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Institut für Hydraulik, Gewässerkunde und Wasserwirtschaft, Technische Universität Wien,

Karlsplatz 13/223, A-1040 Wien, Austria

Received 10 December 2002; revised 22 September 2003; accepted 26 September 2003

Abstract

We simulate the water balance dynamics of 308 catchments in Austria using a lumped conceptual model involving 11

calibration parameters. We calibrate and verify the model for two non-overlapping 11-year periods of daily runoff data. A

comparison of the calibrated parameter values of the two periods suggests that all parameters are associated with some

uncertainty although the degree of uncertainty differs between the parameters. The regional patterns of the calibrated

parameters can be interpreted based on hydrological process reasoning indicating that they are able to represent the regional or

large-scale differences in the hydrological conditions. Catchment attributes explain some of the spatial parameter variability

with coefficients of determination of up to R2 ¼ 0:27; but usually the R2 values are lower. Parameter uncertainty does not seem

to cloud the relationship between calibrated parameters and catchment attributes to a significant extent as suggested by an

optimised correlation analysis. The median Nash–Sutcliffe efficiencies of simulating streamflow decrease from 0.67 to 0.63

when moving from the calibration to the verification period. This is a small decrease, which suggests that problems with over-

parameterisation of the model are unlikely. We then compare regionalisation methods for estimating the model parameters in

ungauged catchments, in terms of the model performance. The best regionalisation methods are the use of the average

parameters of immediate upstream and downstream (nested) neighbours and regionalisation by kriging. For the calibration

period, the average decrease in the Nash–Sutcliffe model efficiency, as a result of the regionalisation, is 0.10 which is about

twice the decrease of moving from the calibration to the verification period. The methods based on multiple regressions with

catchment attributes perform significantly poorer. Apparently, spatial proximity is a better surrogate of unknown controls on

runoff dynamics than catchment attributes.
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1. Introduction

Simulations of the water balance dynamics of

catchments are needed for addressing a number of

engineering and environmental problems such as

assessing anthropogenic effects on water quantity

and quality, estimating design values and streamflow

forecasting. Conceptual water balance models are

widely used in hydrology because the required input

data are usually readily available and the models are

relatively simple and easy to use. The model
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parameters are effective values on the catchment scale

and so cannot be measured in the field. Because of

this, the model parameters are always calibrated

against observed streamflow data, if possible

(Klemeš, 1986). For catchments without streamflow

observations, parameters have to be estimated from

other sources of information, such as neighbouring

catchments, or taken from tabulated values from the

literature, or assumed based on expert judgement.

Because of a lack of calibration, catchment models

usually perform significantly poorer in ungauged

catchments than they do in gauged catchments, but

the ungauged catchment case is important both from

practical and theoretical perspectives.

The process of transferring parameters from

neighbouring catchments to the catchment of interest

is generally referred to as regionalisation (Blöschl and

Sivapalan, 1995). The choice of catchments from

which information is to be transferred is usually based

on some sort of similarity measure, i.e. one tends to

choose those catchments that are most similar to the

site of interest. One common similarity measure is

spatial proximity, based on the rationale that catch-

ments that are close to each other will have a similar

runoff regime as climate and catchment conditions

will only vary smoothly in space. An example of this

type of approach is given by Vandewiele and Elias

(1995), who derived the parameters of a monthly

water balance model for 75 catchments in Belgium

from neighbouring catchments. For a case where they

regionalised parameters using kriging, their model

performed well for 72% of the catchments while it

was only 44% when transferring parameters from the

nearest catchment.

An alternative similarity measure is the use of

catchment attributes such as land use, soil type and

topographic characteristics. In principle, one would

assume that the model parameters are closely related

to catchment attributes, as the model parameters are

designed to represent the functional behaviour of

catchment response which, in turn, should be

controlled by physical characteristics of catchments

such as land use. However, most of the case studies on

relating model parameters and catchment attributes

published in the literature have found rather low

correlations. In a comparative study of 331 catch-

ments in Australia, Peel et al. (2000), for example,

found the groundwater recharge parameter of

the SYMHID model to be significantly related to a

climate index (coefficient of determination

R2 ¼ 0:20). They also found significant correlations

for a soil moisture storage parameter, both with a

climate index and a relief index (R2 ¼ 0:25 and 0.21).

For the other parameters and the other catchment

attributes, the correlations were lower. Sefton and

Howarth (1998) compared calibrated parameters of

the IHACRES model with attributes of 60 catchments

in England and Wales. The best correlations they

obtained were R2 ¼ 0:59 between a routing parameter

and percentage of aquifers, and R2 ¼ 0:69 between an

evaporation parameter and mean annual precipitation.

For the storage parameters, no significant correlations

were obtained. Seibert (1999) related the model

parameters of the HBV model to attributes of 11

Swedish catchments within the NOPEX area. Some

relationships between lake percentage and soil

parameters found by Seibert (1999) called the process

basis of their model into question as they could not be

explained by hydrologic reasoning. In contrast,

relationships between forest percentage and snow

parameters supported the process basis of their model.

They found the best correlations between a non-

linearity parameter of runoff generation and catch-

ment area with a Spearman rank correlation coeffi-

cient of R2 ¼ 0:87; but most parameters exhibited

hardly significant correlations with catchment

attributes.

These typically low correlations are likely to

translate into rather low model performances for the

ungauged catchment case as indicated by a number of

regionalisation studies. Seibert (1999) for the 11

Swedish catchments found a decrease of the median

Nash–Sutcliffe model efficiency of 0.81–0.79 when

moving from calibrated parameters to regionalised

parameters for the same set of catchments, however,

the median efficiencies decreased to 0.67 for a

separate set of seven catchments. A recent example

of a regional application of a conceptual model has

been presented by Beldring et al. (2002). They used

141 catchments in Norway for calibrating a version of

the HBV model. They then treated 43 additional

catchments as ungauged and regionalised the model

parameters as a function of land use classes. For both

sets of catchments, they found median Nash–Sutcliffe

efficiencies of 0.68 and concluded that the regionali-

sation method represented the main features of
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the landscape well. However, for 20% of the second

set of stations, the efficiencies were less than 0.3.

There are two alternative explanations of the

relatively poor correlations between model par-

ameters and catchment attributes and hence relatively

poor performances of catchment models for the

ungauged case. One explanation is that the catchment

attributes used may not be very relevant for catchment

response. For soil type, this is certainly the case as

reflected by the usually poor predictive power of

pedotransfer functions (Grayson and Blöschl, 2000).

The other explanation is that there may be significant

uncertainty in the calibrated parameter values, which

may cloud the underlying relationship between

calibrated model parameters and catchment attributes

(e.g. Gottschalk, 2002). An analysis of parameter

uncertainty should therefore be an integral part of any

regionalisation study of catchment models. Parameter

uncertainty may result from model over-parameter-

isation and from data errors (Bergström, 1991; Post

and Jakeman, 1999). Most of the analyses of

parameter uncertainty in the literature are based on

Monte Carlo simulations for the same catchment

(Beven and Binley, 1992). Uhlenbrook et al. (1999),

for example, analysed the parameter uncertainty of

the HBV model for a small mountainous catchment

using Monte Carlo simulations. They found some of

the parameters such as the maximum soil moisture

storage and the lower zone storage coefficient to be

poorly defined while other parameters such as the

degree day factor (DDF) were much better con-

strained. A similar study was performed by Seibert

(1997) for a number of Swedish catchments, but the

uncertain parameters were not the same as those in the

study of Uhlenbrook et al. (1999). This suggests that

parameter uncertainty significantly depends on the

catchments studied and data aspects in addition to the

model structure. An alternative to Monte Carlo studies

is calibrating the model on different subperiods and

comparing the calibrated parameters for the respect-

ive subperiods. This is in fact a more stringent test of

parameter robustness than Monte Carlo analyses as it

tests both the identifiability of parameters and the

stationarity of the data and their quality. The

difference of the parameters of the two subperiods is

a measure of the sum of the uncertainties due to poor

parameter identifiability and due to data problems. If

the calibrated model parameters for the subperiods are

similar, then the uncertainty can be assumed to be

small. However, relatively long data series are needed

for this type of test to be meaningful.

The aim of this paper is to assess the potential of

regionalising the parameters of a conceptual daily

water balance model for the ungauged catchment

case. We use hydrologic data from 308 catchments

over a period of 23 years, which will likely allow us to

draw more generic inferences on regionalising catch-

ment model parameter than has been possible in most

previous studies. Among other things we are able to

address the parameter uncertainty issue through a

comparison of calibrated parameters for two subper-

iods. Specifically, we address the following research

questions: (a) what are the spatial patterns of

calibrated model parameters and can they be inter-

preted based on process reasoning; (b) how well are

they related to catchment attributes; and (c) what is

the model performance for the case of ungauged

catchments using different regionalisation pro-

cedures? We use the same model structure for all

catchments. For a regional study as the one presented

in this paper, it may not be feasible to compare

different model structures, as one would perhaps do if

one focused on a single catchment. Also, using

different model structures in different catchments

would render a regional comparison of model

parameters difficult, if not impossible. In the analyses

of calibration parameters and the regionalisation

comparisons, we then focus only on those catchments

with acceptable model performance.

In the next chapter, we present the data, followed

by a description of the model. We then analyse the

parameter uncertainty and address each of the three

research questions in sequence.

2. Data

The study region is Austria which is hydrologically

quite diverse, ranging from lowlands in the east to

high alpine catchments in the west (Fig. 1). Elevations

range from less than 200 m a.s.l. to more than 3000 m

a.s.l. Mean annual precipitation is less than 400 mm/

year in the east and almost 3000 mm/year in the west.

