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Abstract

We examine the predictive performance of various flood regionalisation methods for the ungauged catchment case, based on

a jack-knifing comparison of locally estimated and regionalised flood quantiles for 575 Austrian catchments, 122 of which have

a record length of 40 years or more. The main result is that spatial proximity is a significantly better predictor of regional flood

frequencies than are catchment attributes. A method that combines spatial proximity and catchment attributes yields the best

predictive performance. This is a novel method proposed in this paper which is based on kriging and takes differences in the

length of the flood records into account. It is shown that short flood records contain valuable information which can be exploited

by the proposed method. A method that uses only spatial proximity performs second best. The methods that only use catchment

attributes perform significantly poorer than those based on spatial proximity. These are a variant of the Region Of Influence

(ROI) approach, applied in an automatic mode, and multiple regressions. It is suggested that better predictive variables and

similarity measures need to be found to make these methods more useful. A stratified analysis suggests that in wet catchments

all regionalisation methods perform better than they do in dry catchments.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Flood peak estimates associated with a given

exceedance probability or return period are needed

for many engineering problems. As flood estimates

are often required for catchments without streamflow

measurements, they are usually obtained by some sort

of regional transposition, or regionalisation, from

gauged catchments to the site of interest (Cunnane,
0022-1694/$ - see front matter q 2004 Elsevier B.V. All rights reserved.
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1988; Bobée and Rasmussen, 1995; Hosking and

Wallis, 1997). There are three main issues in

regionalisation: what information is best transferred,

what is the method to be used and from which

catchments is the information to be taken for deriving

the estimates at the site of interest. The choice of

catchments from which information is to be trans-

ferred is usually based on some sort of similarity

measure, i.e. one tends to choose those catchments

that are most similar to the site of interest. The

traditional measure of similarity is spatial proximity

with the rationale that catchments that are close to
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each other will also behave similarly in terms of their

flood frequency response as climate and catchment

conditions will only vary smoothly in space. In the

classical Index flood approach (Dalrymple, 1960) the

domain is subdivided into regions and within each

region the flood frequency response is assumed to be

similar apart from a scaling factor, the index flood.

There are alternative methods that use spatial

proximity. One of them is based on geostatistical

concepts (Merz and Blöschl, 1999; Merz et al.,

2000a). The advantage of the geostatistical approach

is that it provides a best linear unbiased estimator, but

the disadvantage is that the spatial structure imposed

by weather divides and geologic divides is more

difficult to exploit than in the Index flood approach.

The analysis of observed flood frequency beha-

viour often reveals small scale variability but

catchments that are far apart may still be hydro-

logically similar (e.g. Pilgrim, 1983), so alternative

measures of similarity have been proposed. These

measures are often based on catchment attributes.

Streamflow is not used in these similarity measures

to make them applicable to the ungauged catchment

case. The catchment attributes are thought of as

surrogates of the hydrological processes within a

catchment. The rationale of this approach is that

catchments with similar attributes are also likely to

exhibit similar flood generation processes and hence

may also behave similarly in terms of their flood

frequency response (Acreman and Sinclair, 1986).

Catchment attributes include catchment size, land-

use, geology, elevation, soil characteristics as well

as climate variables such as mean annual precipi-

tation. The catchment attributes can be used in

various ways. These include multiple regressions

between flood quantiles (or flood moments) and

catchment attributes (Tasker, 1987), and the pooling

of catchments into a homogeneous group and the

subsequent use of averages within each pooling

group (IH, 1999). The latter approach is also known

as the Region Of Influence (ROI) approach (Burn,

1990; Pfaundler, 2001) where each site has its own

pooling group which is determined by the similarity

of catchment attributes.

While each of these two genres of approaches, i.e.

those based on spatial proximity and those based on

catchment attributes, have their defendable rationales,

we are unaware of any comprehensive comparison of
these two general approaches in terms of their

predictive power. For any practical application, the

interest resides in how well flood quantiles, such as

the 100-year flood, can be estimated for a given

catchment. The aim of this paper therefore is to

compare the predictive performance of various flood

regionalisation methods pertaining to one of the two

groups, as well as combinations thereof. We focus on

the ungauged catchment case for which flood

frequency regionalisation is particularly difficult. We

use a comprehensive data set of small to medium

sized catchments in Austria, where the flood regime is

not or only slightly modified by anthropogenic effects.

The main strategy to assess the predictive perform-

ance is a jack-knifing approach where, in a first step,

flood frequencies are estimated for gauged catchments

from regional information without using local flood

information and, in the second step, these regional

estimates are compared to the local flood frequency

estimates. This jack-knifing comparison then gives us

a reliable measure of how well each of the methods

performs for the ungauged catchment case. Some of

the flood frequency regionalisation methods used in

practice use expert knowledge, for example in the

decision which catchments to pool into a homo-

geneous group. While it is clear that local expert

knowledge will always be valuable, in this paper we

have chosen to use an objective, reproducible

comparison that is solely based on the hard data

available in the data set.

As a representative of the genre of approaches that

are based on spatial proximity we have chosen

kriging, for which we propose an extension that

exploits information on record lengths. As represen-

tatives of the genre of approaches that are based on

catchment attributes, we have chosen multiple

regressions between flood peak moments and catch-

ment attributes as well as a variant of the Region Of

Influence (ROI) approach. As combined approaches

that use both proximity and catchment attributes we

have chosen external drift kriging, georegression, and

another variant of the ROI approach. In addition to the

main comparisons between the methods, we analyse

possible controls on the relative predictive perform-

ance of the methods. These include the presence of

nested catchments, record length, parameter

estimation method, and climate (wet vs. dry

catchments).
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2. Data

The catchments used in this paper are all located in

Austria. The physiography ranges from the lowlands

in the east of the country, with mean catchment

elevations of less than 200 m a.s.l., up to the high

alpine catchments in the west of the country with

mean catchment elevations of more than 2500 m a.s.l..

Mean annual precipitation ranges from less than

400 mm/year in the east to more than 3000 mm/year

in the west, where orographic effects tend to enhance

precipitation. The topography of Austria and the

boundaries of the gauged catchments are shown

in Fig. 1.

The analyses in this paper use (a) observed

maximum annual flood peaks of catchments ranging

in area from 10 to 1000 km2, (b) the coordinates of the

centroids of these catchments, and (c) catchment

attributes. In a first step, the maximum annual flood

peaks were screened for data errors, and stations

affected by reservoir operation and other anthropo-

genic effects were removed from the data set (Blöschl

et al., 2000). This screening resulted in flood series for

575 catchments with observation periods from 5 to 44

years. To reduce the effect catchment area may have

on the regional patterns of flood frequency, the

specific flood discharges were standardised to specific
Fig. 1. Topography (m a.s.l.) of Austria and boundari
discharges of a hypothetical catchment area of

100 km2 according to

Q Z QAA0:25100K0:25 (1)

where Q is the specific discharge for a hypothetical

100 km2 catchment and QA is the observed specific

discharge of a catchment of area A (km2). The

exponent of K0.25 was found by a regression analysis

between observed mean annual floods and catchment

area for the Austrian catchments. The coordinates of

the centroids of the 575 catchments were derived from

digital catchment boundaries. Two data sets were

used. Most of the catchment boundaries were taken

from a digital database of catchment boundaries

digitised from the Austrian 1:50000 scale map (ÖK

50) (Behr et al., 1998). The remaining boundaries

were derived from a digital elevation model (Rieger,

1999). All catchment boundaries were checked

manually using the ÖK 50, so the coordinates of the

centroids should be subject to minimum error. A

number of catchment attributes were used. Average

catchment elevation and average topographic slope

were derived from the digital elevation model. Mean

annual precipitation (MAP) and mean maximum

annual daily precipitation (MADP) (i.e. the long

term mean of the series) were spatially interpolated

using observed precipitation from more than 1000
es of the gauged catchments used in this paper.
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raingauges with record lengths between 45 and 97

years. Catchment average values were then found by

integration within each catchment boundary. River

network density was calculated from the digital river

network map at the 1:50000 scale (Behr et al., 1998)

for each catchment. The boundaries of porous aquifers

were taken from the Hydrographic Yearbook (HZB,

2000), and by combining them with the catchment

boundaries the areal portion of porous aquifers in each

catchment was estimated. The FARL (flood attenu-

ation by reservoirs and lakes) lake index was

calculated according to IH (1999, pp. 5/19–27).

