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Introduction

Have you ever been flabbergasted, after the fact, by how far your
predictions were off the observed data? An underestimation of
pesticide arrival time by a factor of 10, or an overestimation of
flood peaks by a factor of two or more—all this with models
that have apparently been well calibrated with data from the past.
Of course, there is always an explanation, after the fact. The
media characteristics may have been slightly different from what
we initially assumed, perhaps preferential flow occurred where we
did not expect it to occur, there was inaccuracy in the assumed
initial conditions and, of course, in the boundary conditions as well,
and the events were larger than what we thought could reasonably
occur. It seems that small uncertainties can easily amplify under
certain conditions and will limit predictability. In this commentary,
we argue that there is a pattern to this.

Non-Linearities of Hydrological Systems

The most obvious cause for limits to predictability is the non-
linearity of the hydrological systems we deal with. Higher order
terms in the equations of motion can lead to non-linear, and hence
highly unpredictable, characteristics. The Saint-Venant equation
contains higher order terms, but most of the equations used in
hydrology are, in fact, linear in their structure. The Richards
equation has a linear structure without higher order terms, and so
have most other equations we think closely represent the dynamic
characteristics of hydrological systems. Some of these equations
such as the Richards equation are, however, non-linear because
of non-linear coefficients or material properties that are a second
source of non-linearity. Unsaturated hydraulic conductivity exhibits
very significant changes with the moisture state of a soil. In the
Penman-Monteith equation, stomata resistance changes with radi-
ation and available soil moisture, and retardation coefficients of
non-linearly adsorbing solutes change with solute concentration.
There is a third source of non-linearity where processes switch
between regimes. It is then a different process that takes over once
a certain threshold is exceeded. Threshold behaviour may occur if
dynamic states switch from zero to non-zero values, as is the case
of water levels in surface runoff, rainfall rates, or water content
in a macropore system in structured soils. Threshold behaviour
may be further enhanced by emerging and vanishing structures and
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features, as is the case of swelling and crack-
ing soils or a switch between hydrophilic and
hydrophobic conditions of soils. Thresholds seem
to be omnipresent in hydrology: thresholds between
matrix and preferential flow, thresholds between
infiltration and saturation excess flow, thresholds
between freezing and melting snow, thresholds
in evaporation being controlled either by atmo-
spheric demand or by soil hydraulic properties,
thresholds between supercritical and subcritical
flows, thresholds of erosion, and thresholds of
inception of sediment motion in streams.
Threshold behaviour can manifest itself in two
ways in the equations of motion. The equations
may contain terms that switch on and off, depend-
ing on the value of a control variable. Alterna-
tively, the material properties may switch between
different modes, depending on the value of a con-
trol variable. An example for the first case is flow
in structured soils, where, depending on the soil
moisture state, either the Richards equation alone
or in combination with a representation of macro-
pore flow (e.g. by a kinematic wave equation) make
up the equation of motion. An example of the sec-
ond case is the switch between hydrophilic and
hydrophobic conditions in water-repellent soils.
Depending on the type of non-linearity, uncer-
tainties in the initial conditions and forcings may
or may not dampen out. If processes are self-
amplifying, i.e. if positive feedbacks exist, initial
uncertainties may amplify and lead to chaotic
behaviour, where the system state exhibits erratic
variability. This, of course, depends on the degree
of non-linearity. Thresholds can be thought of as
very strong non-linearities. In the case of threshold
dynamics, the propagation of uncertainty of initial
and boundary conditions is much more complex
than in the other case of simple non-linear but
continuous material properties, because system
dynamics exhibit a much higher state dependency.
The effect of input uncertainty on systems response
may be extremely high if the system is prone to
switch between different dynamic regimes. For
example, during infiltration into sandy soils, local
instabilities of the wetting front may cause fin-
gering. A local increase of soil moisture increases
hydraulic conductivity, which increases the con-
trast between wet and dry parts of the soil, which
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further enhances hydraulic conductivity and infil-
tration. If a changeover to fingering occurs, then
the feedback will be stronger, which means that
transport processes can become very fast
(Ritsema et al., 1998).

Observability: Micro- and Macro-States

If non-linearity is present in the system, then pre-
dictability will hinge on the accuracy to which
initial conditions and boundary conditions can be
measured. At a hydrological scale (catchments,
aquifers, regions) it is impossible to measure
exhaustively any of the variables we are inter-
ested in. This may cause substantial uncertainties.
If we go down in scale, to the plot scale, we are
able to collect more detailed data, but no matter
what the spatial resolution of the measurements is
there will always be some fine-scale detail not cap-
tured by the measurements. This fine-scale detail
may or may not matter for making hydrological
predictions at larger scales, which has intrigued
hydrologists for a long time (Sivapalan, 2003).