Land use is mainly agricultural in the lowlands,

forested in the medium elevation ranges, while alpine
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vegetation and rocks prevail in the highest

catchments.

The study period is 1976–1997. The model input

data are daily values of precipitation, air temperature

and potential evaporation. Precipitation data from

1029 stations, and air temperature data and potential

evaporation from 212 stations have been used.

Potential evaporation has been estimated from daily

temperature and potential sunshine duration by a

modified Blaney–Criddle equation (DVWK, 1996).

The estimates were compared to estimates by the

Penman equation for a subset of the stations, where

radiation data were available. This comparison

indicated small biases of the Blaney – Criddle

equation for the study area. The daily values of

precipitation, air temperature and potential evapo-

transpiration were spatially interpolated by external

drift kriging (Deutsch and Journel, 1997) using

elevation as additional information. Fig. 1 indicates

that, with a few exceptions, all catchments contain at

least one precipitation station, so one would not

expect large interpolation errors. These spatial fields

were then superimposed on the catchment boundaries

to derive catchment average values for each day. Two

data sets of catchment boundaries were used (Fig. 1).

Most of the boundaries were derived from a digital

database digitised from the Austrian 1:50000 scale

map (ÖK 50). The remaining boundaries were derived

from a digital elevation model. All catchment

boundaries were checked manually using the ÖK 50

map. Catchment centroids were derived from the

digital catchment boundaries to measure distance

between catchments.

To calibrate and verify a catchment model, daily

runoff data were used. In a first step, we carefully

screened the data for errors and, in a second step, we

removed all stations with significant anthropogenic

effects from the data set (Piock-Ellena and Blöschl,

1998). Anthropogenic effects were assessed in terms

of the presence of significant reservoirs in the

catchment (ratio of volume and catchment area larger

than 0.2 m) and the presence of significant water

transfers (effective catchment area larger than 150%

or less than 50% of the topographic catchment area).

In a third step, we performed some initial analyses to

examine whether it was possible to close the long term

water balance for the remaining catchments. In a

number of catchments, this was indeed not possible

because of significant subsurface flows across the

topographic catchment boundaries due to karstic

conditions and porous aquifers. Those catchments

were not further used in this paper. After the screening

procedures, a set of 459 gauged catchments with

reliable runoff data remained. The areas of these

Fig. 1. Topography (m a.s.l.) of Austria and boundaries of the gauged catchments used in this paper. The dots show the raingauge locations.
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catchments range from 3 to 5000 km2 with a median

of 162 km2.

A number of catchment attributes were used.

Average catchment elevation and average topo-

graphic slope were derived from the digital elevation

model. Mean annual precipitation and mean maxi-

mum annual daily precipitation (i.e. the long term

mean of the series) were spatially interpolated using

observed precipitation from the raingauges in Fig. 1.

The record lengths ranged between 45 and 97 years.

Catchment average values were then found by

integration within each catchment boundary. River

network density was calculated from the digital river

network map at the 1:50000 scale for each catchment.

The boundaries of porous aquifers were taken from

the Hydrographic Yearbook (HZB, 2000), and by

combining them with the catchment boundaries, the

areal portion of porous aquifers in each catchment was

estimated. The FARL (flood attenuation by reservoirs

and lakes) lake index was calculated according to IH

(1999, pp. 5/19-27). Digital maps of land use (Ecker

et al., 1995), regional soil types (based on the FAO

map, see ÖBG, 2001) and the main geological

formations (Geologische Bundesanstalt, 1998) were

also used. These digital maps were combined with the

catchment boundaries to derive areal portions of each

land use type, soil type, and geological unit.

3. Model structure and model calibration

The model used in this paper is a lumped

conceptual rainfall-runoff model, following the struc-

ture of the HBV model (Bergström, 1976). The model

runs on a daily time step and consists of a snow

routine, a soil moisture routine and a routing routine.

The snow routine represents snow accumulation and

melt by a simple degree day concept involving DDF.

Catch deficit of the precipitation gauges during

snowfall is corrected by a snow correction factor,

SCF. The soil moisture routine represents runoff

generation and changes in the soil moisture state of

the catchment and involves three parameters, the

maximum soil moisture storage, FC, a parameter

representing the soil moisture state above which

evaporation is at its potential rate, termed the limit for

potential evaporation, LP, and a parameter in the non-

linear function relating runoff generation to the soil

moisture state, termed the non-linearity parameter,

beta. The response function represents runoff routing

on the hillslopes, and consists of an upper and a lower

soil reservoir. Excess rainfall enters the upper zone

reservoir and leaves this reservoir through three paths,

outflow from the reservoir with a fast storage

coefficient of k1; percolation to the lower zone with

a constant percolation rate cperc; and, if a threshold

LSuz of the storage state is exceeded, through an

additional outlet with a storage coefficient of k0:

Water leaves the lower zone with a slow storage

coefficient of k2: The outflow from both reservoirs is

then routed by a triangular transfer function repre-

senting runoff routing in the streams, where croute is a

free parameter. This model involves a total of 11

calibration parameters. A more detailed description of

the model is given in Appendix A.

We calibrated the model parameters to observed

runoff making use of an automated procedure that

involves an objective function consisting of five

terms. The first term involves the Nash and Sutcliffe

(1970) coefficient of efficiency, ME, of the match of

simulated and observed daily runoff (Eq. (B1)). The

second term involves the volume error of runoff, VE

(Eq. (B2)). The third and fourth terms are penalty

functions to avoid snow and moisture to accumulate

without bounds over the years (Eq. (B3)). The fifth

term is a penalty function that allows to include an

informed guess about the a priori distribution of each

parameter (Table A1). The weights associated with

the five terms were determined by test computations.

More details on the objective function are given in

Appendix B. We optimised the objective function

using the shuffled complex evolution (SCE-UA)

scheme (Duan et al., 1992).

In test simulations, not shown here, we used the

model efficiency as the sole objective function. These

simulations resulted in higher calibration efficiencies

than those from the compound objective function but

the verification efficiencies were lower. This indicates

that the compound objective function used here

results in a more robust parameter estimation. As

the main focus of this paper was on the estimation and

use of model parameters rather than on optimising at-

site streamflow simulations, the use of a compound

objective function is preferable.

The period from 1976 to 1997 was split into two

11-year periods. In a first step, the parameters were
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calibrated to the period from January 1, 1987 to

December 31, 1997 and verified for the period from

January 1, 1976 to December 31, 1986. In a second

step, the two periods were swapped, i.e. the model was

calibrated to the period from 1976 to 1986 and

verified for the period from 1987 to 1997. One year

prior to the beginning of each period was used as a

spin up period. Catchments for which less than 1825

days ( ¼ 5 years) of observed runoff data were

available in any of the periods were not used in the

further analysis. For some of the catchments,

the calibration efficiency was so poor that we

concluded there may still be data problems and/or

problems with the model structure. Catchments with

calibration efficiencies ME , 0:5 or volume errors l
VEl . 0:25 were, therefore, not used in the further

analysis. The remaining number of catchments was

308. These were used for all analyses in this paper.

We judged the model performance by a split

sample test in the terminology of Klemeš (1986). We

compared simulated and observed runoff in terms of

model efficiencies ME (Eq. (B1)) and volume errors

Fig. 2. Assessment of parameter uncertainty. Model parameters calibrated on the period 1976–1986 plotted against those calibrated on the

period 1986–1997.
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VE (Eq. (B2)) for the calibration period as well as for

the verification period, which was not used for

calibration.

4. Parameter uncertainty

We judged the reliability of the model parameters

by comparing the parameters calibrated for the 1987–

1997 period with those calibrated for the 1976–1986

period. The calibrated parameters for the two periods

have been plotted against each other in Fig. 2. If the

parameters for the two periods are similar, i.e. cluster

around the 1:1 lines, then the uncertainty can be

assumed to be small while a large scatter indicates

large uncertainties. The correlation coefficients and

the fraction of catchments for which the differences

between the two calibrated parameter sets is smaller

than 5, 10 and 50% of the possible parameter range

are given in Table 1. The parameters show significant

differences in their uncertainty. When judging the

uncertainty jointly by the figures in Table 1 and the

visual appearance in Fig. 2, the most uncertain

parameters are the slow storage coefficient, k2 and

the routing parameter, croute: The parameters with the

smallest uncertainties are the fast storage coefficient,

k1 and the threshold storage coefficient, k0: While SCF

gives large correlation coefficients, they are due to

SCF values close to one in most catchments with

a small number of outliers. We will be able to attribute

more credibility to relationships between the latter

parameters and catchment attributes than to relation-

ships involving the former parameters. The non-

linearity parameter, beta, exhibits a more complex

pattern. There is little scatter for small beta values but

significant scatter for large beta values. This implies

that for catchments that behave linearly (small beta

values), beta can be better identified than for

catchments that behave more non-linearly.

It is interesting to compare these results with those

of other authors that have examined a similar model.

In Uhlenbrook et al. (1999), the most uncertain

parameters were FC and k2; while the most certain

parameters were DDF and LP. In Seibert (1997), the

uncertain and certain parameters were cperc and LP,

and DDF, k1 and SCF, respectively. It seems that the

relative parameter uncertainty significantly depends

on the catchments studied.