Digital maps of land use (Ecker et al., 1995), regional

soil types (based on the FAO map, see ÖBG, 2001)

and the main geological formations (Geologische

Bundesanstalt, 1998) were also used. These digital

maps were combined with the catchment boundaries

to derive areal portions of each land use type, soil

type, and geological unit.
3. Methods
3.1. Flood moments

For all regionalisation methods we used the first

three moments of the annual flood peak series,

specifically the first three product moments (mean

annual flood (MAF), coefficient of variation (CV) and

coefficient of skewness (CS))

MAF Z
1

m

Xm

jZ1

Qj;

S2 Z
1

m K1

Xm

jZ1

ðQj KMAFÞ2;

CV Z
S

MAF
;

CS Z
m,
Pm

jZ1ðQj KMAFÞ3

ðm K1Þðm K2ÞS3

(2)

where Qj is the specific flood discharge of a

hypothetical 100 km2 catchment of year j, m is the

number of years in the flood sample. The first three

L-moments (l1,l2,l3) were calculated according to
Hosking and Wallis (1997, p. 26)

bk Z
1

m

m K1

k

 !K1 Xm

jZkC1

j K1

k

 !
Qj:m;

l1 Z b0; l2 Z 2b1 Kb0;

l3 Z 6b2 K6b1 Cb0

(3)

where Qj:m is rank j of the ordered sample Q1:m %
Q2:m %/%Qm:m: The flood peaks have all been

standardised to a catchment area of 100 km2 but this

standardisation (Eq. (1)) will only change the first

product moment (Eq. (2)) and the L-moments (Eq.

(3)) as the second and third product moments are

dimensionless. In all the regionalisation methods we

used the logarithms of the mean annual flood and l1,

i.e. ZZlog(MAF) and ZZlog(l1), to reduce skew-

ness, while we introduced the other moments without

transformation.
3.2. Geostatistics (Kriging)

In the regionalisation approach based on kriging, we

interpolated each moment independently by Ordinary

Kriging In Ordinary Kriging the estimated value Ẑðx0Þ

of a moment is a weighted linear combination of the

moments of n gauged catchments Zi

Ẑðx0Þ Z
Xn

iZ1

liZi (4)

The weights li are determined such as to minimize

the estimation variance, while ensuring the unbiased-

ness of the estimator which leads to a system of linear

equations called the kriging system. The only infor-

mation of hydrological similarity required in the

kriging system are the semivariogram values for

different lags.

The moments of the flood peak series for each

catchment are associated with some uncertainty or

estimation error due to a relatively short sample size.

This estimation error decreases with the size of the

sample (number of years of the flood record) and

increases with the order of the moment. The first

moment (the mean) can be estimated from a flood

peak record with relatively little error while the third

moment (the skewness) is always associated with

substantial error. We propose in this paper that this



Fig. 2. Error variance due to short record lengths for three product

moments estimated by a Monte Carlo analysis, as a function of

record length.

R. Merz, G. Blöschl / Journal of Hydrology 302 (2005) 283–306 287
local estimation error can be thought of as a kind of

measurement error in the spatial interpolation and

can hence be accommodated in the kriging system.

If the errors associated with each flood moment

Zi are non-systematic, uncorrelated with each

other, uncorrelated with the moment Z and have a

known variance s2
i ; the kriging system can be

extended to account for these errors (de Marsily,

1986, p. 300)

Xn

kZ1

lkgðxi KxkÞKlis
2
i Cm Z gðxi Kx0Þ

i Z 1;.; n

(5)

Xn

iZ1

li Z 1

where m is the Lagrange parameter, the xi and xk are

the coordinates of the catchment centroids, and

g(xiKxk) is the true semivariogram (without repre-

senting errors) of the moment Z for the lag of

catchment centroids xi and xk. Note that each flood

peak moment in each catchment i can have a

different error. It is therefore possible to account for

different record lengths in different catchments.
Table 1

Parameters for the error variance s2
i as a result of short record lengths as

Moment Log(MAF) CV CS

A 1.383 1.187 1.99

B K1.090 K0.959 K0.53
We term the proposed method Kriging with

Uncertain Data (KUD). We used this method as an

alternative geostatistical regionalisation procedure to

Ordinary Kriging. Note that the ordinary kriging

(OK) system is identical to Eq. (5) with s2
i Z0:

We estimated the error variance due to short record

lengths in a Monte Carlo analysis by drawing samples

of a given size from a known distribution and

estimating the variance of the moments between

different samples (Fig. 2). The distribution was

assumed to be Gumbel distributed with MAFZ0.3

and CVZ0.5. As a next step, we parameterised this

error variance as a function of record length and the

order of the moment by a power law of the form

s2
kðmÞ Z a$mKb (6)

where m is the number of years of record in a

catchment and k is the order of the moment. We

estimated the parameters a and b from a best fit to the

variances as shown in Fig. 2, both for traditional

product moments and L-moments (Table 1). As the L-

moments put more weight on samples near the median

than on extreme values, the variances between

samples are smaller than those for the product

moments, so the estimation of the moments is more

robust, particularly for short observation periods.

However, L-moments are based on the assumption

that the observed values near the median have more

predictive power for extreme situations than observed

extreme values which may not always be justified

from a hydrological perspective.

We estimated the variograms from the flood

moments in the gauged catchments using the

catchment centroids for determining the lags. We

then fitted exponential variograms (Eq. (7)) to the

data-based (experimental) variograms (also see

Merz et al., 2000a)

g Z cð1 KexpðKh=dÞÞ (7)

d was estimated as 20 km for all moments which

means that the practical range is 60 km. Based on
used in Eq. (6)

Log(l1) l2 l3

2 1.383 0.012 0.020

7 K1.090 K1.184 K1.714
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these variograms and the error variance in Eq. (6) the

first three product moments (log(MAF), CV, CS) and

the first three L-moments (log(l1,l2,l3) (Hosking and

Wallis, 1997) were then interpolated independently.

Three scenarios were examined to analyse the effect

of record lengths on the geostatistical estimates. First,

the flood moments were regionalised by ordinary

kriging using all stations, irrespective of their record

length (termed OK). In the second scenario, only

stations with more than 20 years of observations were

used in the ordinary kriging system to estimate the

flood moments (termed OK_LS). In a third scenario,

all stations were used for the regionalisation and the

record lengths were taken into account by the Kriging

with Uncertain Data approach (termed KUD). The

flood quantiles were then estimated for given return

periods using the Generalised Extreme Value (GEV)

distribution for each of the three scenarios and each of

the two moment types giving a total of six estimates

for each catchment. These are estimates for which

only regional information from neighbouring

catchments have been used. These were then

compared to the flood quantiles estimated from the

local flood data. A comparison of various distribution

functions in Merz et al. (2000a) suggests that the GEV

distribution is suitable for the Austrian data set.
3.3. Multiple regression

For the regionalisation approach based on multiple

regression we used, again, the first three moments of

the annual flood peak series (both product moments

and L-moments, Eqs. (2) and (3)) and related each of

them to the catchment attributes. A linear multiple

regression model with three predictive variables was

used

Ẑðx0Þ Z a Cb$Y1ðx0ÞCc$Y2ðx0ÞCd$Y3ðx0Þ (8)

where Ẑðx0Þ is the flood sample moment (or a

transformation thereof) to be estimated, Y1ðx0Þ;

Y2ðx0Þ, Y3ðx0Þ are the catchment attributes and a, b,

c, d are the regression coefficients. Results of Merz

et al. (2000b) suggested that the additional explained

variance of using more than three variables was small.

