments revealed three aspects that
catchments the regionalisation does perform poorly with ef-affect the similar snow model performance. First finding is
ficiencies one would not use in practical applications. This isthat in many catchments there are differences in snow simu-
particularly the case in the high alpine areas where the spatidation performed by different regionalisation approaches, but
hydrologic variability is particularly large. Also, in some low overall snow performance measure (median over 320 catch-
land catchments the runoff model does not seem to represembent) does not make a distinction between them. Next ob-
the runoff dynamics very well. Vandewiele and Elias (1995) vious issue is that out of the 11 calibrated model parameters
have pointed to similar issues, which they traced back to bottit is only the degree day factor and the snow correction fac-
spatial hydrologic variability and poor data quality. tor that will affect snow simulations. The three other snow
The second result of the favourable performance of themodel parameters were preset. However, the lack of sensitiv-
similarity approach using physiographic catchment attributesty may also be related to the snow data and the spatial snow
is interesting in the light of the relatively poor performance interpolation. In this study, point snow depth measurements
of the regression approach found both in Merz andsBhl have been spatially interpolated and the point data may not
(2004) and in this paper. One of the advantages of the simbe very representative of the catchment snow cover. One pos-
ilarity approach may be that the complete set of model pasibility of improving the spatial representativeness is the use
rameters is transposed from a donor catchment. This is conef satellite snow cover data (e.g. Grayson et al., 2002) which
sistent with the findings of Kokkonen et al. (2003, p. 2219), will be pursued in further research.
who concluded that “when there is a reason to believe that, Another interesting issue for further research is to test the
in the sense of hydrological behaviour, a gauged catchmentnodel performance if more data sets are left out in order to
resembles the ungauged catchment, then it may be worthverify the predictive accuracy of different regionalisation ap-
while to adopt the entire set of calibrated parameters fromproaches. This would provide some indication of how the re-
the gauged catchment instead of deriving quantitative relagionalisation approach would work for regions with smaller
tionships between catchment descriptors and model parandatasets. For the greater discrimination between different re-
eters”. The other advantage of the similarity approach ovemionalisation methods we plan to apply additional measures
the regression method as used in this paper is that it does natf model performance such as the statistics of annual and
make the assumption of linearity. The main reason of usingseasonal daily peak or low flows, snow similarity measures
linear regression models is that of convenience although théased on patterns comparison etc.
underlying hydrological relationships are unlikely linear in _ _
nature. In our study, we tested various combinations of simi-éﬁt;ovgﬁrl%vesmﬁ)mgfh‘:h:“é:‘:;e";’ﬁ“gor':]krfmt:it;hs::)l;r:‘gm'\galr_'&
larity indices. The favourable performance of the dlagnostchAN POTENTIAL under confract number HPME-CT-2002-

index termed “perfect” suggests that there still exists poten—01872, and the Austrian Academy of Sciences, proj€ati8, for

tial for improving th? reglon.allsatlon methods by identifying financial support. We would also like to thank the Austrian Hydro-
more relevant physiographic controls. graphic Service (HZB) for providing the hydrographic data. We are

Overall, the model performance is similar to that of other grateful also to the two reviewers, M. Pfaundler and J. Szolgay, and
regionalisation studies in the literature. Seibert (1999) re-to the editor, P. Molnar, for their thoughtful comments and sugges-
ported of a median loss iME runoff efficiency from 0.81 tions.
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