To examine whether the model is over-parame-

terised, we analysed the interdependence of the

calibrated model parameters. If obvious interdepen-

dences were present, we would have to reconsider the

model structure with a view to reduce the number of

calibration parameters. In Fig. 3, we plotted all

calibrated parameters for the two periods against

each other. In the lower left half and the upper right

half of the matrix, the parameters calibrated on the

1987–1997 and 1976–1986 periods, respectively, are

shown. The ranges of the axes are the possible

parameter ranges as of Table A1. Overall, the

interdependences are weak, if at all present. The

exception is the relationship between the maximum

soil moisture storage, FC, and the limit for potential

evaporation, LP. LP is always equal or smaller than

FC, as defined in the model, so one would expect the

kind of dependence shown in Fig. 3. The interdepen-

dences of other parameters are much weaker. Those

that can be discerned can be interpreted on hydro-

logical grounds or interpreted based on the model

structure. There is a tendency for k0 and k1 to be

negatively related. These two parameters are time

constants and, although the permissible parameter

ranges of the three parameters are quite different

(Table A1), one can take over the role of the other to

some extent, so one would expect a negative

correlation. The k0 and LSuz values exhibit a weak

negative dependence. As LSuz is the threshold beyond

Table 1

Parameter uncertainty: coefficient of determination, R2; as a

measure of how similar the model parameters calibrated for the

1987–1997 and 1976–1986 periods are, and fraction of catchments

exhibiting differences DP in calibrated parameters for the two

periods less than 5, 10 and 50% of the possible parameter range

Parameter R2 DP , 5% DP , 10% DP , 50%

DDF (mm/(day 8C)) 0.45 0.36 0.58 0.90

SCF (–) 0.63 0.92 0.93 0.95

FC (mm) 0.41 0.41 0.59 0.92

LP (mm) 0.41 0.43 0.62 0.94

beta (–) 0.52 0.44 0.59 0.91

k0 (days) 0.50 0.63 0.83 0.94

LSuz (mm) 0.42 0.53 0.74 0.95

k1 (days) 0.64 0.48 0.71 0.93

k2 (days) 0.35 0.33 0.50 0.89

cperc (mm/day) 0.51 0.45 0.60 0.91

croute (days2/mm) 0.09 0.38 0.64 0.94
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Fig. 3. Matrix of calibrated model parameters. Lower left half: calibration on period 1987–1997. Upper right half: calibration on period 1976–1986. Parameter ranges on the axes

are as of Table A1. For the SCF, the range is 1.0–1.5.
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which the k0 reservoir becomes operative, this type of

dependence would be expected. The k1 and LSuz

values exhibit a weak positive dependence which is

likely related to the dependences of k0 and LSuz; and

k0 and k1 discussed above. It is possible that there

exist more complex relationships between three or

more parameters, or regionally different relationships

which do not appear in the global scatter plots but,

given that the simple dependences are very weak, we

do not expect that the more complex relationships are

significant. We, therefore, believe that the number of

model parameters cannot be reduced easily by, say,

introducing functional relationships between the

parameters. An additional assessment of the potential

for over-parameterisation is given later in the paper in

the context of comparing calibration and verification

efficiencies of the model.

5. Spatial patterns of model parameters

As the parameters of the catchment model are

designed to represent the peculiarities of the runoff

dynamics of each catchment, there should exist spatial

patterns of the parameters that are co-located with the

physiographic patterns in the study region. The

similarities of the parameter patterns of the two

calibration periods are an indication of the parameter

reliability and identifiability. Figs. 4–7 show the

spatial patterns of the calibrated model parameter for

the two calibration periods.

In Fig. 4, the parameters of the snow module, DDF,

and SCF, for the 1987–1997 calibration period are

shown left, the parameters for the 1976–1986

calibration period are shown on the right hand side.

For the 1987–1997 period, the DDF values are large

in the prealpine regions in the north of the country as

well as in the hilly regions in the southeast of the

country. In early winter and spring, rainfall on an

existing snow pack is an important contribution to

runoff from these catchments. During these runoff

situations, air humidity is usually high and cloud

covers prevail which may induce large latent

heat fluxes and large long wave radiation fluxes

into the snow pack, hence the DDF for these

catchments is quite high. Values of the DDF of

Fig. 4. Patterns of calibrated snow model parameters (left: calibration period 1987–1997, right: calibration period 1976–1986). Top: degree day

factor, DDF, (mm/(day 8C)); bottom: snow correction factor, SCF (–).
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Fig. 5. Patterns of calibrated soil moisture model parameters (left: calibration period 1987–1997, right: calibration period 1976–1986). Top: Maximum soil moisture storage, FC

(mm); centre: limit for potential evaporation, LP (mm); bottom: non-linearity parameter, beta (–).
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Fig. 6. Patterns of calibrated storage parameters (left: calibration period 1987–1997, right: calibration period 1976–1986). Top: k0 storage coefficient (days); centre: fast storage

coefficient k1 (days); bottom: slow storage coefficient k2 (days).
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Fig. 7. Patterns of calibrated runoff response parameters (left: calibration period 1987–1997, right: calibration period 1976–1986). Top: storage threshold, LSuz (mm); centre:

percolation rate, cperc (mm/day); bottom: routing parameter, croute (days2/mm).
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about 3–4 mm/(day 8C) as shown for these catch-

ments are in the upper range of values reported in the

literature (WMO, 1986). In the Alpine catchments in

the west of the country, rain on snow is of minor

importance and radiation melt may contribute signifi-

cantly to runoff, thus the DDF values are much lower

(of the order of 1 mm/(day 8C)). A similar pattern of

the DDF has been found for the 1976–1986 period,

however, the difference between the high and low

altitude catchments is smaller.

The two patterns of the calibrated SCF, are similar

to each other, with low values in the lowland and

prealpine catchments of eastern Austria (see Fig. 1).

There are a few outliers, i.e. individual small

catchments with significantly larger SCF values than

the surrounding catchments, which are a result of no

raingauges being located in those catchments. Large

SCF values have been found for some of the high

Alpine catchments in western Austria. In the higher

altitude catchments, precipitation gauges are usually

more exposed to wind, and snowfall tends to occur at

lower temperatures, so one would expect larger

deficits. Catch deficits of up to 50% are not

unusual (Sevruk et al., 1998) which translate into

SCF values of up to 1.5. The largest SCF values found

here are 1.5.

In Fig. 5, the regional patterns of the soil moisture

parameters for the 1987–1997 calibration period are

shown left and those for the 1976–86 calibration

period are shown right. The maximum soil moisture

storage, FC (top), tends to exhibit large values in

southern Austria. At the northern fringe of the

high Alps and in most of the high alpine catchments

of Tyrol in the west of the country, the FC values are

small. The small FC values imply shallow hydro-

logically active soil depths, which may be realistic

given that bare rock covers a substantial portion of the

catchment areas in these regions. The patterns of

the two calibration periods are reasonably similar. The

patterns of the limit for potential evaporation, LP,

(Fig. 5, centre) are similar to those of FC. FC has been

defined as the upper limit of LP in the model and in

most catchments, LP is equal to FC (also see Fig. 3).

This means that there is a tendency for the

evapotranspiration not to be at its potential rate most

of the time. The non-linearity parameter, beta, (Fig. 5,

bottom) shows distinct patterns of high values in

eastern Austria and low values in western Austria for

both periods. Low values of beta are consistent with a

linear rainfall-runoff relationship and large event

runoff coefficients while the opposite is true for

large values of beta. The regional differences in beta

can thus be interpreted as implying a relatively linear

rainfall-runoff relationship and large runoff

coefficients in the wetter alpine catchment in the

west, and a non-linear rainfall-runoff relationship and

small runoff coefficients in the dryer lowland catch-

ments in the east. These differences in the linearity are

consistent with the general understanding of runoff

generation processes in different climates (see, e.g.

Goodrich et al., 1997).

In Fig. 6, the regional patterns of the storage

coefficients for both periods are shown. The values of

the k0 storage coefficient are smaller in the high alpine

catchments in the south and west of the country than

they are in the prealpine catchments of the north and

in the lowlands of the north and east. This implies

that, in the alpine catchments, flood runoff can be

flashy once a threshold of LSuz is exceeded. It is

possible that the small k0 values are related to a large

portion of surface flood runoff in these catchments.

The fast storage coefficient, k1; shows a tendency for

an inverse pattern to that of k0 with faster responses in

the prealpine catchments of the north than in the

alpine catchments of the south. The inverse pattern is

consistent with the weakly negative correlation

between k0 and k1 found in Fig. 3. The patterns of

k1 may be an indication that, in the alpine catchments,

direct runoff penetrates deeper into the subsurface

than in the rest of Austria. The slow storage

coefficient, k2; exhibits patterns with no obvious

interpretation although the patterns of the two periods

are similar.

In Fig. 7, the regional patterns of LSuz; cperc and

croute for both calibration periods are shown. It is not

easy to interpret these patterns from a hydrological

perspective. Slightly lower values of LSuz than the

global mean in the prealpine Danube region in the

north of the country, may indicate that it takes less

millimetres of rainfall in these catchments to produce

a flash flood with a response of k0 than in other parts of

Austria. The cperc parameter exhibits the largest values

in East Tyrol. The values of croute tend to be large in a

few catchments in northern Austria implying a more

non-linear channel response than in other catchments,

i.e. faster response with increasing discharge, but it is
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unclear what is the hydrologic reason for these

patterns.

For all the parameters in Figs. 4–7, the regional

patterns are similar for both periods although large

local differences occur. Part of the consistency may be

related to analyse nested catchments. However, a

closer examination of upstream and downstream

neighbours indicates that strong regional similarities

also exist across catchment boundaries. This suggests

that the calibrated parameters are able to represent the

regional or large-scale differences in the hydrological

conditions and hence the daily runoff regime in

Austria. One would, therefore, assume that it is

possible to derive regional relationships between the

calibrated parameter values and catchment attributes,

with the caveat that local differences, and to some

degree parameter identifiability issues, may generate

some noise.