The choice of catchment attributes as variables in

the regression analysis in this paper has been guided

by general knowledge on the relationship between
floods, climate and physiography as well as previous

regression studies (e.g. Tasker, 1987; IH, 1999;

Castellarin et al., 2001). We examined catchment

area, catchment average elevation, river network

density, the catchment average of mean annual

precipitation, the FARL lake index, catchment

average topographic slope, catchment average

maximum annual daily precipitation, portion of

catchment area with porous aquifers, two land use

classes (portion of forest and glacier), two geologic

units (portion of TertiaryCQuaternary and Calcar-

eous Alps) and three soil types (portion of Austroalpin

crystalline, Rendzina, Cambisol). The ordinary least

squares method was used to estimate the regression

coefficients. To reduce possible biases due to highly

skewed explanatory data, all catchment attributes

were transformed to be standard normally distributed.

Only those catchments with distances less than

100 km to the site of interest were included in the

regression system which resulted in regression

systems with about 100–200 stations.

One of the most serious problems encountered with

multiple regression is multicollinearity, i.e. when at

least one of the explanatory variables is highly

correlated with another explanatory variable or with

some linear combination of other explanatory

variables. If multicollinearity is present, the

regression coefficient can be highly unstable and

unreliable. A diagnostic for multicollinearity is

the variance inflation factor (VIF) (Hirsch et al.,

1992). For an explanatory variable j

VIFj Z
1

1 Kr2
j

(9)

where r2
j is the multiple correlation coefficient

squared from a regression of variable j with all other

explanatory variables. For the ideal case of orthogonal

variables, i.e. no collinearity, VIFjZ1, while for

VIFjO10 the regression is no longer reliable (Hirsch

et al., 1992).

To avoid the problem of multicollinearity, in

this study, the multiple regressions only use three

explanatory variables out of a set of 15 available

catchment attributes. As it is not obvious which are

the best explanatory variables we examined three

scenarios. In the first scenario (termed MR_AP),

three attributes, i.e. catchment elevation, river
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network density and mean annual precipitation,

have been selected a priori. These are the attributes

one would expect to explain most of the variance

of regional flood frequency based on experience in

the literature (e.g. Tasker, 1987; IH, 1999). In the

second scenario, out of the 15 available attributes,

the set of three attributes with the largest multiple

correlation coefficient for each station and each

flood moment separately was used (termed

MR_BEST). The rationale of this choice is that a

high correlation coefficient may also be a good

indicator of the predictive power of the attributes.

However, if VIFjO10 this set of attributes was

rejected and the scheme proceeded to the second

best correlation. In the third scenario, for each

flood moment, the set of attributes of the previous

scenario that was used most in all the catchments

was adopted (termed MR_MOST). The rationale of

this scenario is that if the controls of the catchment

attributes on flood frequency response are

physically realistic they should perhaps be the

same in the entire domain of Austria. The flood

quantiles were then estimated for given return

periods using the GEV distribution for each of the

three scenarios and each of the two moment types

which we then compared to the flood quantiles

estimated from the local flood data.
3.4. External drift kriging and georegression

One could argue that spatial proximity and

catchment attributes are not mutually exclusive pieces

of information, so a combination of kriging and

catchment attributes may provide more information

than any of the individual regionalisation approaches

alone. We used two methods of combining kriging

with catchment attributes, external drift kriging and

georegression. In external drift kriging, local

regression with an auxiliary variable is directly

implemented into the kriging system and the auxiliary

variable is assumed to be error free and perfectly

related to the primary variable (Deutsch and Journel,

1997, p. 67). We used mean annual precipitation

(MAP) as the auxiliary variable as it is thought to be a

surrogate of the rainfall input and the wetness state of

the catchment. Also, MAP tends to be one of the best

predictive catchment attributes for regional flood
frequency (IH, 1999). Using external drift kriging, all

three flood moments were interpolated independently.

As an alternative we examined georegression

which is a two step procedure. In a first step, flood

moments were related to catchment attributes by a

multiple regression with three catchment attributes

Z 0ðxiÞ Z a Cb,Y1ðxiÞCc,Y2ðxiÞCd,Y3ðxiÞ (10)

where Z 0(xi) are the flood moments (or their

logarithmic transformation in the case of the first

moments), Y(xi) are the catchment attributes and a, b,

c, d are the regression coefficients. Only those

catchments with distances less than 100 km to the

site of interest were included in the regression system.

In the second step, the corresponding residuals were

spatially interpolated using ordinary kriging

Ẑðx0ÞKZ 0ðx0Þ Z
Xn

iZ1

li½ZðxiÞKZ 0ðxiÞ� (11)

where Ẑðx0Þ is the estimate of the flood moments (or a

transformation thereof) of the site of interest, Z(xi) are

the observed flood moments (or a transformation

thereof) of catchment i with coordinates of the

centroids xi and li are the kriging weights. A priori

it is not clear which attributes will improve the

geostatistical regionalisation most, so we examined

all possible combinations of catchment attributes and

selected those three variables for each flood moment

that exhibited the largest correlation coefficients. We

then analysed three scenarios. In a first scenario, the

residuals were interpolated by OK with zero nugget

(termed GEOREG). To account for differences in the

degree of correlation between the flood moments and

the catchment attributes, kriging with uncertain data

(KUD) was used to interpolate the residuals in the

second scenario (termed GEOREG_KUD). The

variance of the error in the kriging system (Eq. (5))

was set to

s2
k Z a$mKb$ð1 Kr2Þ (12)

where m is the number of years of record for a

catchment, k is the order of the moment, a and b are

the coefficients as given in Table 1, and r2 is the

multiple correlation coefficient squared of the

regression system. In Eq. (12) we assume that r2 is a

measure of how well the flood moments can be

predicted by the catchment attributes.
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A preliminary analysis of flood moments indicated

that the second and third flood moments (CV, CS) are

not as well correlated with catchment attributes as the

first moment (MAF). We therefore examined a third

scenario (termed GEOREG_KUD/KUD) where we

regionalised the mean annual floods by georegression

as described above with the residuals interpolated by

KUD, but the coefficient of variation and the

coefficient of skewness we interpolated simply by

KUD without using catchment attributes. As in the

previous methods, we calculated flood quantiles from

the regionalised flood moments by using a GEV

distribution and compared them to the locally

estimated values.

3.5. Region of Influence approach

The Region Of Influence (ROI) approach (Burn,

1990) is based on pooling stations into groups. Each

site of interest (i.e. catchment for which flood

quantiles are to be estimated) has its own pooling

group, and this group is not necessarily spatially

contiguous. The starting point of the ROI approach is

the selection of a distance measure defining the

hydrological similarity of catchments. The distance

measure Di0 between station i and station 0 usually

contains catchment attributes and has been defined as

Di0 Z
XL

lZ1

WlðYlðxiÞKYlðx0ÞÞ
2

" #1=2

(13)

where Wl is the weight of the relative importance of

attribute l out of L and Yl(xi) is the value of attribute l

for station i. Those catchments that are most similar to

the site of interest in terms of Di0 are included in the

group. We chose the number of catchments in each

pooling group such that the sum of the observed years

of all stations in the pooling group was about five

times the return period of interest (IH, 1999, 3/p. 169).