In statistical mechanics there is a similar prob-
lem of uncertain initial conditions as in hydrology:

The principles of ordinary mechanics may be
regarded as allowing us to make precise predic-
tions as to the future state of a mechanical system
from a precise knowledge of its initial state. On the
other hand, the principles of statistical mechanics
are to be regarded as permitting us to make rea-
sonable predictions as to the future condition of
a system, which may be expected to hold on the
average, starting from an incomplete knowledge
of its initial state. (Tolman, 1979: 1)

Following the concepts of statistical mechanics, let
us consider the Kinetic energy of a mole of a gas.
The gas can be described in greatest detail by spec-
ifying its microscopic state, or microstate, at any
time, i.e. the exact values of the kinetic energy
of each of the 10* individual molecules. How-
ever, it is impossible to measure this microscopic
state, and we may not be interested in the full
detail on the behaviour of each and every molecule
either. Instead, it may be possible to measure the
macroscopic state, or macrostate, of the gas repre-
sented by average quantities or distributions. One
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such macroscopic quantity is the gas temperature,
which is a measure of the average kinetic energy
of the gas molecules. It is impossible to mea-
sure the microstate, but it is possible to mea-
sure the macrostate. The macrostate characterizes
the microscopic reality in a statistical and, there-
fore, uncertain sense. A set of numerous possible
microstates is consistent with the same macrostate.
This is often referred to as a ‘degradation’ of
the measurable macrostate into a set of possible
microstates.

Zehe and Bloschl (2004) suggested that the con-
cepts of micro- and macro-states are applicable
to hydrological predictions. For the case of ini-
tial soil moisture they defined the microstates as
the detailed patterns of soil moisture and the
macrostates as the statistical distributions of soil
moisture obtained from measurements as typically
available in research catchments. They then gener-
ated multiple realizations of soil moisture patterns,
each pattern representing one possible microstate,
and all the realizations (or microstates) were con-
sistent with the macrostate of soil moisture derived
from the field measurements. They analysed the
uncertainty due to unknown microstates by using
them as the initial conditions of a physically
based hydrological model. The model accounted
for a changeover in the flow regime from matrix
to macropore flow. The variability in simulated
infiltration between the realizations was then con-

sidered a measure of the uncertainty in hydro-
logical response introduced by uncertain initial
soil moisture. As an illustration, Figure 1 shows
the average simulated transport depth 1 day after
application of a hypothetical tracer to the soil sur-
face. For a given soil-moisture macrostate, sim-
ulated transport depths varied significantly as a
result of uncertainties in the microstate. The sim-
ulations indicated that the predictability of the
hydrological response depends on the average ini-
tial state of soil moisture. There exists an unsta-
ble range where the predictability of hydrologi-
cal response is poor (between average soil mois-
tures of 0-18 and 0-30 m® m—3 in this case), and
a stable range where the predictability is signif-
icantly better. This state-dependent predictability
is related to the presence of threshold processes.
The predictability is poor if the system is close
to the threshold, but it improves as the system
moves away from the threshold. The main thresh-
old in the example is the transition from matrix to
macropore flow.

Representing the macrostate of initial soil mois-
ture by the distribution function rather than by
spatial patterns does not account for the small-
scale details of the microstate. One of the impor-
tant pieces of information that is lost is the correla-
tion between local saturation and local macropore-
related hydraulic conductivity. At the plot scale,
if the soil was prone to switch from matrix to
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Figure 1. Average simulated transport depths for different realizations of the soil moisture microstate that are consistent with the
same macrostate. The crosses relate to a medium where only matrix flow is allowed; the circles relate to a medium containing
macropores where preferential flow may establish
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macropore flow, soil moisture microstates that
were positively correlated with the bulk hydraulic
conductivity yielded fast infiltration and transport
associated with preferential flow. This positive cor-
relation of some of the microstates stems from the
superposition of the soil moisture microstates on
the time-invariant pattern of macroporosity. The
correlation becomes important because of the non-
linearity introduced by the threshold process.