6. Model parameters vs. catchment attributes

As a first step, we examined single correlations

between the calibrated model parameters and each

catchment attribute. The choice of catchment

attributes has been guided by a general appreciation

of the interaction between the runoff regime,

climate and physiography. We examined catchment

area, catchment average elevation, catchment aver-

age topographic slope, river network density,

portion of catchment area with porous aquifers,

the FARL lake index, the catchment average of

mean annual precipitation, the catchment average

of the long term mean of maximum annual daily

precipitation, two land cover classes (portions of

forest and glacier), three geologic units (portions of

Tertiary þ Quaternary, Calcareous Alps, Austroal-

pin crystalline) and two soil types (portions of

Rendzina and Cambisol). Examples of the relation-

ships between the calibrated model parameters and

the catchment attributes are shown in Fig. 8. The

ends of the error bars represent the parameter

values found for the two calibration periods, and

the full circles are the averages of the two periods.

Short error bars represent similar parameters for the

two periods, and hence reliable parameter values,

while large error bars represent uncertain parameter

values.

Fig. 8 shows the relationship between the fast

storage coefficient, k1; and catchment attributes. There

is a tendency for small values of the fast storage

coefficient not to occur in large catchments. This

implies that large catchments never have a very flashy

response, which is consistent with hydrologic experi-

ence. Similarly, high altitude catchments are never

very flashy. For the other attributes, no obvious

relationships exist. From a process-based reasoning,

one would hope to find a relationship between k1 and

attributes such as land use, geologic formation and/or

soil type but this is not the case. For any of the

attributes, the differences between the catchments are

larger than what can be attributed to the uncertainty

range of the error bars. This suggests that the lack of a

relationship is not only due to the parameter

uncertainty, but also due to the catchment attributes

being poor indicators of k1:

To examine this issue in more detail, for each

catchment, we interpreted the calibrated parameter

values of the two periods as the possible range of

parameters within the uncertainty of parameter

identifiability. We assumed that a true parameter

value exists and lies within this range. If for any

parameter value, within this range, a close correlation

with the catchment attributes can be demonstrated,

then the poor relationship is interpreted as a result of

parameter uncertainty. There may exist an underlying

relationship, which, however, is clouded by parameter

uncertainty. If, in contrast, the correlation remains

weak, then we suggest that there is no strong

underlying relationship and the parameter uncertainty

is relatively unimportant. We performed this analysis

by an iterative approach. In a first step, we computed a

simple linear regression between the average par-

ameters of the two calibration periods and each

catchment attribute. In a second step, we replaced the

average parameter for each catchment by the point of

intersection of the regression line and the parameter

range, spanned by the calibrated values of the two

periods. If the regression line did not intersect the

parameter range, we used the nearest point of the

parameter range instead. We then refitted a regression

line to the changed data points and repeated the

procedure until no improvement of the coefficient of

determination was found. We repeated this procedure

for each model parameter and each catchment

attribute. The coefficients of determination found by
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this iterative procedure are termed optimised coeffi-

cients of determination in this paper. They are always

larger than the usual coefficients of determination as

some of the parameter uncertainty is removed.

Table 2 shows the coefficients of determination,

R2; for the average parameters of the two periods and

each catchment attribute as well as the optimised

coefficients of determination in bold. Overall,

the correlations of the calibrated model parameters

and the catchment attributes are rather weak. The

attributes that are best related to the DDF, is the mean

annual precipitation. The non-linearity parameter,

beta, is mainly related to topographic elevation and

topographic slope, the latter likely being a conse-

quence of the interdependence of elevation and slope.

As discussed above, large beta values stand for low

Fig. 8. Calibrated values of the fast storage coefficient, k1 (days), plotted against catchment attributes. The ends of the error bars represent the

parameter values found for the two calibration periods (1987–1997 and 1976–1986) and the full circles are the averages of the two periods.
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runoff coefficients and non-linear runoff generation

behaviour, which prevail in the lowland catchments of

eastern Austria, hence there is a negative relationship

in Table 2. The k0 storage coefficient is negatively

correlated with elevation and slope, implying that

direct surface runoff may be particularly flashy in the

high altitude catchments. There is also a tendency for

the wetter catchments (large mean annual precipi-

tation) to exhibit a flashy response and those

catchment with a large portion of Tertiary and

Quaternary deposits appear to have a tendency for

slower response. Both controls are consistent with

hydrological reasoning. The storage coefficients, k1

and k2; exhibit hardly any correlations. This is

surprising as one would expect these two parameters

to be related to soil type and geology.

It is now interesting to examine whether the

optimisation procedure improves the correlations

significantly (Table 2, bold numbers). For most

parameters, attribute combinations where some

relationship exists, the correlations increase. The

increase in the coefficient of determination is typically

Table 2

Coefficients of determination, R2; of single linear regressions between average calibrated model parameters of the two periods and catchment

attributes (first numbers). Second numbers in bold are the R2 from optimised linear regression

R2 (mean) R2 (optimised) DDF SCF FC LP Beta k0 LSuz k1 k2 cperc croute

Area 0.012 0.012 0.012 0.012 0.002 0.002 0.07þ 0.02þ 0.012 0.052 0.00þ

0.022 0.012 0.03 – 0.042 0.002 0.012 0.14þ 0.03þ 0.022 0.072 0.01þ

Elevation 0.162 0.10þ 0.01þ 0.05þ 0.262 0.222 0.01þ 0.01þ 0.002 0.00þ 0.062

0.202 0.12þ 0.03þ 0.14þ 0.342 0.312 0.02þ 0.01þ 0.002 0.00þ 0.182

Slope 0.162 0.04þ 0.002 0.01þ 0.252 0.272 0.02þ 0.01þ 0.002 0.01þ 0.092

0.212 0.05þ 0.002 0.05þ 0.312 0.372 0.02þ 0.01þ 0.002 0.01þ 0.232

RND 0.13þ 0.042 0.012 0.012 0.09þ 0.00þ 0.122 0.052 0.012 0.022 0.012

0.191 0.052 0.032 0.022 0.141 0.011 0.222 0.072 0.042 0.022 0.012

Porous aquifers 0.01þ 0.042 0.01þ 0.00þ 0.01þ 0.06þ 0.002 0.00þ 0.03þ 0.00þ 0.002

0.01þ 0.042 0.01þ 0.01þ 0.01þ 0.06þ 0.012 0.00þ 0.05þ 0.001 0.012

FARL 0.01þ 0.00þ 0.01þ 0.01þ 0.01þ 0.05þ 0.002 0.022 0.00þ 0.01þ 0.00þ

0.01þ 0.01þ 0.01þ 0.01þ 0.01þ 0.08þ 0.002 0.022 0.00þ 0.00þ 0.001

MAP 0.182 0.00þ 0.03þ 0.06þ 0.082 0.192 0.05þ 0.05þ 0.00þ 0.01þ 0.012

0.302 0.00þ 0.04þ 0.11þ 0.112 0.292 0.101 0.06þ 0.00þ 0.01þ 0.032

MADP 0.082 0.00þ 0.072 0.062 0.062 0.022 0.002 0.022 0.002 0.01þ 0.072

0.122 0.01þ 0.112 0.102 0.072 0.022 0.002 0.032 0.002 0.021 0.202

Forest 0.002 0.032 0.012 0.022 0.04þ 0.002 0.00þ 0.012 0.002 0.01þ 0.012

0.002 0.032 0.042 0.072 0.081 0.002 0.00þ 0.022 0.012 0.02þ 0.032

Glacier 0.022 0.32þ 0.001 0.001 0.062 0.002 0.002 0.002 0.002 0.012 0.012

0.032 0.331 0.011 0.021 0.102 0.002 0.002 0.002 0.102 0.022 0.032

Tertiary þ Quartenary 0.17þ 0.012 0.01þ 0.002 0.13þ 0.13þ 0.092 0.012 0.07þ 0.012 0.02þ

0.24þ 0.022 0.02þ 0.002 0.17þ 0.17þ 0.182 0.012 0.11þ 0.012 0.051

Calcareous Alps 0.022 0.00þ 0.052 0.062 0.02þ 0.002 0.010þ 0.032 0.002 0.00þ 0.022

0.022 0.01þ 0.082 0.102 0.02þ 0.002 0.00þ 0.052 0.002 0.00þ 0.052

Austroalpin crystalline 0.032 0.00þ 0.10þ 0.11þ 0.002 0.042 0.03þ 0.03þ 0.00þ 0.002 0.00þ

0.062 0.01þ 0.12þ 0.22þ 0.002 0.062 0.05þ 0.05þ 0.00þ 0.002 0.00þ

Rendzina 0.002 0.002 0.042 0.052 0.002 0.002 0.00þ 0.022 0.002 0.02þ 0.012

0.002 0.002 0.052 0.092 0.002 0.002 0.00þ 0.032 0.002 0.031 0.042

Cambisol 0.17þ 0.032 0.00þ 0.00þ 0.16þ 0.01þ 0.042 0.002 0.01þ 0.002 0.00þ

0.26þ 0.042 0.00þ 0.00þ 0.24þ 0.02þ 0.072 0.002 0.03þ 0.002 0.00þ

Plus and minus signs relate to direct and indirect relationships, respectively. Catchment attributes are: catchment area; catchment average

elevation; catchment average topographic slope; river network density, RND; portion of catchment area with porous aquifers; the FARL lake

index; the catchment average of mean annual precipitation, MAP; catchment average of the long term mean of maximum annual daily

precipitation, MADP; two land cover classes (portions of forest and glacier); three geologic units (portions of Tertiary þ Quaternary,

Calcareous Alps, Austroalpin crystalline); two soil types (portions of Rendzina and Cambisol)
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on the order of one third. However, for combination

with low or non-existing correlations, the optimis-

ation hardly increases the coefficients of determi-

nation. This means that the parameter uncertainty

does not cloud the relationship between calibrated

model parameters and catchment attributes to a

significant extent. It should be noted that Table 2

shows single regression of each parameter with only

one catchment attributes. It is possible that the

relationships are more complex and involve more

than one attribute. Multiple regressions are examined

later in this paper.