We chose 100 years as the return period of interest

here, which means that, with an average record length

of 30 years, 10–20 stations are pooled. The

homogeneity of the pooling group was checked by

the H test of Hosking and Wallis (1997) which is

based on the hypothesis of homogeneity that the local

frequency distributions are the same except for a site-

specific scale factor. If a region is found to be very

heterogeneous (HO4) (IH, 1999, 3/p. 163) in this
study, the catchment with the largest distance measure

to the mean of the group was removed from the

pooling group and an alternative catchment was

included. However, not more than three stations

were removed by this procedure as in some cases a

heterogeneous group may still contain valuable

information (IH, 1999, 3/p. 172). In addition, the

discordancy was examined and if a catchment

exceeded the threshold given in Hosking and Wallis

(1997, Table 3.1) the catchment was replaced by an

alternative catchment. Once the pooling group was

determined we calculated the regional averaged

second and third moments for the group, weighted

by the record length and a similarity ranking factor

(IH, 1999, 3/p. 182), and assigned them to the site of

interest. In most applications of the ROI approach

(e.g. Zrinji and Burn, 1994) the first moment, or index

flood, is calculated by multiple regressions and

combined with a non-dimensional flood frequency

curve (i.e. the growth curve) estimated by the ROI

method. In this paper, we used multiple regressions to

estimate the first moment in the same way as in the

multiple regression approach described above. We

then calculated the quantiles by combining the first

moment so estimated and the second and third

moments from the ROI method using the GEV

distribution. The second and third moments are

representative of the growth curve.

The selection of the attributes to be used in the

distance measure and the determination of their

weights is usually based on a screening process to

identify their relative merits in terms of hydrological

similarity (Burn, 1990; IH, 1999). In this paper, we

analysed three scenarios. In the first scenario (termed

ROI_BEST), out of the 15 available attributes, the set

of three attributes with the highest multiple corre-

lation coefficient between attributes and the second

flood moment for each station was used. This is the

same set as used in the multiple regression approach

termed (MR_BEST) and is based on the assumption

that the correlation coefficient is a meaningful

indicator of hydrological similarity. The weights Wl

were all set to unity, because the attributes have been

standard normally transformed. In the second scen-

ario, we used geographical distance alone in the

distance measure (termed ROI_DIST). In a third

scenario we combined catchment attributes used in

ROI_BEST and geographical distance into a scenario
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termed ROI_BESTCDIST. The weights Wl were set

to 0.1, 0.1, 0.1 and 0.7 for the three attributes and

geographical distance, respectively. These weights

were found to give the lowest predictive errors in a

preliminary analysis.

While, sometimes, selection of the pooling group

in the ROI approach is supported by expert judgement

(e.g. IH, 1999), in this paper, we have chosen to use a

reproducible comparison that is solely based on the

hard data available in the data set. One would expect

that local expert knowledge will improve the

predictive performance of the ROI approach, but

this is difficult to quantify in an objective way.

3.6. Analysis of predictive performance

The aim of the study is to assess the predictive

performance of various regionalisation methods of

estimating flood quantiles in small to medium sized

ungauged catchments. This assessment uses the jack-

knifing method which simulates the case of ungauged

catchments. In the jack-knifing approach, one gauged

catchment is treated as ungauged. The flood quantiles

for this catchment are then estimated based solely on

the flood data in other catchments. In the second step,

the flood quantiles so estimated are compared with

the quantiles estimated from the local flood data. The

difference between regional and local estimates then

represents the error that is introduced by the

regionalisation. The difference also includes the

error of the local estimates. For small return periods

this error will be small, so the difference represents the

regionalisation error alone, while for large return

periods both error sources are likely to be important.

As the local estimates are always calculated by the

same method (GEV, parameter estimation by the

moment method), the local error will not change

between the scenarios considered here. We therefore

believe that the relative performance of the regiona-

lisation methods can be very well assessed by this

jack-knifing approach. The jack-knifing procedure is

repeated for each catchment in turn, which gives an

error estimate for all catchments.

The regionalisation error consists of a systematic

component, or bias, and a random error component.

The bias is a measure of whether a regionalisation

method tends to overestimate or underestimate

flood quantiles in all the catchments considered.
Non-negligible bias is an indication of poor model

structure or inappropriate assumptions. In practical

applications, biases, if known, can be removed from

the estimates. The random error is a measure of the

scatter of the regionalised values about the local

values. Random errors are related to how much

information a method can extract from the data. They

cannot be removed from the estimates. We used the

normalised mean error (nme) as a measure of the bias

nme Z

Pn
iZ1ðQ

reg
i KQloc

i ÞPn
iZ1 Qloc

i

(14)

where Qloc
i is the local flood quantile of station i as in

Eq. (1), Q
reg
i is the regionalised quantile of station i out

of n stations. nme can be positive and negative, and

for a perfect regionalisation method nmeZ0. We used

the normalised standard deviation error (nsdve) as a

measure of the random error:

nsdveZ

Pn
jZ1 ðQ

reg
i KQloc

i ÞK1
n

Pn
iZ1ðQ

reg
i KQloc

i Þ
� �2Pn

iZ1Qloc
i

(15)

nsdve is always non-negative and for a perfect

regionalisation method nsdveZ0. We used the root

mean square error rmse) as a measure of the total

regionalisation error:

rmseZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nme2Cnsdve2

p
(16)

rmse is always non-negative and for a perfect

regionalisation method rmseZ0.

In calculating the error measures only catchments

with flood records longer than 40 years have been

taken into account to reduce the uncertainty

associated with the local flood frequency estimation.

These are 122 catchments, so mZ122 in Eqs. (14) and

(15). The three error measures were calculated for

return periods from 2.3 to 500 years.
4. Results
4.1. Spatial proximity—Kriging and effect

of record length

In Fig. 3 the nme (bias) and nsdve (random error)

of the kriging approaches have been plotted versus



Fig. 3. Bias (left) and random error (right) of flood quantile regionalisation for the Kriging approaches. Crosses (OK): Ordinary Kriging;

Asterisks (OK_LS): Ordinary Kriging using only catchment with more than 20 years of record for the regionalisation; full circles (KUD):

Kriging where different record lengths are taken into account. The GEV distribution and product moments are used.
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the return period. Crosses (OK) refer to ordinary

kriging using catchments with any record length for

the regionalisation, asterisks (OK_LS) refer to

ordinary kriging using only catchments with more

than 20 years of record for the regionalisation and the

full circles (KUD) refer to kriging where differences

in the record length have been taken into account in

the regionalisation. The bias of all methods is small

(between K0.05 and K0.11) while the random error

is large (between 0.32 and 0.38). The contribution of

the bias to the total error (rmse) is only about 3%

(Eq. (16)), implying that the bias is almost negligible.

Kriging is an unbiased estimator, so small biases

would be expected.

The random error decreases with increasing return

period from 2.3 to 40 years. This suggests that the

second and the third flood moments can be regiona-

lised more accurately than the first moment. Given

that kriging builds on the spatial correlations, this

implies that the second and third moments are better

correlated in space or, in other words, vary more

smoothly in space than does the first moment.

Conversely, the largest error source in flood regiona-

lisation will likely be the regional transposition of
the mean annual flood. Beyond a return period of 40

years, the random error increases with return period.

This increase reflects the increasing uncertainty of the

local flood quantile estimation with increasing return

period, as will be demonstrated more explicitly later

in this paper. While the regionalisation error is likely

to decrease monotonically for all return periods, the

local estimation error will increase monotonically for

all return periods. What is shown here is the sum of

the two. The minimum in the random error occurs at a

return period of about 40 years which is on the order

of the average record length.