Clearly, the concept of micro- and macro-states
can be used for analysing the uncertainty of a
range of spatial estimates in hydrology. The uncer-
tainty may come from using a limited number of
point samples (such as precipitation and piezome-
ters) or lumped samples (such as discharge and
satellite data). The implications for hydrologic pre-
dictability can then be assessed by Monte Carlo
simulations, as illustrated by the soil moisture
example.

Frequent Outliers

In the discussion above the main interest was on
deterministically predicting hydrological response.
Often, one is only interested in statistical predic-
tions, i.e. the exceedance probability of an event
of a certain magnitude, of concentration levels, or
of solute arrival times, for example. Whereas non-
linearity impacts on the patterns of predictability
in the deterministic case, in the case of statistical
predictions the non-linearity impacts on the shape
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of the distributions. In fact, there is a deep connec-
tion between the probability distributions of sys-
tem response, the degree and type of non-linearity
of a system and the degree and type of hetero-
geneity in the system. Linear and homogeneous
systems are consistent with Gaussian (i.e. normal)
distributions. It can be argued that, deterministi-
cally, this is because the general solution to a linear
diffusion equation is a linear combination of Gaus-
sian functions. Statistically, it can be argued by the
central limit theorem that a linear combination of
a set of identical distributions of arbitrary shape
will converge to a Gaussian distribution. Gaussian
behaviour is an indication of linearity and/or sym-
metry.

However, there is data evidence in almost any
branch of the Earth sciences that distributions
deviate from normality, and hydrology is no excep-
tion. The classical example in hydrology is the
Hurst phenomenon of wet years clustering into
multiyear wet periods (Hurst, 1951). Floods,
droughts, and many other variables are not Gaus-
sian, in fact not even close to Gaussian (Bloschl,
2005). Typically, the main difference is that the
extreme events, or ‘outliers’, occur more often
than one would expect from a normal or Gaus-
sian distribution. It is in the tail that they differ:
the tails are ‘fat’. As an example, Figure 2 shows
the maximum annual floods of the Kamp catch-
ment. Catchments where outliers such as in the
Kamp have been observed are frequent, and some
observers have noted they have become even more
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Figure 2. Maximum annual flood peaks observed in the Kamp catchment, Austria (620 km? catchment area). Redrawn from
Gutknecht et al. (2002)
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frequent in recent years in some parts of the world
(Snorasson et al., 2002; Kundzewicz, 2004). Fat-
tailed distributions may limit the predictability of
the probability of extreme events.

There are two main explanations for fat-tailed
distributions. The first is non-linear system dynam-
ics. In oceanography, freak waves can only be
explained by non-linear dynamics (e.g. White and
Fornberg, 1998; Liu and Pinho, 2004); in a similar
vein, non-linearity needs to be invoked to explain
hydrological outliers. In the 2002 Kamp flood
example, persistent rainfall filled up the sandy
soils and, once a rainfall of around 100 mm was
exceeded, most of the rainfall became runoff. Daily
rainfall was 70% larger and the flood peak was
200% larger than the second largest observations
in the past 100 years, an apparent indication of
non-linearity. More-complex non-linearities with
positive feedbacks exist in hydrology that can be
linked to fat-tailed distributions. Examples are soil
moisture at the land surface (Rodriguez-Iturbe
et al., 1991), long-range climate dynamics (Kout-
soyiannis, 2005), and non-linear absorption char-
acteristics of reactive substances that may result
in fat-tailed distribution of arrival times (Jury and
Horton, 2004).

The second explanation is the presence of struc-
tured heterogeneity in the subsurface, which can
result in fat-tailed distributions even if the sys-
tems dynamics are linear. Gaussian media char-
acteristics may increase the apparent dispersivity
of the system, but they will not change the type
of distribution. The convective—dispersive pro-
cess is a case of perfect symmetrical mixing, in
the sense that each solute molecule experiences
the whole range of possible velocities in the far
field, i.e. the central limit theorem is applicable
in disordered media. In contrast, non-Gaussian,
structured media characteristics may result in fre-
quent outliers and fat-tailed distribution (Math-
eron and de Marsily, 1980; Levy and Berkowitz,
2003; Knudby and Carrera, 2005). In the case of
spatially interconnected, preferential flow paths,
fast-travelling solute molecules will never mix with
slow molecules; hence, the distribution of arrival
times will have a fat tail and early arrival. This
will break the symmetry of perfect mixing. A per-
turbation will propagate quickly through the sys-
tem. The formation of interconnected structures
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in soils and aquifers can be thought of as a self-
amplifying process that has a tendency to result in
fat-tailed distributions. If non-linearity is present,
as is the case of non-linearly adsorbing herbicides,
then distributions may deviate even further from
normality (Zehe et al., 2004).