The low correlations obtained in this study are

similar to those found in other studies that have

examined a large number of catchments such as Peel

et al. (2000). It appears that studies involving only a

few catchments typically yield significantly better

correlations. One explanation may be that the latter

studies (such as Post and Jakeman, 1999; Seibert,

1999) have, perhaps, been performed in hydrologi-

cally more uniform regions than is the case here. It is

possible that in more uniform regions, the relation-

ships are better defined. Later in this paper, we will,

therefore, also examine local regressions that allow

for the regression coefficients to change with space as

the study region of this paper is indeed very

heterogeneous. Another explanation is that, for

small sample sizes, spurious correlations are more

likely to occur than for a large sample size as

examined here.

The most informative attributes, for a particular

model parameter, found by other authors (e.g. Peel

et al., 2000; Sefton and Howarth, 1998; Seibert, 1999)

are not the same as those obtained here. This is not

surprising, as one would expect the relationships

between parameters and attributes to be a function of

climate region, model structure and data aspects. This

finding corroborates the notion that it will be difficult,

if at all possible, to find universal relationships

between model parameters and catchment attributes,

at least at the regional scale as examined in this study.

7. Model efficiencies of regionalised model

parameters

In this chapter, we more closely examine the

potential of using catchment attributes for predicting

model parameters and put it into the context of other

regionalisation methods. Ultimately, the predictive

power of catchment attributes can be assessed by how

well runoff can be simulated if parameters are only

derived from catchment attributes without making use

of locally observed runoff data. This is the important

case of runoff simulations in ungauged catchments.

When using regionalised parameters from catchment

attributes, it is likely that the model performance will

decrease as compared to using locally calibrated

parameters. The decrease in model performance when

moving from gauged catchments with local cali-

bration to ungauged catchments, in this paper, is

termed the spatial loss in model performance. For the

predictive case, one would expect an additional loss in

model performance as a result of moving from the

calibration period to the prediction. In a simulation

study as in this paper, the predictive performance is

assessed by an independent verification period. The

decrease in model performance when moving from

the calibration period to the verification period, in this

paper, is termed the temporal loss in model perform-

ance. We first examine the temporal loss and then the

spatial loss in model performance.

Temporal loss in model efficiency. In Fig. 9, the

Nash–Sutcliffe model efficiencies (Eq. (B1)) for the

verification periods have been plotted vs. the effi-

ciencies for the calibration periods. The left panel

shows the efficiencies of the 1976–1986 verification

period and the 1987–1997 calibration period and the

right panel shows the efficiencies for the swapped

periods. An efficiency of 1 implies a perfect match of

simulated and observed daily streamflow hydrographs

and lower values imply increasingly poorer matches.

In the left panel, most points are below the 1:1 line,

which means that the model efficiencies tend to

decrease when moving from the calibration to the

verification periods. For the swapped periods, the

points cluster around the 1:1 line, so the performances

of the calibration and verification periods are similar.

For clarity, catchments with verification efficiencies

smaller than 0.2 are not shown in the figure. In the left

panel, there were 16 catchments and in the right panel,

there were 12 catchments.

The median efficiencies over all catchments are

given in Table 3 for the at-site case. As can be seen

from Table 3, the median decreases from 0.69 to 0.61

in the case of the left panel and slightly increases from
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0.65 to 0.66 in the case of the right panel. This means

that the temporal loss in the two cases is 0.08 and

20.01, respectively, or 0.04 on average over all years.

There is a tendency for the model to perform better for

the more recent period. This is may be related to

climate conditions that can be represented more

accurately by the model or to a better data quality of

the more recent period. The instrumentation in Austria

has improved over the last years, which may

contribute to the better model performance. It is,

therefore, also of interest to compare the calibration

and verification efficiencies for the same period. For

the more recent period, the median efficiencies

decrease from 0.69 to 0.66 and for the earlier period,

the median efficiencies decrease from 0.65 to 0.61, i.e.

a loss of about 0.04 in both cases. This is a very small

loss in model efficiency and allows us to draw

important inferences on the potential of over-para-

meterisation of the model used. Bergström (1991, p.

129), for example, states: “If the model performance

is significantly lower for the independent period used

for validation than it was for the calibration period the

modeller should seriously consider if there are

problems of over-parameterisation. The model may

simply have too many degrees of freedom for the

information contained in the observed records.” We

Fig. 9. Nash–Sutcliffe model efficiencies for the verification vs. calibration periods.

Table 3

Model performance for gauged catchments (at-site) and ungauged catchments (various regionalisation procedures) both for the calibration and

the verification periods

Median/scatter (MEmed/ME75 – 25%) Cal.87-97 Ver.76-86 Cal.76-86 Ver.87-97 Cal. avg. Ver. avg.

At-site 0.69/0.10 0.61/0.11 0.65/0.11 0.66/0.11 0.67/0.10 0.63/0.11

Preset 0.37/0.35 0.27/0.43 0.27/0.43 0.37/0.35 0.32/0.39 0.32/0.39

Global mean 0.42/0.27 0.32/0.35 0.33/0.33 0.41/0.25 0.37/0.30 0.36/0.30

Global regression 0.52/0.18 0.46/0.28 0.47/0.27 0.52/0.18 0.50/0.22 0.49/0.23

Local regression 0.55/0.19 0.48/0.28 0.50/0.28 0.54/0.21 0.53/0.23 0.51/0.25

Optimised local regression 0.56/0.19 0.49/0.27 0.49/0.26 0.56/0.17 0.53/0.22 0.53/0.22

Average of nested neighbours 0.60/0.15 0.54/0.20 0.55/0.22 0.57/0.16 0.57/0.18 0.56/0.18

Kriging 0.59/0.13 0.53/0.19 0.55/0.22 0.59/0.13 0.57/0.18 0.56/0.16

Kriging without nested neighbours 0.56/0.15 0.51/0.22 0.53/0.24 0.57/0.16 0.55/0.19 0.54/0.19

First value: median Nash–Sutcliffe efficiency. Second value: difference of 75 and 25% quantiles of efficiencies, i.e. a measure of scatter.

High model performances are associated with large medians and small differences of the 75–25% quantiles. The columns denoted ‘avg.’ are the

average efficiency measures of the 1987–1997 and 1976–1986 periods.
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believe that the small decrease in median model

efficiency when moving from the calibration to the

verification period is a clear evidence for the model

not being over-parameterised.

It is also interesting that Fig. 9 indicates that the

calibration and verification efficiencies exhibit some

correlation but there is not perfect relationship. This

suggests that a good calibration efficiency does not

necessarily entail a good predictive performance of

the model. This results corroborates the generally held

notion of the importance of split sample verification

(e.g. Klemeš, 1986).

Spatial loss in model efficiency. The analysis of the

regionalisation error, or spatial loss of model

efficiency, is based on a jack-knifing approach,

which emulates the case of ungauged catchments. In

this approach, we treat one gauged catchment as

ungauged and simulate the water balance dynamics

using parameters estimated from regional information

only. In a second step, we estimate the model

performance by comparing the simulated and

observed hydrographs. This comparison gives us a

Nash–Sutcliffe efficiency and a volume error. We

repeat the analysis for each catchment in turn and

calculate the statistics of these error measures for all

catchments. The comparison of these error measures

with those for the locally calibrated case, both for the

calibration and verification periods, indicates what

decrease of model performance one would have to

expect when moving from gauged to ungauged

catchments.

We examined eight regionalisation methods. In a

first regionalisation method, we selected one par-

ameter set a priori (preset parameters) and applied it to

all catchments. The choice is based on expert

judgement and is identical to the most likely

parameter values as used in the a priori distribution

of the calibration procedure (Table A1). In a second

method, we selected each parameter as the mean value

of all the calibrated values in Austria and applied this

parameter set to all catchments (termed global mean).

In a third, fourth and fifth method, we used catchment

attributes. As a representative of regionalisation

approaches that are based on catchment attributes,

we used multiple regressions with three catchment

attributes. As some of the catchment attributes are

highly skewed, one would expect that the residuals are

also skewed. Standard regression, however, requires

the residuals to be normally distributed. We, there-

fore, transformed all catchment attributes to be

standard normally distributed. We estimated the

regression coefficients by ordinary least squares. Out

of the 15 available attributes, we only used the set of

those three attributes that were associated with the

largest multiple correlation coefficient for each station

and each model parameter. The rationale of this

choice is that a large correlation coefficient may also

be a good indicator of the predictive power of the

attributes. In the third regionalisation method, we

used a global regression system based on all, but one

catchments at the same time. As only one catchment

out of 308 catchments is left out in turn in the jack-

knifing approach, the regression coefficients are

always very similar. The fourth method is similar to

the third method but we only included a local

neighbourhood of 50 km radius in the regression,

which resulted in a regression system involving about

20–50 stations. The fifth method is similar to the

fourth method but we optimised the correlation

coefficients within the range of the parameters

obtained from the two calibration periods analogously

to the way we obtained the bold coefficients of

determination in Table 2. We examined three

alternative regionalisation methods that do not use

catchment attributes (methods six to eight). In the

sixth method, we used the average parameter values

of the immediate upstream and downstream neigh-

bours of each catchment (termed average of nested

neighbours). For headwater catchments, we only used

the parameters from the downstream neighbour. The

rationale behind this method is that these are nested

catchments so one would expect the parameters to be

similar. The seventh and eighth methods are based on

spatial interpolation by kriging (Deutsch and Journel,

1997). The kriging estimates are only based on spatial

proximity between the gauged catchments and the

ungauged site of interest and do not use catchment

attributes. We measured the spatial distance between

two catchments by the spatial distance of the

respective catchment centroids. We used ordinary

kriging based on an exponential variogram with a

nugget of 10% of the observed variance, a sill equal to

the variance, and a range of 60 km. This is consistent

with the empirical variograms of most of the

calibrated model parameters. In the seventh method,

we used all catchments for the spatial interpolation
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(with the exception of the ungauged catchment), while

in the eighth method, we left out the immediate

upstream and downstream neighbours to assess the

effect of nested catchments. We termed the eighth

method kriging without nested neighbours.