The comparison of the methods in Fig. 3 shows that

kriging with uncertain data (KUD), where differences

in the record lengths are taken into account, has the

smallest random error. This method appears to better

exploit the information contained in the short flood

records. Short records are introduced into the kriging

system but they are associated with a relatively large

variance s2
i : The case of using long series only

(OK_LS) lacks the information contained in the short

series, so the regionalisation error is significantly

larger. The case of using all series but without taking

differences in the record length into account (OK)
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does use the information contained in the short series

but it does not use it well, as too much credence is

given to these short series thereby introducing noise

and hence increasing the random error. These results

suggest that, from a practical perspective, it will be

essential to also use flood data from stations with very

short record lengths (e.g. 5 years). Although floods

with large return periods cannot be derived from these

stations, the estimation of the mean annual flood is

possible with relatively little uncertainty, which can

improve the regional estimation of all flood quantiles

substantially. This finding is consistent with the

suggestions of the UK-flood estimation handbook of

using very short flood records in the regionalisation in

addition to the longer records (IH, 1999, 1/p. 18).
4.2. Catchment attributes—multiple regression

Fig. 4 shows the biases and the random errors versus

return period for the various multiple regression

approaches. Crosses (MR_AP) refer to using a priori

selected attributes (catchment elevation, river network

density and mean annual precipitation); full circles

(MR_BEST) refer to using the three attributes with
Fig. 4. Bias (left) and random error (right) of flood quantile regionalisation

attributes (catchment elevation, river network density and mean annual pre

correlation coefficient for each catchment and each flood moment; Ast

catchments of the MR_BEST scenario. The GEV distribution and produc
the largest correlation coefficient for each catchment

and each flood moment; and asterisks (MR_MOST)

refer to using the same attributes for all catchments

which are those selected in most of the catchments of

the MR_BEST scenario. All the regression approaches

show some bias (between K0.10 and K0.28), even

though the attributes have been transformed to a

normal distribution. The contribution of the bias to the

total error (rmse) ranges between 4 and 10% (Eq. (16)).

The biases are negative implying that the multiple

regressions tend to underestimate the flood quantiles.

The random errors are much larger (between 0.43 and

0.67). Similarly as with the geostatistical approaches,

between return periods of 2.3 and about 20 years, the

random errors decrease with increasing return period,

at least for the MR_BEST and MR_AP scenarios. This

implies that, again, the main error source is the

transposition of the mean annual flood and the higher

moments can be regionalised with better accuracy.

Beyond 20 years, the random errors increase which is

related to the uncertainty associated with the local

flood quantile estimation.

The comparison of the multiple regression

approaches in Fig. 4 shows that the method MR_BEST
for the multiple regression approaches. Crosses (MR_AP): a priori

cipitation); full circles (MR_BEST): three attributes with the largest

erisks (MR_MOST): three attributes that are used in most of the

t moments are used.
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gives the smallest random error and the smallest bias.

This is the method where the three catchment attributes

associated with the largest multiple correlation coeffi-

cient are used. This result supports the assumption that

a regression with a large correlation coefficient has also

a high predictive power.

The regression with a priori selected attributes

(MR_AP) gives much larger random errors which are

about 0.55 or more. The selected attributes were

thought to be reasonable surrogates for flood con-

trols—elevation for the hydrologic regime and

climate; mean annual precipitation for the water

input and wetness of the catchment; and river network

density for climate, the development of soils and

routing efficiency. It appears that the predictive

performance is indeed poor which suggests that the

relationships between flood moments and catchment

attributes are not as tight as one would expect based

on general hydrologic reasoning. It is interesting that

the MR_MOST scenario performs still poorer for

moderate to large return periods. This suggests that

the controls of flood frequency vary regionally.

A large correlation coefficient does not imply a

reasonable correlation in other catchments, so the

predictive power in other catchments is poor.

Table 2 shows how often each catchment attribute

has been selected for the regression with each flood
Table 2

Number of instances each catchment attribute is used in the three parame

Catchment attribute MAF CV CS

Area 2 (C2/K0) 55 (C0/K55) 16 (C

Elevation 26 (C12/K14) 38 (C4/K34) 40 (C

River network density 56 (C56/K0) 31 (C31/K0) 25 (C
MAP (mean annual prec.) 8 (C0/K8) 18 (C14/K4) 44 (C

FARL (Lake index) 3 (C3/K0) 9 (C9/K0) 23 (C

Slope 13 (C11/K2) 11 (C7/K4) 12 (C
MADP (max. annual daily

prec.)

65 (C65/K0) 31 (C0/K31) 23 (C

Porous aquifer 17 (C0/K17) 17 (C8/K9) 19 (C

Forest 18 (C0/K18) 47 (C46/K1) 27 (C
Glacier 34 (C34/K0) 0 (C0/K0) 24 (C

TertiaryCquaternary 3 (C1/K2) 22 (C17/K5) 33 (C

Calcareous Alps 33 (C33/K0) 25 (C4/K21) 20 (C

Austroalpin Crystalline 46 (C0/K46) 8 (C4/K4) 21 (C
Rendzina 35 (C23/K12) 26 (C25/K1) 13 (C

Cambisol 7 (C3/K4) 28 (C26/K2) 26 (C

Total 366 366 366

Numbers for positive and negative correlations are shown in brackets. MA

three L-moments.
moment as a result of a high multiple correlation

coefficient. The numbers of positive correlations

and negative correlations are given in brackets.

The attributes used in most of the catchments can

also be interpreted as those with the highest predictive

power. For the mean annual flood (MAF) the three

attributes used most are maximum annual daily

precipitation (MADP), river network density, and

the portion of a geological formation termed

Austroalpine crystalline. As would be expected,

MADP and river network density are positively

correlated with the MAF for all catchments. Both

attributes are a measure of the water input and the

water availability in a catchment. In addition, river

network density can be thought of as measure of the

efficiency of runoff routing within a catchment, so one

would expect floods to increase with both attributes. A

negative correlation is found for Austroalpine crystal-

line which cannot be readily explained by hydro-

logical reasoning. We believe that this is a spurious

correlation which results from a co-location of this

geological formation with a region of relatively dry

catchments in southern Austria. Similarly, the positive

correlation of the MAF with the portion of Calcareous

Alps is likely a spurious correlation which results

from the location of this formation at the northern

fringe of the Alps where rainfall is enhanced by
ter regression

l1 l2 l3

0/K16) 2 (C2/K0) 9 (C5/K4) 39 (C0/K39)

38/K2) 26 (C12/K14) 12 (C2/K10) 15 (C9/K6)

18/K7) 56 (C56/K0) 63 (C63/K0) 73 (C73/K0)

1/K43) 8 (C0/K8) 16 (C2/K14) 25 (C3/K22)

23/K0) 3 (C3/K0) 6 (C6/K0) 7 (C7/K0)

8/K4) 13 (C11/K2) 5 (C4/K1) 7 (C2/K5)

16/K7) 65 (C65/K0) 81 (C81/K0) 47 (C47/K0)

7/K12) 17 (C0/K17) 22 (C0/K22) 15 (C0/K15)

23/K4) 18 (C0/K18) 0 (C0/K0) 5 (C2/K3)

19/K5) 34 (C34/K0) 21 (C21/K0) 36 (C36/K0)

11/K22) 3 (C1/K2) 3 (C3/K0) 5 (C1/K4)

3/K17) 33 (C33/K0) 53 (C34/K19) 36 (C26/K10)

21/K0) 46 (C0/K46) 44 (C0/K44) 12 (C1/K11)

11/K2) 35 (C23/K12) 27 (C27/K0) 35 (C35/K0)

24/K0) 7 (C3/K4) 4 (C2/K2) 9 (C9/K0)

366 366 366

F, CV and CS are the first three product moments. The l are the first
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orographic effects. Surprisingly, mean annual precipi-

tation (MAP) is only chosen in eight catchments and

the correlation is negative. This is in stark contrast

with most correlation studies reported in the literature

where MAP is usually the second most important

predictor variable after catchment area (e.g. IH,

1999). It seems that MADP is a better surrogate for

the water input during floods. The two catchment

attributes are highly correlated, but not used for the

regression at the same time. Note, that catchment area

is only selected in two cases. This is because all flood

peaks have been standardised by catchment area (Eq.

(1)), so catchment scale effects have been removed

from the MAF.

The three attributes that are used most for the

correlation with the coefficient of variation (CV) are

catchment area, the portion of forest and topographic

elevation. The catchment area is negatively corre-

lated. This is interesting in the context of the debate of

whether CV changes with catchment scale (e.g.