The spatial correlation of extremes is often
stronger than suggested by multivariate lognor-
mal distributions (Zinn and Harvey, 2003), which
strongly affects flow and mixing. The same pattern
seems to exist for large-scale flooding. If we con-
sider flooding as a bivariate process depending on
catchment states and rainfall amounts, then there
will be a close association of wet catchment state
with heavy rainfalls. Infiltration usually decreases
during heavy precipitation as a result of surface
sealing and the formation of saturation areas, for
example, which in turn enhances overland flow,
erosion, and sedimentation with a feedback to sur-
face sealing.

Predicting Predictability

There is a lesson to be learned here, we believe.
Above all, modesty seems to be in place as to
the degree to which hydrological system behaviour
can be represented. The prevailing paradigm of
hydrology, without doubt, is that of positivism,
i.e. the view that there is a truth out there and
if enough data are analysed in the right way we
can understand and resolve even the most com-
plex problems. Limits of predictability, however,
suggest that there are also limits to the repeata-
bility of experiments. The multiple realizations in
Figure 1 can be interpreted as multiple hypotheti-
cal experiments. If, for a given rainfall forcing, we
measured soil moisture and hydrological response
many times, the relationship between the two most
likely will not be unique, as the uncertainty in ini-
tial soil moisture limits the predictability of hydro-
logical response. The confidence bounds of exper-
imental results may hence be wider than what the
accuracy of the instruments themselves would sug-
gest.

There are also implications for what can be
learned from longer hydrological records. If a
normal distribution does not describe the ‘nor-
mal’ case then there is a need to understand the
extremes better, including their interrelation with
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other processes and variables. In the extremes,
variables often show a stronger correlation than
indicated by a Gaussian correlation structure.
Examples are correlations between the transport
depth and connectivity of pathways in the sub-
surface, as well as correlations between extreme
rainfall and the resulting flood. The issue, there-
fore, is to examine extremes and averages sepa-
rately. Inevitable, one then runs into the problem
of small sample sizes, as few observations tend to
exist in the tails of a distribution. In the Kamp
catchment, a flood forecasting system is currently
implemented and the hydrological analysis at the
very extreme end builds on a single event—a sam-
ple of one. It is hard both to calibrate and validate
a model on a sample of one. Similarly, with a few
samples that indicate large concentration values in
the subsurface it is hard to get a consistent picture
of the transport patterns. Clearly, understanding
system response across a range of magnitudes is
critically important here, as it may help extrap-
olate from the average to the extremes. From a
statistical perspective, copulas may offer a promis-
ing framework. Taken from economic statistics,
they are a method for analysing and modelling
interrelations between the extremes of variables,
without referring to the shape of the marginal
distributions. This is particularly appealing if the
marginal distributions are fat tailed (Salvadori and
De Michele, 2004).

Obviously, there are also implications for hydro-
logical modelling. In other Earth sciences, often,
non-linear systems can be represented by closed-
form non-linear equations in a homogeneous
medium that facilitates the analysis of their pre-
dictability characteristics. The Lorenz equation
(Lorenz, 1969) is the classical example, and numer-
ous others exist (e.g. Stull, 1985). In hydrology, in
contrast, threshold processes and structured het-
erogeneity are the more typical case for which the
analysis of predictive uncertainty is more difficult.
The presence of thresholds does indicate that, if the
system is close to a threshold, then predictability
is poor, but it improves as the system moves away
from the threshold. In the Kamp flood forecast-
ing system, 11 telemetered raingauges are avail-
able that can be used to specify the macrostate
of the rainfall field. Incomplete knowledge of the
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microstate, i.e. the detailed patterns of the rain-
fall field between the gauges, will amplify and
hence limit predictive accuracy. If there exist
cross-correlations of high intensities falling on low-
permeability areas, interactions similar to those in
Figure 1 will occur. Ensemble forecasts may assist
in assessing the predictive uncertainty, but it is
important to recognize that there will always be
some inherent limit to predictability.

On a more general note, we believe there is
an exciting research field in hydrology to be pur-
sued in the coming years: to learn how to sep-
arate the predictable and the unpredictable. If
the uncertainties are known, then alternative risk-
management strategies can be used to deal with
them—flood management strategies and agricul-
tural management strategies in the two examples
we have used here. Research in hydrology needs
to focus on patterns of predictability.
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