In Fig. 10, the Nash–Sutcliffe model efficiencies

using regionalised parameters have been plotted

against the model efficiencies using calibrated par-

ameters for the 1987–1997 period. The labels (a)–(h)

relate to the eight methods described above. Table 3

gives the medians and, as a measure of scatter, the

differences of the 75 and 25% quantiles of the

efficiencies for each of the regionalisation methods.

For comparison, Table 4 gives the attending volume

errors for all cases. The vertical axes in Fig. 10 relate

to the columns labelled ‘Cal.87-97’ (lines 2–9) in

Tables 3 and 4. For almost all catchments, the model

efficiencies based on regionalised parameters are

significantly lower than those based on calibrated

parameters (Fig. 10). This is also true of the other

period as indicated in Tables 3 and 4. This finding is

not surprising as the Nash–Sutcliffe efficiency is an

important component of the objective function in the

calibration procedure (Appendix B), so one would

expect a significant decrease of the optimised value.

Using preset parameters (Fig. 10a, and second line

in Tables 3 and 4) produces the poorest regionalisa-

tion results, both in terms of median efficiencies,

scatter of the efficiencies and volume errors. The

median efficiencies for the two periods are 0.37 and

Fig. 10. Nash–Sutcliffe model efficiencies of regionalised versus calibrated parameters for the period 1987–1997. (a) Preset parameters,

(b) global mean of all catchments, (c) global regression with catchment attributes using all catchments, (d) local regression within a 50 km

neighbourhood, (e) optimised local regression, (f) average parameters of immediate upstream and downstream (nested) neighbours, (g) kriging,

(h) kriging without nested neighbours.
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0.27. This means that the predictive power of

parameters selected on the basis of expert judgement

is rather poor. Using the global mean parameter set

(Fig. 10b, and third line in Tables 3 and 4) slightly

improves the predictive performance on all scores but

the performance is still poor. It is clearly very

important to account for differences between catch-

ments, and using the same parameter set for the entire

study region is inappropriate. Fig. 10c and fourth line

in Tables 3 and 4 represent the case of using a global

regression with catchment attributes. The median

efficiencies increase to 0.52 and 0.47 for the two

calibration periods and Fig. 10c indicates that quite a

few of the points are closer to the 1:1 line. This

suggests that the catchment attributes do contain

valuable information that can be used to improve the

parameter estimates beyond global mean values.

Using the local regressions yet slightly improves the

efficiencies and there is also a slight decrease in the

scatter of the volume errors as indicated by Table 4.

This result suggests that it is useful to account for

regional differences in the regression equations. As

compared to the at-site calibrated simulations, the loss

in median model efficiency for the regionalisation

based on local regressions is 0.67 2 0.53 ¼ 0.14

averaged over the two calibration periods. This is

about three times the temporal loss of 0.04. The

optimised local regression performs only slightly

better than the local regression, which suggests that

accounting for parameter uncertainty does not

improve the regionalisation performance much. The

regionalisation method that uses the average par-

ameters of immediate upstream and downstream

(nested) neighbours performs best on most scores

(Fig. 10f, and seventh line in Tables 3 and 4). The

median model efficiencies for the two calibration

periods are 0.60 and 0.55, which are the largest values

of all methods and the scatter is only 0.15 and 0.22.

Similarly, the scatter of the volume errors is the

smallest of all methods (0.22 and 0.21). As compared

to the at-site calibrated simulations, the loss in median

model efficiency for the regionalisation based on

nested neighbours is 0.67 2 0.57 ¼ 0.10, averaged

over the two calibration periods. This is about twice

the temporal loss of 0.04. Kriging performs only

slightly poorer. There is a slight decrease in

performance for the case of kriging, where immediate

(nested) neighbours are not used for the interpolation

(Fig. 10h, and last line in Tables 3 and 4). For this

method, the median efficiencies are still 0.56 and 0.53.

This means that the favourable performance of

kriging is not only a result of the same portion of

the landscape draining into nested catchments. There

appear to exist important similarities of model

parameters across catchment boundaries. It is likely

that these similarities are related to real hydrological

controls that vary smoothly in space. An important

finding is that the methods based on spatial proximity

alone (the last three methods) all perform better than

any of the regression methods based on catchment

Table 4

Volume errors for gauged catchments (at-site) and ungauged catchments (various regionalisation procedures) both for the calibration and the

verification periods

Median/scatter (VEmed/VE75 – 25%) Cal.87-97 Ver.76-86 Cal.76-86 Ver.87-97 Cal. avg. Ver. avg.

At-site 0.00/0.04 20.05/0.10 0.00/0.10 0.04/0.05 0.00/0.04 20.01/0.10

Preset 0.13/0.32 0.03/0.33 0.03/0.34 0.13/0.32 0.08/0.33 0.08/0.32

Global mean 0.07/0.31 20.03/0.33 20.04/0.32 0.06/0.31 0.02/0.32 0.02/0.32

Global regression 0.08/0.30 20.02/0.27 20.02/0.24 0.06/0.27 0.03/0.27 0.02/0.27

Local regression 0.05/0.25 20.04/0.24 20.01/0.22 0.07/0.26 0.02/0.24 0.02/0.25

Optimised local regression 0.05/0.26 20.04/0.24 20.02/0.23 0.06/0.25 0.02/0.24 0.01/0.24

Average of nested neighbours 0.07/0.22 20.02/0.20 0.01/0.21 0.09/0.23 0.04/0.21 0.04/0.21

Kriging 0.07/0.22 20.02/0.27 0.00/0.25 0.10/0.21 0.04/0.23 0.04/0.24

Kriging without nested neighb. 0.06/0.23 20.02/0.26 0.00/0.26 0.10/0.23 0.03/0.25 0.04/0.24

First value: median volume error. Second value: difference of 75 and 25% quantiles of volume errors, i.e. a measure of scatter. High model

performances are associated with small volume errors (both median and scatter). The columns denoted ‘avg.’ are the average volume error

measures of the 1987–1997 and 1976–1986 periods.
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attributes. Apparently, the catchment attributes used

here are not very representative of the real physical

controls on the water balance dynamics.

Spatio-temporal loss in model efficiency. Fig. 11

shows the combined effect of temporal and spatial

losses in the model performance. Specifically, the

vertical axes in Fig. 11 relate to the columns labelled

‘Ver.76-86’ in Tables 3 and 4, i.e. verification

efficiencies for the period 1976–1986 using regiona-

lised parameters estimated from the period

1987–1997. The relative performance of the regio-

nalisation methods in the combined case is similar to

that in the spatial case. The poorest performances are

obtained for preset parameters and the global mean

parameter values. The local regressions perform

slightly better than the global regressions and the

optimised local regressions are still a little better.

As compared to the at-site calibrated simulations,

the combined loss in median model efficiency for the

regionalisation based on local regressions is

0.67 2 0.51 ¼ 0.16 averaged over the two verifica-

tion periods. The nested neighbour regionalisation

and kriging yield the best results. As compared to the

at-site calibrated simulations, the combined spatio-

temporal loss in median model efficiency is

0.67 2 0.56 ¼ 0.11 averaged over the two verifica-

tion periods, which is slightly more than the loss of

0.10 in spatial model regionalisation only. Again, all

the methods based on spatial proximity perform better

than those based on catchment attributes.

Catchment attributes used in the regression

method. To assist in the interpretation of the

regression results in Figs. 10 and 11 as well as

Tables 3 and 4, Table 5 shows how often each

Fig. 11. Nash–Sutcliffe model efficiencies. Vertical axes: verification efficiencies for the period 1976–1986 using regionalised parameters

estimated from the period 1987–1997. Horizontal axes: calibration efficiencies for the period 1987–1997. (a–h) are as in Fig. 10.
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catchment attribute has been selected for the local

regression with each model parameter as a conse-

quence of exhibiting the best multiple correlation

coefficient. Two numbers are shown. The first is the

number of instances an attribute was selected

associated with a positive regression coefficient, the

second is the number of instances associated with a

negative regression coefficient. The attributes used in

most of the catchments can be interpreted as those

with the highest predictive power. Some but not all of

the attributes with the highest predictive power can be

interpreted on the basis of hydrological reasoning.