Smith, 1992). In fact, the decrease is consistent with

the results of Blöschl and Sivapalan (1997) found by

a derived flood frequency analysis for Austria. Note

that, although the data set of Blöschl and Sivapalan

(1997) was the same as in this paper, the method of

analysis was completely different. Results of Merz

and Blöschl (2004) suggest that the dependence of CV

on catchment area depends on the flood process type

and is most significant for floods produced by long

synoptic rainfall events and least significant for flashy

floods produced by thunderstorms. Forest cover is

mainly positively correlated, but an interpretation

based on local hydrologic reasoning is not obvious.

Topographic elevation is mainly negatively corre-

lated. This is due to the large CVs in the dry lowland

catchments in eastern Austria. A moderate flood

variability and very low mean annual floods give rise

to high CVs in these catchments.

The two attributes that are used most for the

correlation with skewness (CS) are mean annual

precipitation (MAP) and catchment elevation. The

correlation of CS and MAP is mostly negative.

There is a clear interpretation for this. MAP is a

measure of the wetness of the catchment. In dry

catchments, with low MAP, often most of the floods

are small but there are a few extreme events

producing highly skewed flood samples. Conversely,

in wet catchments the maximum annual floods
always tend to be large, so the samples are much

less skewed. The mean catchment elevation is

positively correlated with CS which can be

explained by a small number of high alpine

catchments with very skewed flood samples. Appar-

ently, the presence of glaciers gives rise to a large

number of moderate flood events and a small

number of extreme events resulting in large CSs.

The other attributes are selected less frequently than

these two.

As the first L-moment, l1, is identical with the first

product moment, MAF, the correlations are also

identical. For the second and third L-moments, l2 and

l3, the three attributes selected most of the times are

river network density, MADP and portion of Calcar-

eous Alps, all with a positive correlation as well as

catchment area with a negative correlation. This is

similar to the results for the first moment. It appears

that, as the higher L-moments are derived from the

first moment, the selected catchment attributes are

also similar.

4.3. Spatial proximity and catchment attributes—

external drift kriging and georegression

Fig. 5 shows the biases (left) and random errors

(right) versus return period for the approaches that

combine kriging and catchment attributes. Open

circles (EXTDK) refer to external drift kriging using

mean annual precipitation; crosses (GEOREG) refer

to georegression with the three catchment attributes

exhibiting the best correlation coefficient; asterisks

(GEOREG_KUD) refer to the same regionalisation

approach as in GEOREG but differences in the record

length have been taken into account for the inter-

polation of the residuals; full circles (GEOREG_-

KUD/KUD) refer to a regionalisation where the mean

annual flood is interpolated by georegression (as in

GEOREG_KUD) while CV and CS are interpolated

by kriging taking record lengths into account (KUD).

All the approaches show small negative biases

(between K0.09 and K0.02) and much larger random

errors (between 0.29 and 0.42). The contribution of

the bias to the total error (rmse) is less than 2%

(Eq. (16)). Kriging is an unbiased estimator, so small

biases would be expected.

Similar to the previous cases, the random errors

decrease with increasing return period between 2.3



Fig. 5. Bias (left) and random error (right) of flood quantile regionalisation for the kriging approaches using catchment attributes. Open circles

(EXTDK): external drift kriging with mean annual precipitation; Crosses (GEOREG): georegression with the three catchment attributes

exhibiting the best correlation coefficient; asterisks (GEOREG_KUD): as in GEOREG but record length taken into account for residuals; Full

circles (GEOREG_KUD/KUD): as in GEOREG_KUD for mean annual flood but kriging (KUD) interpolation for CV and CS. The GEV

distribution and product moments are used.
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and about 40 years, reflecting smaller errors in the

higher moments than in the first moment, and increase

beyond 40 years reflecting the increasing uncertainty

of the local flood estimates. The comparison of the

four methods gives the following results: GEOR-

EG_KUD/KUD gives the smallest random error and a

small bias. This is the method where catchment

attributes are only used in the georegression of the

mean annual flood, while CV and CS are interpolated

using KUD without using the catchment attributes.

GEOREG_KUD, where all three flood moments have

been interpolated assisted by information on the

catchment attributes, yields larger random errors. This

means that the use of catchment attributes for the

second and third moments deteriorates the predictive

performance as compared to the method that uses only

spatial proximity for the second and third moments.

Not only do the correlations with catchment attributes

for the second and third moment add no information,

but they apparently add noise as a result of spurious

correlations. While this result is not intuitive, it is

consistent with common practice in flood
regionalisation where the mean annual flood is

estimated from catchment attributes while the higher

moments are assumed to be uniform across a region,

as is the case in the index flood method.

The georegression where differences in record

lengths are not taken into account (GEOREG) yields

larger random errors than the method where record

lengths are taken into account (GEOREG_KUD), at

least for small to moderate return periods. Also, the

biases are higher. External drift kriging (EXTDK)

with mean annual precipitation gives similar results as

the georegression (GEOREG) with three attributes,

with slightly smaller random errors and slightly larger

biases. The main difference of these two methods is

the number of catchment attributes used (one in the

case of external drift kriging and three in the case of

georegression). This means that, adding information

on the catchment attributes, results in hardly any

change in the predictive performance. In contrast,

accounting for the uncertainty due to different record

lengths (GEOREG_KUD/KUD) improves the

predictive performance much more.
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4.4. Spatial proximity and catchment attributes—

Region of Influence approach

In Fig. 6, the biases and random errors for various

variants of the Region Of Influence (ROI) approach

have been plotted versus the return period. For all

variants, the mean annual flood was estimated by

multiple regression with three catchment attributes

exhibiting the best correlation coefficient and the

variants differ in terms of how the second and third

moments have been estimated in the ROI approach.

Asterisks (MR_BEST/ROI_BEST) refer to the ROI

approach where the distance measure uses the three

catchment attributes exhibiting the best multiple

correlation coefficient. Crosses (MR_BEST/ROI_-

DIST) refer to the ROI approach where the distance

measure uses geographical distance only. Full circles

(MR_BEST/ROI_BESTCDIST) refer to a combi-

nation of the previous two variants.

All the ROI approaches show small biases

(between 0.07 and 0.14), and relatively large random

errors (between 0.41 and 0.52). The contribution of

the bias to the total error (rmse) is always less than 5%

(Eq. (16)). The random errors for the variant that uses
Fig. 6. Bias (left) and random error (right) of flood quantile regionalisation

variants, the mean annual flood is regionalised by multiple regression (M

catchment attributes exhibiting the best correlation coefficient; cros

(ROI_BESTCDIST): ROI with catchment attributes and geographical dis
catchment attributes alone is largest and varies from

0.43 to 0.52. If catchment attributes are replaced by

geographical distance, the random errors decreases

significantly for all return periods larger than 5 years.

The combined variant that uses geographical distance

and catchment attributes performs still slightly better.

These results clearly indicate that for the data set used

here, spatial proximity alone is a better predictor of

flood frequency than catchment attributes alone and a

combination of them yields still better results.

4.5. Comparison of methods

We now compare the four genres of regionalisation

methods discussed above. For each genre, the pre-

dictive performance of the variant with the smallest

errors is shown in Fig. 7. The biases are shown on the

left, the random errors are shown on the right. Most

striking in Fig. 7 is that the errors of the two

geostatistical approaches (open circles—KUD; full

circles—GEOREG_KUD/KUD) are significantly

smaller than those of the other approaches. For

example, for a 100-year flood, the random errors of

the geostatistical approaches are 0.30 and 0.33 while
for the Region Of Influence (ROI) approaches (CV and CS). In all

R_BEST as in Fig. 4). Asterisks (ROI_BEST): ROI with the three

ses (ROI_DIST): ROI with geographical distance: full circles

tance. The GEV distribution and product moments are used.



Fig. 7. Comparison of bias (left) and random error (right) of flood quantile regionalisation for the best of the regionalisation types considered in

Figs. 3–6. Open circles (KUD): variant of kriging; full circles (GEOREG_KUD/KUD): variant of georegression; crosses (MR_BEST): variant

of multiple regression; asterisks (MR_BEST/ROI_BESTCDIST): combination of multiple regression and Region Of Influence Approach, the

latter using catchment attributes and geographical distance. The GEV distribution and product moments are used.
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they are 0.42 and 0.46 for the Region Of Influence

(ROI) multiple regression and the approach, respect-

ively. These differences very clearly indicate that the

use of the spatial correlation structure of the flood

moments in the geostatistical methods can signifi-

cantly improve the regionalisation over approaches

that do not use spatial correlations (multiple regression

and ROI approaches). The relative merits of using

spatial proximity and catchment attributes also

becomes apparent. The approach that uses catchment

attributes alone (multiple regression) performs poor-

est. The approach that uses spatial proximity alone

(KUD) performs significantly better. The ROI

approach that uses both pieces of information performs

better than the multiple regression approach and the

georegression that uses both pieces of information

performs better than the KUD approach. For the

comprehensive data set used here, spatial proximity is

a significantly better predictor of flood frequency than

are catchment attributes. Apparently, the catchment

attributes are not representative of the real physical

controls of the flood frequency processes.

It is also interesting that the biases of the

geostatistical methods are smaller than those of
the other approaches. Kriging is an unbiased estima-

tor, and the biases are indeed small. All biases are

negative, implying that all the approaches tend to

underestimate flood quantiles. The negative biases

can be explained by the selection of stations for the

regionalisation and the jack-knifing verification. The

regionalisation uses catchments with flood records of

any length while the bias is only calculated from

catchments with more than 40 years of observation.

The average specific mean annual flood (MAF)

for catchments with less than 40 years of data is

MAFZ0.31 m3/s/km2 while for catchments with

more than 40 years MAFZ0.39 m3/s/km2 which

can explain the sign of the bias. It is likely that these

differences in the MAF are due to climate fluctuations,

as the short records mainly cover the most recent

years.

A more detailed comparison of the predictive

performance of the methods in Fig. 7 indicates that the

smallest random errors and the smallest biases are

obtained by GEOREG_KUD/KUD, where a geore-

gression for the mean annual flood using KUD and the

three attributes with the highest correlation coefficient

is combined with only KUD for the regionalisation of



Fig. 8. Comparison of bias (left) and random error (right) of flood quantile regionalisation as in Fig. 7 but using the GEV distribution with

L-moments rather than product moments.
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the higher moments. For a return period of 100 years,

the random error and the bias are 0.30 and K0.04,

respectively. Using KUD for all flood moments, i.e.

without using catchment attributes, gives slightly

larger random errors and slightly larger biases (0.33

and K0.07 for a return period of 100 years). This

means that information on catchment attributes will

improve the geostatistical regionalisation for all

return periods but the improvement is not very

large. Both the random errors and the biases of the

ROI approach are slightly smaller than those of the

multiple regression approach. A comparison with Fig.

6 suggests that the main improvement stems from the

use of geographical distance in the case of the ROI

approach.

In this paper, we have regionalised the flood

moments by different approaches and then estimated

flood quantiles to judge the predictive performance of

the regionalisation approaches against local quantile

estimates. It is likely that the selection of the

distribution type and the parameter estimation method

will affect the results to some degree. To examine the

magnitude of these effects we performed a similar

comparison, but used L-moments instead of product

moments and examined other distribution functions in

addition to the Generalised Extreme Value (GEV)
distribution used above. Some of the results are shown

here. Fig. 8 shows a similar comparison of the

regionalisation performance (bias and random error)

for the various methods as in Fig. 7 but L-moments

rather than product moments have been used. Figs. 7

and 8 give similar results. The L-moments yield

slightly larger random errors and smaller biases for

most of the methods, particularly for moderate to

large return periods. However, the magnitude of the

relative performance of the methods remains

unchanged. We found similar results (not shown

here) for other distributions such as the Gumbel

distribution, both when using product moments and

L-moments. These comparisons strongly suggest that

the findings of this papers also apply to other

parameter estimation methods and other distribution

functions and are a general result for a hydrologic

environment such as the Austrian catchments

examined here.
4.6. Analysis of error statistics

To investigate the error sources of the various

regionalisation methods in more detail, we performed

a number of stratified analyses of the error statistics.
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The comparison of the methods in this paper

showed that the approaches based on spatial

proximity alone give much smaller random errors

and smaller biases than the methods based on

catchment attributes. One could argue that the

predictive power of spatial proximity comes mainly

from transposing flood data on the same stream, i.e.

from using nested catchments where stream gauges

are upstream and downstream neighbours of the site

of interest. If this were the case, the predictive power

of the geostatistical approach for ungauged and not

nested catchments would be poorer. To address this

issue we repeated the analysis of the predictive

performance for not nested catchments. Specifically,

in estimating the flood quantiles for a particular site

we did not use the immediate upstream and down-

stream neighbours in the regionalisation approaches.

In Fig. 9 the biases and random errors for this analysis

of not nested catchments have been plotted vs. return

period. The results show a slight increase in the

random error but the relative performance of the

methods remains the same. This suggests that

the main reason for the relatively good performance

of the geostatistical approaches is the presence of

spatial correlations of flood characteristics across

catchment boundaries and between different streams
Fig. 9. Comparison of bias (left) and random error (right) of flood qua

downstream neighbours for the regionalisation.
in addition to the correlations on the same stream. The

geostatistical approaches are therefore likely to

perform similarly well in nested and not nested

ungauged catchments.

In all the jack-knifing assessments of regionalised

against locally estimated flood quantiles in this paper

we have so far only used catchments with flood

records of more than 40 years to minimise the local

estimation error of extrapolating quantiles to large

return periods. It is also of interest to perform a similar

assessment for a larger number of catchments

including those with shorter records. Fig. 10 shows

the error statistics for 518 catchments with more than

10 years of observation. As compared to Fig. 7 the

random errors are larger while the biases are smaller.

The smaller biases are due to the climate effects

discussed above as, here, the years of record used in

the regionalisation are more similar to those used in

the assessment than is the case for Fig. 7. The random

errors in Fig. 10 are a measure of the difference

between local and regional estimates (Eq. (15)), so

larger local estimation errors will also increase these

random errors. The location of the minimum of the

random error is of most interest. While this minimum

was around 40 years in Fig. 7, it shifts to about 5 years

in Fig. 10. Five years is where the local estimation
ntile regionalisation as in Fig. 7 but without using upstream and



Fig. 10. Comparison of bias (left) and random error (right) of flood quantile regionalisation as in Fig. 7 but jack-knifing for catchments with

more than 10 years of observation rather than 40 years of observation.
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error becomes more important than the regionalisation

error which is perfectly consistent with the shorter

record lengths used for the jack-knifing assessment.

This finding corroborates the interpretation of the two

types of error. For small return periods, the main

source of error is the regional transposition of the

mean, while for higher return periods the local

estimation error gets increasingly more important.

It is also of interest to examine whether the

regionalisation performance differs with the hydro-

logic regimes of the catchments. In Fig. 11 the set of

jack-knifing catchments has been stratified into dry

and wet catchments according to their mean annual

flood. Catchments with mean annual floods smaller

than the median of all the catchments have been

termed dry catchments and are shown in Fig. 11 (top).

Catchments with mean annual floods larger than the

median of all the catchments have been termed wet

catchments and are shown in Fig. 11 (bottom). The

random errors for the wet catchments are much

smaller than those for the dry catchments. Note that

all the errors in this paper are shown as normalised

errors (Eqs. (14) and (15)). The absolute errors in the

wet catchments would, of course, be larger than in

the dry catchments. The smaller relative errors for
the wet regimes are consistent with hydrologic

reasoning. In wet regimes, often, rainfall input is the

main control of the magnitude of floods. In terms of its

statistical characteristics, rainfall tends not to be as

spatially heterogeneous as catchment characteristics,

so flood frequency characteristics are not too

heterogeneous in space. In contrast, dry catchments

tend to respond more non-linearly to rainfall inputs.