The SCF is negatively related to catchment area

implying that which may be related to raingauge

density. The maximum soil moisture content, FC, is

positively related to the portion of porous aquifers in

64 out of 308 catchments. This suggests that porous

aquifers tend to increase the storage capacity of a

catchment. FC is positively related to Austroalpin

crystalline implying particularly deep soils for this

geologic formation. The non-linearity parameter,

beta, is negatively related to elevation and topo-

graphic slope. As discussed above, this is likely due to

a tendency for the alpine catchments to be associated

with larger runoff coefficients and more linear runoff

generation than lowland catchments. For the k0

storage coefficient and its threshold value, LSuz; two

attributes used frequently are catchment area and the

portion of forest. Small catchments are associated

with small values of LSuz and hence tend to produce

surface runoff more easily than large catchments. In

contrast, forested catchments are associated with large

values of LSuz and hence tend to produce surface

runoff less frequently than catchments with other land

uses. The controls of k0 and LSuz tend to have inverse

signs which is because of a tendency of these two

parameters to be negatively related to each other (see

Fig. 3). The fast storage coefficients k1 is negatively

related to the FARL lake index which implies that

catchments with a large portion of lakes tend to

respond more slowly than catchments without lakes.

The percolation parameter, cperc; is negatively related

to river network density. This suggests that in

catchments with few streams a larger portion of

water penetrates deep into the subsurface than is the

case for catchments with a large river network

density.

Discussion. The model efficiencies for the cali-

bration and verification periods of the gauged

catchment case found in this paper (median values

Table 5

Number of instances each catchment attribute is used in the three parameter multiple local regression

DDF SCF FC LP b k0 LSuz k1 k2 cperc croute

Area 0/165 1/136 22/12 37/7 21/54 0/108 124/3 22/13 40/15 21/48 16/42

Elevation 0/66 4/50 61/15 59/16 9/77 0/66 50/12 29/28 10/16 6/56 21/29

Slope 0/75 1/91 5/61 2/65 29/52 0/83 83/9 21/15 23/41 32/55 26/66

RND 0/85 2/78 24/60 29/45 32/17 0/46 7/44 26/88 12/95 11/69 17/43

Porous aquifers 6/37 8/42 64/28 69/29 37/24 3/48 24/26 14/49 36/28 16/39 20/50

FARL 12/33 8/68 38/47 42/44 29/27 8/70 4/78 11/98 55/64 10/90 23/46

MAP 0/35 2/83 32/12 36/12 10/21 0/45 10/28 35/10 15/37 9/45 29/53

MADP 1/55 1/72 6/61 8/39 13/53 1/35 16/31 13/54 42/30 7/62 2/66

Forest 0/82 3/44 33/9 29/9 26/43 0/79 121/17 20/24 13/17 27/57 20/50

Glacier 0/66 0/9 4/22 5/19 17/13 0/37 4/18 13/11 3/13 3/15 7/16

Tertiary þ Quaternary 0/29 1/76 15/22 21/26 30/38 0/41 19/21 4/47 56/36 6/31 39/59

Calcareous alps 1/44 1/60 18/46 9/54 11/64 1/88 12/38 5/77 17/52 24/45 15/39

Austroalpin Crystalline 0/44 0/17 66/4 64/5 11/23 0/55 11/22 38/32 10/18 7/26 6/36

Rendzina 5/23 3/40 9/75 10/79 30/26 3/65 9/32 25/36 20/31 13/65 9/30

Cambisol 0/60 0/23 25/28 29/26 54/33 0/42 39/12 13/53 24/55 2/27 15/34

Total 924 924 924 924 924 924 924 924 924 924 924

Number of instances is a measure of the predictive power of each attribute. The two numbers shown relate to positive and negative

regression coefficients, respectively. As there are 399 catchments and three variables the total number of instances is 1197. Calibration period

1987–1997
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of 0.67 and 0.63) are reasonable but they are not as

high as one would expect them to be from the

literature (e.g. WMO, 1986). We believe there are

three main reasons for the efficiencies not to be higher.

The first is that the objective function used in this

paper consists of five terms, only one of which

represents the Nash–Sutcliffe model efficiency. This

objective function has been chosen in favour of more

robust parameter estimation. It should be noted that

the Nash–Sutcliffe model efficiency only contributed

about two thirds to the total objectives function in the

case of the current study. The calibration efficiencies

are, therefore, not as high as they were when only

using Nash–Sutcliffe model efficiency in optimising

the model parameters. The second reason is that,

unlike many studies in the literature, we have not hand

picked the model for each catchment. For some of the

catchments, the model structure may be less than

perfect. We do believe that the model structure is

adequate for the purposes of the paper as both the

calibration and verification efficiencies are accepta-

ble. The third reason is that there may also be some

data problems which we have not detected but in an

individual case study for a small set of catchments, as

commonly reported in the literature, one would

remove outliers and focus on the data for which the

model gives consistent results. The efficiencies

obtained here are similar to those of Perrin et al.

(2001) who analysed a similar number of catchments.

It should also be noted that, in this paper, the model

efficiencies have been calculated for daily runoff

values. In some studies, the efficiencies are reported

for weekly or monthly averages of runoff (e.g. Chiew

and McMahon, 1994; Vandewiele et al., 1994) for

which the efficiencies would be better. In test

simulations, not shown here, we have evaluated the

efficiencies for different aggregation time steps. The

median efficiencies increased from about 0.65 to 0.75

when moving from daily time steps to monthly time

steps. This suggests that the seasonal cycle can be

more easily represented by the model than the day-to-

day fluctuations.

The ungauged catchment case, even for the best

regionalisation method of using nested neighbours,

results in median efficiencies of 0.57 and 0.56, which

is a significant decrease from the gauged catchment

case. This supports the notion that model calibration,

if at all possible, is by far better than model parameter

regionalisation. Indeed, Chiew and McMahon (1994,

p. 383), based on a similar but less extensive study,

pointed our that it is “difficult to estimate the values of

some of the important parameters” and hence the

models “must always be calibrated in all modelling

applications“. Using catchment attributes for par-

ameter regionalisation yields still lower efficiencies

than methods based on spatial proximity. This finding

is counter intuitive, as one would hope the attributes

as used in this paper to represent the physiographic

and hence hydrologic characteristics of catchments

well. This result adds a caveat to the use catchment

models that focus on land use characteristics or

other catchment attributes for estimating parameters

(e.g. Kite, 2000), at least for environments such as the

study region of this paper. It appears that the attributes

available at the regional scale are not very good

predictors of the hydrological dynamics. We believe

that for parameter regionalisation, better predictive

variables and similarity measures need to be found

than those currently used. We are currently examining

dynamic indicators, as opposed to the usual static

attributes used in this paper, that are hoped to better

represent catchment processes during individual

events and should therefore also be better regional

predictors (e.g. Merz and Blöschl, 2003). These

indicators include seasonality measures, catchment

state variables such as soil moisture and snow cover,

as well as storm type indicators.

8. Conclusions

The comparison of model parameters calibrated on

two independent 11 year periods suggests that all

model parameters are associated with some uncer-

tainty. The coefficients of determination of the

parameters from the two periods range from 0.09 to

0.64. For 50–93% of all catchments, the differences in

parameters between the two periods are less than 10%

of the possible parameter range. The most uncertain

parameters are the slow storage coefficient, k2 and the

routing parameter, croute: The parameters with the

smallest uncertainties are the fast storage coefficient,

k1 and the threshold storage coefficient, k0: Overall,

the interdependences of the parameters are weak, if at

all present. There is a tendency for the k0 and k1

storage coefficients to be negatively related and for k0
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and its threshold value LSuz to be negatively related.

These interdependences can be interpreted based on

the model structure. The lack of significant inter-

dependences suggests that the number of model

parameters cannot be reduced easily.

The regional patterns of the calibrated model

parameters are similar for the two periods although

large local differences occur. Some of the large-scale

variability of parameters can be interpreted based on

hydrological process reasoning. For example, large

DDF are found in regions of frequent rain-on-snow

events; large SCF, are found in high alpine catch-

ments; small values of the non-linearity parameter

beta, which imply a linear rainfall-runoff relationship

and large runoff coefficients, are found in the alpine

high precipitation catchments. A closer examination

of upstream and downstream neighbours indicates

that strong regional similarities not only exist for

nested catchments but also across catchment bound-

aries. This suggests that the calibrated parameters are

able to represent the regional or large-scale differ-

ences in the hydrological conditions and hence the

daily runoff regime in Austria. One would, therefore,

assume that it is possible to derive regional relation-

ships between the calibrated parameter values and

catchment attributes, with the caveat that local

differences, and to some degree parameter identifia-

bility issues, may generate some noise.

An analysis of the calibrated model parameters

versus catchment attributes suggests that there is no

tight relationship between the parameters and any of

the attributes. However, the attributes do explain

some of the spatial variability of the parameters. For

example, the k0 storage coefficient is negatively

correlated (coefficient of determination, R2 ¼ 0:22

and 0.27) with elevation and slope, implying that

direct surface runoff may be particularly flashy in the

high altitude catchments. The coefficients of determi-

nation for the other model parameters are smaller. An

optimised correlation procedure that accounts for

some of the parameter uncertainty resulted in increase

of the coefficient of determination by about one third.

This means that the parameter uncertainty does not

cloud the relationship between calibrated model

parameters and catchment attributes to a significant

extent. The underlying hydrological relationship

seems to be rather weak as the catchment attributes

are relatively poor indicators of the model parameters.

An analysis of the model performance suggests

that, when moving from the calibration period to the

verification period in the gauged catchment case, the

median Nash–Sutcliffe model efficiency decreases

from 0.67 to 0.63 on average over both periods,

which implies a temporal loss in model efficiency of

0.04. This is a small decrease, which suggests that

problems with over-parameterisation of the model

are unlikely. A comparison of various regionalisa-

tion methods indicates that the spatial loss in model

performance, when moving from gauged catchments

to ungauged catchments, is significantly larger.

Using the same parameter set for all catchments

(either preset parameters or globally averaged

parameters) produces the poorest regionalisation

results. It is clearly very important to account for

differences between catchments. Using multiple

regressions with catchment attributes produces

better regionalisation results. This suggests that the

catchment attributes do contain valuable information

that can be used to improve the parameter estimates

beyond global mean values. Local regressions

slightly improve the performance over global

regressions indicating that it is useful to account

for regional differences in the regression equations.

The median model efficiency of local regressions is

0.53, implying a spatial loss of 0.14, which is about

three times the temporal loss of 0.04. The optimised

local regression performs only slightly better than

the local regression, which suggests that parameter

uncertainty does not affect the regionalisation

significantly. In the multiple regressions, the set of

the three attributes with the best correlations is used.

Some but not all of these attributes can be

interpreted on the basis of hydrological reasoning.

The regionalisation method that uses the average

parameters of immediate upstream and downstream

(nested) neighbours performs best on most scores.

The median model efficiency of simulations using

parameters from nested neighbours is 0.57, implying

a spatial loss of 0.10, which is about twice the

temporal loss of 0.04. Similarly, the scatter of the

efficiencies and the scatter of the volume errors

between catchments are relatively small. Kriging

performs only slightly poorer. There is only a slight

decrease in performance for the case of kriging,

where immediate (nested) neighbours are not used

for the interpolation. This means that the favourable

R. Merz, G. Blöschl / Journal of Hydrology 287 (2004) 95–123 119



performance of kriging is not only a result of the

same portion of the landscape draining into nested

catchments. There appear to exist important simi-

larities of model parameters across catchment

boundaries. An important finding is that the methods

based on spatial proximity alone (the last three

methods) all perform significantly better than any of

the regression methods based on catchment attri-

butes. Apparently, catchment attributes are not very

representative of the real physical controls on the

water balance dynamics. Spatial proximity may be a

useful surrogate for unknown controls on the runoff

regime and hence on the model parameters but we

believe that better predictive variables based on

dynamic catchment characteristics are needed to

make headway in regionalising catchment model

parameters.
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Appendix A

A.1. Snow model

The snow routine represents snow accumulation

and melt by a simple degree day concept

Ps ¼ x·P; x ¼

0; if T $ Tr

1; if T # Ts

Tr 2 T

Tr 2 Ts

; if Ts , T , Tr

8>>>><
>>>>:

ðA1Þ

Pr ¼ ð1 2 xÞ·P

where P is the daily value of catchment average

precipitation, Ps is snowfall, Pr is rainfall, T is the

mean daily air temperature, and Ts and Tr are lower

and upper threshold temperatures, respectively. Melt

starts at temperatures above a threshold Tm

Pm ¼ ðT 2 TmÞ·DDF; if T . Tm and SWE . 0

Pm ¼ 0; otherwise

ðA2Þ

where Pm is the amount of melt water per time step,

DDF is the degree day factor and SWE is the snow

water equivalent. Catch deficit of the precipitation

gauges during snowfall is corrected by SCF, and

changes in the snow water equivalent from days i 2 1

to i are simply accounted for by

SWEi ¼ SWEi21 þ ðSCF·Ps 2 PmÞDt ðA3Þ

where Dt is the time step of one day.

A.2. Soil moisture accounting

The soil moisture routine represents runoff gener-

ation and changes in the soil moisture state of the

catchment:

Ssm;i ¼ Ssm;12i þ Pr þ Pm 2 Ea ðA4Þ

where Ssm is the soil moisture of a top soil layer

controlling runoff generation and actual evaporation,

Ea: The contribution DSuz of rain and snowmelt to

runoff is calculated as a function of soil moisture of

the top layer, Ssm; using a non-linear relationship with

two free parameters, FC and beta:

DSuz ¼
Ssm

FC

� �beta

·ðPr þ PmÞ ðA5Þ

FC is the maximum soil moisture storage. beta

controls the characteristics of runoff generation and

is a non-linearity parameter. If the top soil layer is

saturated, i.e. Ssm ¼ FC; all rainfall and snowmelt

contributes to runoff. Actual evaporation, Ea; is

calculated from potential evaporation, Ep; by a

piecewise linear function of soil moisture of the top

layer:

Ea ¼ Ep·
Ssm

LP
; if Ssm , LP

Ea ¼ Ep; otherwise

ðA6Þ
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where LP is a parameter termed the limit for potential

evaporation.

A.3. Response and transfer functions

The response function represents runoff routing on

the hillslopes and consists of two reservoirs, repre-

senting two soil zones. The storage states of the upper

and lower zones are Suz and Slz; respectively. DSuz

enters the upper zone reservoir and leaves this

reservoir through three paths, outflow from the

reservoir with a fast storage coefficient of k1;

percolation to the lower zone with a constant

percolation rate cperc; and, if a threshold LSuz of the

storage state is exceeded, through an additional outlet

with a storage coefficient of k0: Water leaves the lower

zone with a slow storage coefficient of k2: The outflow

from both reservoirs, Qg; is then routed by a triangular

transfer function, which represents runoff routing in

the streams

Bq ¼ Bmax 2 croute·Qg; if ðBmax 2 croute·QgÞ $ 1

Bq ¼ 1; otherwise

ðA7Þ

where Bq is the base of the transfer function, Bmax is

the maximum value of Bq and croute is a free

parameter. Four model parameters were set to

constant values (Ts ¼ 0 8C, Tr ¼ 2 8C, Tm ¼ 0 8C,

Bmax ¼ 10 days) on the basis of sensitivity analyses

while the remaining 11 parameters were found by

calibration.

Appendix B

B.1. Objective function

The first component of the objective function

involves the Nash and Sutcliffe (1970) coefficient of

efficiency, ME

ME ¼ 1 2

Xn

i¼1

ðQobs;i 2 Qsim;iÞ
2

Xn

i¼1

ðQobs;i 2 QobsÞ
2

ðB1Þ

where Qobs;i and Qsim;i are observed and simulated

runoff on day i; respectively, and Qobs is the mean of

observed runoff over the calibration period of n days.

The second component involves the volume error,

VE:

VE ¼

Xn

i¼1

Qsim;i 2
Xn

i¼1

Qobs;i

Xn

i¼1

Qobs;i

ðB2Þ

To avoid snow and moisture to accumulate without

bounds over the years, we introduced a penalty, 1s

once the normalised snow water equivalent of the last

third of the calibration period is different by more then

30% from that of the first third

1s ¼

Xn=3
i¼1

SWEi 2
Xn

i¼2n=3

SWEi

 !

Xn=3
i¼1

SWEi

; if 1s . 1min;

1s ¼ 0; otherwise

ðB3Þ

with 1min ¼ 0:3: An analogous penalty 1min was

adopted for the accumulation of soil moisture Ssm:

The third and fourth components involve these

penalties.

In calibration procedures, the parameter values

are usually bounded between two limits (Duan

et al., 1992) and otherwise no a priori assumptions

are made about the parameters. This implies that

the a priori distribution of the parameters is a

uniform distribution. We believe that it is possible

to make a more informed guess about the shape of

the a priori distribution and introduced a fifth

component which involves deviations from a priori

assumptions on the parameters. We used a penalty

function, 1p; based on a Beta distribution for each

parameter

1p ¼
Xk

j¼1

fmax;j 2 fj
pj 2 pl;j

pu;j 2 pl;j

 !

fmax;j

ðB4Þ

fmax;j ¼ fj
pmax;j 2 pl;j

pu;j 2 pl;j

 !
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where pj is the model parameter j to be calibrated,

pl and pu are the lower and upper bounds of the

parameter space, respectively, pmax is the parameter

value at which the Beta distribution is at a

maximum and k is the number of parameters to

be calibrated. f is the probability density function

of the Beta distribution:

f ðxla;bÞ ¼
1

Bða;bÞ
xa21ð1 2 xÞb21

;

for 0 , x , 1; a . 0; b . 0 with Bða;bÞ

¼
ð1

0
xa21ð1 2 xÞb21dx ¼

GðaÞGðbÞ

Gðaþ bÞ

ðB5Þ

We assumed values of a; b; pl and pu for each

parameter j based on our own assessment of the

hydrologic characteristics of the study region as

well as on literature values (Bergström, 1976;

Seibert, 1997) (Table A1). The a; b; pl and pu

values were the same for all catchments with the

exception of the upper bound pu of SCF which was

assumed to be a linear function of elevation

(Table A1) as the catch deficit of snowfall is

often higher in mountainous catchments than it is

in low elevation catchments. The entire objective

function now consists of the following parts

Z ¼ w1ð1 2 MEÞ þ w2lVElþ w3ð1 þ 1sÞ
2

þ w4ð1 þ 1mÞ
2 þ w51p ðB6Þ

where the weights wi were set to w1 ¼ 1; w2 ¼ 0:1;

w3 ¼ 0:01; w4 ¼ 0:01 and w5 ¼ 0:5: The values of

w1 and w2 follow the recommendations of Lind-

ström et al. (1997). The third and fourth terms have

been taken as squared terms using small weights in

order to provide very small penalties for small

deviations from the prescribed trend but exceed-

ingly larger penalties once the deviations get larger.

The value of w5 we obtained from sensitivity

analyses by examining the distribution functions of

the calibrated parameter values for different values

of w5: Large values of w5 resulted in calibrated

parameters clustering around pmax while small

values resulted in similar distributions as when

using w5 ¼ 0: A value of w5 ¼ 0:5 provided

balanced distribution functions between these two

extremes for all parameters.
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