The catchment state prior to the flood event and soil

characteristics, both highly variable in space (Western

et al., 2002), tend to produce much more hetero-

geneous flood frequency patterns, so the spatial

correlations between catchments tend to be lower

and catchment attributes are less representative of

flood frequency. Positive biases for the dry catch-

ments and negative biases for the wet catchments are a

result of the stratification.

For the wet catchments, the relative performance

of the regionalisation methods is similar to that for all

catchments (Fig. 7). However, for the dry catchments

the geostatistical approach that does not use catch-

ment attributes (KUD, open circles in Fig. 11) yields

the smallest random errors. For these regimes, adding

catchment attributes (GEOREG_KUD/KUD, full

circles in Fig. 11) deteriorates the predictive



Fig. 11. Comparison of bias (left) and random error (right) of flood quantile regionalisation as in Fig. 7 but stratified by dry (top) and wet

(bottom) catchments. Normalised by the group mean.
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performance. It is likely that the use of catchment

attributes representing the catchment state during

flood events would improve the regionalisation for

these catchments but these are not the type of

attributes available in this paper.
The error statistics presented above represent the

average predictive performance over many catch-

ments. An interesting point is to see whether spatial

patterns of the predictive performance exist. Fig. 12

shows the locally estimated 100 year flood quantiles



Fig. 12. (a) Locally estimated specific 100 year flood, standardised to a catchment area of 100 km2 (m3/s/km2), (b–e) Normalised difference of

the regionalised and local 100 year floods for different regionalisation methods. (b) KUD: variant of kriging; (c) GEOREG_KUD/KUD: variant

of georegression; (d) MR_BEST: variant of multiple regression; (e) MR_BEST/ROI_BESTCDIST: combination of multiple regression and

Region Of Influence Approach.
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(a), and the spatial patterns of the relative errors of the

regionalised 100 year flood quantiles (b–e). All

catchments with records longer than 5 years have

been used in this assessment. The locally estimated

100 year flood quantiles in Fig. 12 are based on a GEV

distribution using the local product moments and are

plotted in terms of specific discharges standardised to

a catchment area of 100 km2 (Eq. (1)). The 100-year

flood quantiles exhibit pronounced regional patterns.

Most striking are the large specific floods at the

northern fringe of the Alps (see Fig. 1). This is also a

region of high rainfall which is a result of the Alps

acting as a topographic barrier to north-westerly

airflows. The inner part of the high Alps, to the south

of this fringe, and the lowlands in eastern Austria
show lower specific floods. There is also a small

number of catchments that do not fit into the regional

pattern. It is likely that at least part of these outliers

are a result of short flood samples in these catchments

where one or two extreme floods may dominate the

locally estimated quantiles.

The relative errors, shown in Fig. 12(b–e) have

been calculated as the difference of the regionalised

and locally estimated 100-year quantiles divided by

the local value

Err Z
Q

reg
100 KQloc

100

Qloc
100

; (17)

where Qloc
100 is the locally estimated specific 100 year

flood and Q
reg
100 is the specific 100 year flood estimated
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by one of the regionalisation methods. All specific

floods relate to hypothetical 100 km2 catchments as of

Eq. (1).

All error maps in Fig. 12 are quite patchy and show

a lot of small scale variability. This means that none of

the regionalisation methods are very good at predict-

ing the small scale spatial variability of flood

frequency. Most of the catchments are however,

coloured in yellow indicating small to moderate

predictive errors. There are a small number of dark

blue catchments, particularly in regions of low

specific floods. In these catchments, the regionalisa-

tion methods massively overestimate the local flood

quantiles. Kriging, based only on spatial proximity,

and georegression, based on both spatial proximity

and catchment attributes (Fig. 12b and c) give the

smallest errors. The two patterns are very similar. The

smaller errors of the georegression approach shown in

Fig. 7 are apparently due to a slightly better predictive

performance in many catchments rather than due to a

few outliers. The pattern of the Region Of Influence

(ROI) approach and the multiple regression are

similar (Fig. 12d and e). Both approach tend to

underestimate floods in regions of high discharges and

overestimate floods in regions of low discharges. In

areas where the spatial gradients in the flood quantiles

are large, the errors are particularly large, in a number

of catchments more than 100%. It is interesting that in

the north-eastern part of Austria, where flood

discharges are very small, the multiple regression

approach performs better than the kriging and

georegression approaches. However, in southern

Austria, where flood discharges are also very small,

it performs poorer.
5. Conclusions

In this paper, we have examined the predictive

performance of flood regionalisation methods. The

assessment of the performance is based on a jack-

knifing comparison of locally estimated and

regionalised flood quantiles for 575 Austrian catch-

ments, 122 of which have a record length of 40 years

or more. This assessment is a measure of how well the

regionalisation methods can estimate floods in

ungauged catchments. For all methods, the bias is

relatively small while the random errors are
substantial. The main error source in flood quantile

regionalisation is the spatial transposition of the mean

annual flood. The second and the third moments can

be regionalised with better accuracy.

A method that combines spatial proximity and

catchment attributes yields the best predictive per-

formance. For the first moment, this method is based

on a georegression that uses both spatial proximity

and catchment attributes while for the second and

third moments the method is based on kriging and

uses spatial proximity alone. Including information on

catchment attributes in the regionalisation of the

second and third moments deteriorates the predictive

performance.

A method that uses only spatial proximity performs

second best. This is a novel method proposed in this

paper which is based on kriging and takes differences

in the length of the flood samples into account. This

method performs significantly better than convention-

al kriging as it is able to exploit the information in

short records. By applying this method, it is also

shown that short flood records (e.g. 5 years) contain

valuable information and should be used in flood

frequency regionalisation. The predictive perform-

ance of the methods based on spatial proximity is

shown to be due to the spatial correlation of flood

frequency characteristics across catchment

boundaries in addition to the spatial correlations on

the same stream, so the method should work equally

well both for nested and not nested ungauged

catchments. Spatial proximity is a surrogate for

unknown controls on flood frequency that vary

smoothly in space.

The methods that only use catchment attributes

perform significantly poorer than the methods based

on spatial proximity, including those that use spatial

proximity alone. The Region Of Influence (ROI)

approach and multiple regression yield similar

regionalisation errors if only catchment attributes

are used in both cases. Inclusion of the spatial distance

in the ROI approach reduces the random errors. This

suggests that the catchment attributes available at the

regional scale are not very good predictors of flood

frequency characteristics. The multiple regressions

are used to examine which of the catchment attributes

have the highest predictive power for flood regiona-

lisation. A hydrological interpretation of the

predictive power is possible for some attributes
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while it is not for others. All regionalisation methods

perform better for wet catchments than they do for dry

catchments.

In the engineering practice, flood frequency

regionalisation is often supported by expert judge-

ment (e.g. IH, 1999). In this paper, we have chosen to

use a reproducible comparison that is solely based on

the hard data available in the data set. One would

expect that local expert knowledge will improve the

predictive performance of all methods, particularly

for the ROI approach, but this is difficult to quantify in

an objective way.

We suggest that for improving flood frequency

regionalisation better predictive variables and simi-

larity measures need to be found than those currently

used. We are currently examining dynamic catchment

attributes that represent flood processes during

individual events and should therefore also be better

regional predictors (e.g. Merz et al., 1999; Merz and

Blöschl, 2003). These indicators include seasonality

measures, catchment state variables such as ante-

cedent moisture and snow cover, as well as storm type

indicators. One would hope that these dynamic

catchment attributes will allow a more realistic

representation of flood processes and will help go

beyond simple proximity measures in regionalising

flood frequencies.
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Merz, R., Piock-Ellena, U., Blöschl, G., Kirnbauer, R., 2000b.

Skalierungsprobleme bei der Regionalisierung von Hochwäs-

sern. (Scale problems in regionalising floods). Endbericht 2000,
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